Newer
Older
Alkis Evlogimenos
committed
//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/Analysis/LoopInfo.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
#include "Support/CommandLine.h"
Alkis Evlogimenos
committed
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include <iostream>
#include <limits>
Alkis Evlogimenos
committed
using namespace llvm;
namespace {
RegisterAnalysis<LiveIntervals> X("liveintervals",
"Live Interval Analysis");
Statistic<> numIntervals("liveintervals", "Number of intervals");
Statistic<> numJoined ("liveintervals", "Number of intervals joined");
cl::opt<bool>
join("join-liveintervals",
cl::desc("Join compatible live intervals"),
cl::init(true));
Alkis Evlogimenos
committed
};
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
Alkis Evlogimenos
committed
AU.addPreserved<LiveVariables>();
Alkis Evlogimenos
committed
AU.addRequired<LiveVariables>();
Alkis Evlogimenos
committed
AU.addPreservedID(PHIEliminationID);
Alkis Evlogimenos
committed
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addRequired<LoopInfo>();
Alkis Evlogimenos
committed
MachineFunctionPass::getAnalysisUsage(AU);
}
void LiveIntervals::releaseMemory()
{
mbbi2mbbMap_.clear();
mi2iMap_.clear();
r2iMap_.clear();
r2iMap_.clear();
r2rMap_.clear();
intervals_.clear();
}
Alkis Evlogimenos
committed
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
DEBUG(std::cerr << "Machine Function\n");
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
lv_ = &getAnalysis<LiveVariables>();
// number MachineInstrs
unsigned miIndex = 0;
for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
mbb != mbbEnd; ++mbb) {
const std::pair<MachineBasicBlock*, unsigned>& entry =
lv_->getMachineBasicBlockInfo(mbb);
Alkis Evlogimenos
committed
bool inserted = mbbi2mbbMap_.insert(std::make_pair(entry.second,
entry.first)).second;
assert(inserted && "multiple index -> MachineBasicBlock");
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
inserted = mi2iMap_.insert(std::make_pair(*mi, miIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
++miIndex;
}
}
computeIntervals();
// compute spill weights
const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
const TargetInstrInfo& tii = tm_->getInstrInfo();
for (MachineFunction::const_iterator mbbi = mf_->begin(),
mbbe = mf_->end(); mbbi != mbbe; ++mbbi) {
const MachineBasicBlock* mbb = mbbi;
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
if (loopDepth) {
for (MachineBasicBlock::const_iterator mii = mbb->begin(),
mie = mbb->end(); mii != mie; ++mii) {
MachineInstr* mi = *mii;
for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
MachineOperand& mop = mi->getOperand(i);
if (!mop.isVirtualRegister())
continue;
unsigned reg = mop.getAllocatedRegNum();
Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
assert(r2iit != r2iMap_.end());
r2iit->second->weight += pow(10.0F, loopDepth);
}
}
}
}
// join intervals if requested
if (join) joinIntervals();
numIntervals += intervals_.size();
Alkis Evlogimenos
committed
return true;
}
void LiveIntervals::printRegName(unsigned reg) const
{
if (reg < MRegisterInfo::FirstVirtualRegister)
std::cerr << mri_->getName(reg);
else
std::cerr << '%' << reg;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
DEBUG(std::cerr << "\t\tregister: ";printRegName(reg); std::cerr << '\n');
Alkis Evlogimenos
committed
unsigned instrIndex = getInstructionIndex(*mi);
LiveVariables::VarInfo& vi = lv_->getVarInfo(reg);
Interval* interval = 0;
Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
if (r2iit == r2iMap_.end() || r2iit->first != reg) {
Alkis Evlogimenos
committed
// add new interval
intervals_.push_back(Interval(reg));
// update interval index for this register
r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
interval = &intervals_.back();
}
else {
interval = &*r2iit->second;
Alkis Evlogimenos
committed
// iterate over all of the blocks that the variable is completely
// live in, adding them to the live interval
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
if (vi.AliveBlocks[i]) {
MachineBasicBlock* mbb = lv_->getIndexMachineBasicBlock(i);
if (!mbb->empty()) {
interval->addRange(getInstructionIndex(mbb->front()),
getInstructionIndex(mbb->back()));
}
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
bool killedInDefiningBasicBlock = false;
for (int i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineBasicBlock* killerBlock = vi.Kills[i].first;
MachineInstr* killerInstr = vi.Kills[i].second;
unsigned start = (mbb == killerBlock ?
instrIndex :
getInstructionIndex(killerBlock->front()));
unsigned end = getInstructionIndex(killerInstr) + 1;
if (start < end) {
killedInDefiningBasicBlock |= mbb == killerBlock;
interval->addRange(start, end);
}
Alkis Evlogimenos
committed
if (!killedInDefiningBasicBlock) {
unsigned end = getInstructionIndex(mbb->back()) + 1;
interval->addRange(instrIndex, end);
Alkis Evlogimenos
committed
}
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
DEBUG(std::cerr << "\t\tregister: "; printRegName(reg));
Alkis Evlogimenos
committed
unsigned start = getInstructionIndex(*mi);
unsigned end = start + 1;
Alkis Evlogimenos
committed
// register can be dead by the instruction defining it but it can
// only be killed by subsequent instructions
for (LiveVariables::killed_iterator
ki = lv_->dead_begin(*mi),
ke = lv_->dead_end(*mi);
ki != ke; ++ki) {
if (reg == ki->second) {
DEBUG(std::cerr << " dead\n");
goto exit;
}
}
Alkis Evlogimenos
committed
{
MachineBasicBlock::iterator e = mbb->end();
do {
++mi;
for (LiveVariables::killed_iterator
ki = lv_->killed_begin(*mi),
ke = lv_->killed_end(*mi);
ki != ke; ++ki) {
if (reg == ki->second) {
DEBUG(std::cerr << " killed\n");
goto exit;
}
Alkis Evlogimenos
committed
}
++end;
} while (mi != e);
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
exit:
assert(start < end && "did not find end of interval?");
Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
if (r2iit != r2iMap_.end() && r2iit->first == reg) {
r2iit->second->addRange(start, end);
Alkis Evlogimenos
committed
}
else {
intervals_.push_back(Interval(reg));
// update interval index for this register
r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
intervals_.back().addRange(start, end);
Alkis Evlogimenos
committed
}
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
if (reg < MRegisterInfo::FirstVirtualRegister) {
if (lv_->getAllocatablePhysicalRegisters()[reg]) {
Alkis Evlogimenos
committed
handlePhysicalRegisterDef(mbb, mi, reg);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
handlePhysicalRegisterDef(mbb, mi, *as);
Alkis Evlogimenos
committed
}
}
else {
handleVirtualRegisterDef(mbb, mi, reg);
}
}
/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N) a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
Alkis Evlogimenos
committed
/// which a variable is live
void LiveIntervals::computeIntervals()
{
DEBUG(std::cerr << "computing live intervals:\n");
for (MbbIndex2MbbMap::iterator
it = mbbi2mbbMap_.begin(), itEnd = mbbi2mbbMap_.end();
it != itEnd; ++it) {
MachineBasicBlock* mbb = it->second;
DEBUG(std::cerr << "machine basic block: "
<< mbb->getBasicBlock()->getName() << "\n");
Alkis Evlogimenos
committed
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
MachineInstr* instr = *mi;
const TargetInstrDescriptor& tid =
tm_->getInstrInfo().get(instr->getOpcode());
DEBUG(std::cerr << "\t[" << getInstructionIndex(instr) << "] ";
Alkis Evlogimenos
committed
instr->print(std::cerr, *tm_););
// handle implicit defs
for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
handleRegisterDef(mbb, mi, *id);
Alkis Evlogimenos
committed
// handle explicit defs
for (int i = instr->getNumOperands() - 1; i >= 0; --i) {
// handle register defs - build intervals
Alkis Evlogimenos
committed
MachineOperand& mop = instr->getOperand(i);
if (mop.isRegister() && mop.isDef())
handleRegisterDef(mbb, mi, mop.getAllocatedRegNum());
Alkis Evlogimenos
committed
}
}
}
intervals_.sort(StartPointComp());
Alkis Evlogimenos
committed
DEBUG(std::copy(intervals_.begin(), intervals_.end(),
std::ostream_iterator<Interval>(std::cerr, "\n")));
}
Alkis Evlogimenos
committed
unsigned LiveIntervals::rep(unsigned reg)
{
Reg2RegMap::iterator it = r2rMap_.find(reg);
if (it != r2rMap_.end())
return it->second = rep(it->second);
return reg;
}
void LiveIntervals::joinIntervals()
DEBUG(std::cerr << "joining compatible intervals:\n");
const TargetInstrInfo& tii = tm_->getInstrInfo();
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
for (MachineFunction::const_iterator mbbi = mf_->begin(),
mbbe = mf_->end(); mbbi != mbbe; ++mbbi) {
const MachineBasicBlock* mbb = mbbi;
DEBUG(std::cerr << "machine basic block: "
<< mbb->getBasicBlock()->getName() << "\n");
for (MachineBasicBlock::const_iterator mii = mbb->begin(),
mie = mbb->end(); mii != mie; ++mii) {
MachineInstr* mi = *mii;
const TargetInstrDescriptor& tid =
tm_->getInstrInfo().get(mi->getOpcode());
DEBUG(std::cerr << "\t\tinstruction["
<< getInstructionIndex(mi) << "]: ";
mi->print(std::cerr, *tm_););
unsigned srcReg, dstReg;
if (tii.isMoveInstr(*mi, srcReg, dstReg) &&
(srcReg >= MRegisterInfo::FirstVirtualRegister ||
lv_->getAllocatablePhysicalRegisters()[srcReg]) &&
(dstReg >= MRegisterInfo::FirstVirtualRegister ||
lv_->getAllocatablePhysicalRegisters()[dstReg])) {
// get representative registers
srcReg = rep(srcReg);
dstReg = rep(dstReg);
// if they are already joined we continue
if (srcReg == dstReg)
continue;
Reg2IntervalMap::iterator r2iSrc = r2iMap_.find(srcReg);
assert(r2iSrc != r2iMap_.end());
Reg2IntervalMap::iterator r2iDst = r2iMap_.find(dstReg);
assert(r2iDst != r2iMap_.end());
Intervals::iterator srcInt = r2iSrc->second;
Intervals::iterator dstInt = r2iDst->second;
// src is a physical register
if (srcInt->reg < MRegisterInfo::FirstVirtualRegister) {
if (dstInt->reg == srcInt->reg ||
(dstInt->reg >= MRegisterInfo::FirstVirtualRegister &&
!srcInt->overlaps(*dstInt) &&
!overlapsAliases(*srcInt, *dstInt))) {
srcInt->join(*dstInt);
r2iDst->second = r2iSrc->second;
r2rMap_.insert(std::make_pair(dstInt->reg, srcInt->reg));
intervals_.erase(dstInt);
}
}
// dst is a physical register
else if (dstInt->reg < MRegisterInfo::FirstVirtualRegister) {
if (srcInt->reg == dstInt->reg ||
(srcInt->reg >= MRegisterInfo::FirstVirtualRegister &&
!dstInt->overlaps(*srcInt) &&
!overlapsAliases(*dstInt, *srcInt))) {
dstInt->join(*srcInt);
r2iSrc->second = r2iDst->second;
r2rMap_.insert(std::make_pair(srcInt->reg, dstInt->reg));
intervals_.erase(srcInt);
}
}
// neither src nor dst are physical registers
else {
const TargetRegisterClass *srcRc, *dstRc;
srcRc = mf_->getSSARegMap()->getRegClass(srcInt->reg);
dstRc = mf_->getSSARegMap()->getRegClass(dstInt->reg);
if (srcRc == dstRc && !dstInt->overlaps(*srcInt)) {
srcInt->join(*dstInt);
r2iDst->second = r2iSrc->second;
r2rMap_.insert(std::make_pair(dstInt->reg, srcInt->reg));
intervals_.erase(dstInt);
}
}
++numJoined;
}
}
intervals_.sort(StartPointComp());
DEBUG(std::copy(intervals_.begin(), intervals_.end(),
std::ostream_iterator<Interval>(std::cerr, "\n")));
DEBUG(for (Reg2RegMap::const_iterator i = r2rMap_.begin(),
e = r2rMap_.end(); i != e; ++i)
std::cerr << i->first << " -> " << i->second << '\n';);
bool LiveIntervals::overlapsAliases(const Interval& lhs,
const Interval& rhs) const
{
assert(lhs.reg < MRegisterInfo::FirstVirtualRegister &&
"first interval must describe a physical register");
for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
assert(r2i != r2iMap_.end() && "alias does not have interval?");
if (rhs.overlaps(*r2i->second))
return true;
}
return false;
}
LiveIntervals::Interval::Interval(unsigned r)
: reg(r),
weight((r < MRegisterInfo::FirstVirtualRegister ?
std::numeric_limits<float>::max() : 0.0F))
// This example is provided becaues liveAt() is non-obvious:
//
// this = [1,2), liveAt(1) will return false. The idea is that the
// variable is defined in 1 and not live after definition. So it was
// dead to begin with (defined but never used).
//
// this = [1,3), liveAt(2) will return false. The variable is used at
// 2 but 2 is the last use so the variable's allocated register is
// available for reuse.
bool LiveIntervals::Interval::liveAt(unsigned index) const
{
Ranges::const_iterator r = ranges.begin();
while (r != ranges.end() && index < (r->second - 1)) {
if (index >= r->first)
return true;
++r;
}
return false;
}
// This example is provided because overlaps() is non-obvious:
//
// 0: A = ...
// 1: B = ...
// 2: C = A + B ;; last use of A
//
// The live intervals should look like:
//
// A = [0, 3)
// B = [1, x)
// C = [2, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
bool LiveIntervals::Interval::overlaps(const Interval& other) const
{
Ranges::const_iterator i = ranges.begin();
Ranges::const_iterator ie = ranges.end();
Ranges::const_iterator j = other.ranges.begin();
Ranges::const_iterator je = other.ranges.end();
while (i != ie && j != je) {
if (i->first == j->first) {
return true;
}
else {
if (i->first > j->first) {
swap(i, j);
swap(ie, je);
}
assert(i->first < j->first);
if ((i->second - 1) > j->first) {
return true;
}
else {
++i;
}
}
}
return false;
}
void LiveIntervals::Interval::addRange(unsigned start, unsigned end)
{
assert(start < end && "Invalid range to add!");
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
DEBUG(std::cerr << "\t\t\tadding range: [" << start <<','<< end << ") -> ");
//assert(start < end && "invalid range?");
Range range = std::make_pair(start, end);
Ranges::iterator it =
ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
range);
it = mergeRangesForward(it);
it = mergeRangesBackward(it);
DEBUG(std::cerr << "\t\t\t\tafter merging: " << *this << '\n');
}
void LiveIntervals::Interval::join(const LiveIntervals::Interval& other)
{
DEBUG(std::cerr << "\t\t\t\tjoining intervals: "
<< other << " and " << *this << '\n');
Ranges::iterator cur = ranges.begin();
for (Ranges::const_iterator i = other.ranges.begin(),
e = other.ranges.end(); i != e; ++i) {
cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i);
cur = mergeRangesForward(cur);
cur = mergeRangesBackward(cur);
}
if (reg >= MRegisterInfo::FirstVirtualRegister)
weight += other.weight;
DEBUG(std::cerr << "\t\t\t\tafter merging: " << *this << '\n');
}
LiveIntervals::Interval::Ranges::iterator
LiveIntervals::Interval::mergeRangesForward(Ranges::iterator it)
{
for (Ranges::iterator next = it + 1;
next != ranges.end() && it->second >= next->first; ) {
it->second = std::max(it->second, next->second);
next = ranges.erase(next);
}
return it;
}
LiveIntervals::Interval::Ranges::iterator
LiveIntervals::Interval::mergeRangesBackward(Ranges::iterator it)
{
while (it != ranges.begin()) {
Ranges::iterator prev = it - 1;
if (it->first > prev->second) break;
it->first = std::min(it->first, prev->first);
it->second = std::max(it->second, prev->second);
it = ranges.erase(prev);
}
return it;
}
Alkis Evlogimenos
committed
std::ostream& llvm::operator<<(std::ostream& os,
const LiveIntervals::Interval& li)
{
os << "%reg" << li.reg << ',' << li.weight << " = ";
Alkis Evlogimenos
committed
for (LiveIntervals::Interval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
os << "[" << i->first << "," << i->second << ")";
Alkis Evlogimenos
committed
}
return os;
}