diff --git a/lldb/scripts/llvm.fix-target-amalgamated.diff b/lldb/scripts/llvm.fix-target-amalgamated.diff index 9ac56bd6dc7fe684e36513161f31d6074c2769f1..5373769b979e6e7215116a0e9de92489258f0aac 100644 --- a/lldb/scripts/llvm.fix-target-amalgamated.diff +++ b/lldb/scripts/llvm.fix-target-amalgamated.diff @@ -41,150 +41,6 @@ Index: lib/Target/ARM/ARMInstrNEON.td []>; // Vector Move Operations. -Index: lib/Target/ARM/ARMInstrVFP.td -=================================================================== ---- lib/Target/ARM/ARMInstrVFP.td (revision 152265) -+++ lib/Target/ARM/ARMInstrVFP.td (working copy) -@@ -818,7 +818,29 @@ - - // FP to Fixed-Point: - --def VTOSHS : AVConv1XI<0b11101, 0b11, 0b1110, 0b1010, 0, -+// Single Precision register -+class AVConv1XInsS_Encode op1, bits<2> op2, bits<4> op3, bits<4> op4, bit op5, -+ dag oops, dag iops, InstrItinClass itin, string opc, string asm, -+ list pattern> -+ : AVConv1XI { -+ bits<5> dst; -+ // if dp_operation then UInt(D:Vd) else UInt(Vd:D); -+ let Inst{22} = dst{0}; -+ let Inst{15-12} = dst{4-1}; -+} -+ -+// Double Precision register -+class AVConv1XInsD_Encode op1, bits<2> op2, bits<4> op3, bits<4> op4, bit op5, -+ dag oops, dag iops, InstrItinClass itin, string opc, string asm, -+ list pattern> -+ : AVConv1XI { -+ bits<5> dst; -+ // if dp_operation then UInt(D:Vd) else UInt(Vd:D); -+ let Inst{22} = dst{4}; -+ let Inst{15-12} = dst{3-0}; -+} -+ -+def VTOSHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 0, - (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), - IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -826,7 +848,7 @@ - let D = VFPNeonA8Domain; - } - --def VTOUHS : AVConv1XI<0b11101, 0b11, 0b1111, 0b1010, 0, -+def VTOUHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 0, - (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), - IIC_fpCVTSI, "vcvt", ".u16.f32\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -834,7 +856,7 @@ - let D = VFPNeonA8Domain; - } - --def VTOSLS : AVConv1XI<0b11101, 0b11, 0b1110, 0b1010, 1, -+def VTOSLS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 1, - (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), - IIC_fpCVTSI, "vcvt", ".s32.f32\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -842,7 +864,7 @@ - let D = VFPNeonA8Domain; - } - --def VTOULS : AVConv1XI<0b11101, 0b11, 0b1111, 0b1010, 1, -+def VTOULS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 1, - (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), - IIC_fpCVTSI, "vcvt", ".u32.f32\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -850,25 +872,25 @@ - let D = VFPNeonA8Domain; - } - --def VTOSHD : AVConv1XI<0b11101, 0b11, 0b1110, 0b1011, 0, -+def VTOSHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 0, - (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), - IIC_fpCVTDI, "vcvt", ".s16.f64\t$dst, $a, $fbits", []>; - --def VTOUHD : AVConv1XI<0b11101, 0b11, 0b1111, 0b1011, 0, -+def VTOUHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 0, - (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), - IIC_fpCVTDI, "vcvt", ".u16.f64\t$dst, $a, $fbits", []>; - --def VTOSLD : AVConv1XI<0b11101, 0b11, 0b1110, 0b1011, 1, -+def VTOSLD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 1, - (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), - IIC_fpCVTDI, "vcvt", ".s32.f64\t$dst, $a, $fbits", []>; - --def VTOULD : AVConv1XI<0b11101, 0b11, 0b1111, 0b1011, 1, -+def VTOULD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 1, - (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), - IIC_fpCVTDI, "vcvt", ".u32.f64\t$dst, $a, $fbits", []>; - - // Fixed-Point to FP: - --def VSHTOS : AVConv1XI<0b11101, 0b11, 0b1010, 0b1010, 0, -+def VSHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 0, - (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), - IIC_fpCVTIS, "vcvt", ".f32.s16\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -876,7 +898,7 @@ - let D = VFPNeonA8Domain; - } - --def VUHTOS : AVConv1XI<0b11101, 0b11, 0b1011, 0b1010, 0, -+def VUHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 0, - (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits), - IIC_fpCVTIS, "vcvt", ".f32.u16\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -884,7 +906,7 @@ - let D = VFPNeonA8Domain; - } - --def VSLTOS : AVConv1XI<0b11101, 0b11, 0b1010, 0b1010, 1, -+def VSLTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 1, - (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), - IIC_fpCVTIS, "vcvt", ".f32.s32\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -892,7 +914,7 @@ - let D = VFPNeonA8Domain; - } - --def VULTOS : AVConv1XI<0b11101, 0b11, 0b1011, 0b1010, 1, -+def VULTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 1, - (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits), - IIC_fpCVTIS, "vcvt", ".f32.u32\t$dst, $a, $fbits", []> { - // Some single precision VFP instructions may be executed on both NEON and -@@ -900,19 +922,19 @@ - let D = VFPNeonA8Domain; - } - --def VSHTOD : AVConv1XI<0b11101, 0b11, 0b1010, 0b1011, 0, -+def VSHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 0, - (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), - IIC_fpCVTID, "vcvt", ".f64.s16\t$dst, $a, $fbits", []>; - --def VUHTOD : AVConv1XI<0b11101, 0b11, 0b1011, 0b1011, 0, -+def VUHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 0, - (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits), - IIC_fpCVTID, "vcvt", ".f64.u16\t$dst, $a, $fbits", []>; - --def VSLTOD : AVConv1XI<0b11101, 0b11, 0b1010, 0b1011, 1, -+def VSLTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 1, - (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), - IIC_fpCVTID, "vcvt", ".f64.s32\t$dst, $a, $fbits", []>; - --def VULTOD : AVConv1XI<0b11101, 0b11, 0b1011, 0b1011, 1, -+def VULTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 1, - (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits), - IIC_fpCVTID, "vcvt", ".f64.u32\t$dst, $a, $fbits", []>; - Index: lib/Target/ARM/ARMInstrThumb2.td =================================================================== --- lib/Target/ARM/ARMInstrThumb2.td (revision 152265) @@ -197,6 +53,142 @@ Index: lib/Target/ARM/ARMInstrThumb2.td } let isNotDuplicable = 1, isIndirectBranch = 1 in { +Index: lib/Target/ARM/ARMInstrThumb.td +=================================================================== +--- lib/Target/ARM/ARMInstrThumb.td (revision 152265) ++++ lib/Target/ARM/ARMInstrThumb.td (working copy) +@@ -413,11 +413,11 @@ + "bl${p}\t$func", + [(ARMtcall tglobaladdr:$func)]>, + Requires<[IsThumb, IsNotIOS]> { +- bits<22> func; +- let Inst{26} = func{21}; ++ bits<24> func; ++ let Inst{26} = func{23}; + let Inst{25-16} = func{20-11}; +- let Inst{13} = 1; +- let Inst{11} = 1; ++ let Inst{13} = func{22}; ++ let Inst{11} = func{21}; + let Inst{10-0} = func{10-0}; + } + +@@ -427,10 +427,11 @@ + "blx${p}\t$func", + [(ARMcall tglobaladdr:$func)]>, + Requires<[IsThumb, HasV5T, IsNotIOS]> { +- bits<21> func; ++ bits<24> func; ++ let Inst{26} = func{23}; + let Inst{25-16} = func{20-11}; +- let Inst{13} = 1; +- let Inst{11} = 1; ++ let Inst{13} = func{22}; ++ let Inst{11} = func{21}; + let Inst{10-1} = func{10-1}; + let Inst{0} = 0; // func{0} is assumed zero + } +Index: lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp +=================================================================== +--- lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp (revision 152265) ++++ lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp (working copy) +@@ -397,39 +397,65 @@ + return swapped; + } + case ARM::fixup_arm_thumb_bl: { +- // The value doesn't encode the low bit (always zero) and is offset by +- // four. The value is encoded into disjoint bit positions in the destination +- // opcode. x = unchanged, I = immediate value bit, S = sign extension bit +- // +- // BL: xxxxxSIIIIIIIIII xxxxxIIIIIIIIIII +- // +- // Note that the halfwords are stored high first, low second; so we need +- // to transpose the fixup value here to map properly. +- unsigned isNeg = (int64_t(Value - 4) < 0) ? 1 : 0; +- uint32_t Binary = 0; +- Value = 0x3fffff & ((Value - 4) >> 1); +- Binary = (Value & 0x7ff) << 16; // Low imm11 value. +- Binary |= (Value & 0x1ffc00) >> 11; // High imm10 value. +- Binary |= isNeg << 10; // Sign bit. +- return Binary; ++ // The value doesn't encode the low bit (always zero) and is offset by ++ // four. The 32-bit immediate value is encoded as ++ // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) ++ // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). ++ // The value is encoded into disjoint bit positions in the destination ++ // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, ++ // J = either J1 or J2 bit ++ // ++ // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII ++ // ++ // Note that the halfwords are stored high first, low second; so we need ++ // to transpose the fixup value here to map properly. ++ uint32_t offset = (Value - 4) >> 1; ++ uint32_t signBit = (offset & 0x800000) >> 23; ++ uint32_t I1Bit = (offset & 0x400000) >> 22; ++ uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; ++ uint32_t I2Bit = (offset & 0x200000) >> 21; ++ uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; ++ uint32_t imm10Bits = (offset & 0x1FF800) >> 11; ++ uint32_t imm11Bits = (offset & 0x000007FF); ++ ++ uint32_t Binary = 0; ++ uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); ++ uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | ++ (uint16_t)imm11Bits); ++ Binary |= secondHalf << 16; ++ Binary |= firstHalf; ++ return Binary; ++ + } + case ARM::fixup_arm_thumb_blx: { +- // The value doesn't encode the low two bits (always zero) and is offset by +- // four (see fixup_arm_thumb_cp). The value is encoded into disjoint bit +- // positions in the destination opcode. x = unchanged, I = immediate value +- // bit, S = sign extension bit, 0 = zero. +- // +- // BLX: xxxxxSIIIIIIIIII xxxxxIIIIIIIIII0 +- // +- // Note that the halfwords are stored high first, low second; so we need +- // to transpose the fixup value here to map properly. +- unsigned isNeg = (int64_t(Value-4) < 0) ? 1 : 0; +- uint32_t Binary = 0; +- Value = 0xfffff & ((Value - 2) >> 2); +- Binary = (Value & 0x3ff) << 17; // Low imm10L value. +- Binary |= (Value & 0xffc00) >> 10; // High imm10H value. +- Binary |= isNeg << 10; // Sign bit. +- return Binary; ++ // The value doesn't encode the low two bits (always zero) and is offset by ++ // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as ++ // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) ++ // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). ++ // The value is encoded into disjoint bit positions in the destination ++ // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, ++ // J = either J1 or J2 bit, 0 = zero. ++ // ++ // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 ++ // ++ // Note that the halfwords are stored high first, low second; so we need ++ // to transpose the fixup value here to map properly. ++ uint32_t offset = (Value - 2) >> 2; ++ uint32_t signBit = (offset & 0x400000) >> 22; ++ uint32_t I1Bit = (offset & 0x200000) >> 21; ++ uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; ++ uint32_t I2Bit = (offset & 0x100000) >> 20; ++ uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; ++ uint32_t imm10HBits = (offset & 0xFFC00) >> 10; ++ uint32_t imm10LBits = (offset & 0x3FF); ++ ++ uint32_t Binary = 0; ++ uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); ++ uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | ++ ((uint16_t)imm10LBits) << 1); ++ Binary |= secondHalf << 16; ++ Binary |= firstHalf; ++ return Binary; + } + case ARM::fixup_arm_thumb_cp: + // Offset by 4, and don't encode the low two bits. Two bytes of that Index: lib/Target/ARM/Disassembler/ARMDisassembler.cpp =================================================================== --- lib/Target/ARM/Disassembler/ARMDisassembler.cpp (revision 152265) @@ -293,33 +285,7 @@ Index: lib/Target/ARM/Disassembler/ARMDisassembler.cpp break; } -@@ -2555,7 +2605,6 @@ - unsigned Rm = fieldFromInstruction32(Insn, 0, 4); - unsigned align = fieldFromInstruction32(Insn, 4, 1); - unsigned size = 1 << fieldFromInstruction32(Insn, 6, 2); -- unsigned pred = fieldFromInstruction32(Insn, 22, 4); - align *= 2*size; - - switch (Inst.getOpcode()) { -@@ -2586,16 +2635,11 @@ - return MCDisassembler::Fail; - Inst.addOperand(MCOperand::CreateImm(align)); - -- if (Rm == 0xD) -- Inst.addOperand(MCOperand::CreateReg(0)); -- else if (Rm != 0xF) { -+ if (Rm != 0xD && Rm != 0xF) { - if (!Check(S, DecodeGPRRegisterClass(Inst, Rm, Address, Decoder))) - return MCDisassembler::Fail; - } - -- if (!Check(S, DecodePredicateOperand(Inst, pred, Address, Decoder))) -- return MCDisassembler::Fail; -- - return S; - } - -@@ -2837,19 +2881,25 @@ +@@ -2837,19 +2887,25 @@ static DecodeStatus DecodeThumbBROperand(llvm::MCInst &Inst, unsigned Val, uint64_t Address, const void *Decoder) { @@ -348,7 +314,35 @@ Index: lib/Target/ARM/Disassembler/ARMDisassembler.cpp return MCDisassembler::Success; } -@@ -3271,7 +3321,9 @@ +@@ -3162,10 +3218,25 @@ + + static DecodeStatus DecodeThumbBLXOffset(llvm::MCInst &Inst, unsigned Val, + uint64_t Address, const void *Decoder) { ++ // Val is passed in as S:J1:J2:imm10H:imm10L:’0’ ++ // Note only one trailing zero not two. Also the J1 and J2 values are from ++ // the encoded instruction. So here change to I1 and I2 values via: ++ // I1 = NOT(J1 EOR S); ++ // I2 = NOT(J2 EOR S); ++ // and build the imm32 with two trailing zeros as documented: ++ // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:’00’, 32); ++ unsigned S = (Val >> 23) & 1; ++ unsigned J1 = (Val >> 22) & 1; ++ unsigned J2 = (Val >> 21) & 1; ++ unsigned I1 = !(J1 ^ S); ++ unsigned I2 = !(J2 ^ S); ++ unsigned tmp = (Val & ~0x600000) | (I1 << 22) | (I2 << 21); ++ int imm32 = SignExtend32<25>(tmp << 1); ++ + if (!tryAddingSymbolicOperand(Address, +- (Address & ~2u) + SignExtend32<22>(Val << 1) + 4, ++ (Address & ~2u) + imm32 + 4, + true, 4, Inst, Decoder)) +- Inst.addOperand(MCOperand::CreateImm(SignExtend32<22>(Val << 1))); ++ Inst.addOperand(MCOperand::CreateImm(imm32)); + return MCDisassembler::Success; + } + +@@ -3271,15 +3342,32 @@ static DecodeStatus DecodeThumbBCCTargetOperand(llvm::MCInst &Inst, unsigned Val, uint64_t Address, const void *Decoder){ @@ -359,3 +353,28 @@ Index: lib/Target/ARM/Disassembler/ARMDisassembler.cpp return MCDisassembler::Success; } + static DecodeStatus DecodeThumbBLTargetOperand(llvm::MCInst &Inst, unsigned Val, + uint64_t Address, const void *Decoder){ +- if (!tryAddingSymbolicOperand(Address, Address + SignExtend32<22>(Val<<1) + 4, ++ // Val is passed in as S:J1:J2:imm10:imm11 ++ // Note no trailing zero after imm11. Also the J1 and J2 values are from ++ // the encoded instruction. So here change to I1 and I2 values via: ++ // I1 = NOT(J1 EOR S); ++ // I2 = NOT(J2 EOR S); ++ // and build the imm32 with one trailing zero as documented: ++ // imm32 = SignExtend(S:I1:I2:imm10:imm11:’0’, 32); ++ unsigned S = (Val >> 23) & 1; ++ unsigned J1 = (Val >> 22) & 1; ++ unsigned J2 = (Val >> 21) & 1; ++ unsigned I1 = !(J1 ^ S); ++ unsigned I2 = !(J2 ^ S); ++ unsigned tmp = (Val & ~0x600000) | (I1 << 22) | (I2 << 21); ++ int imm32 = SignExtend32<25>(tmp << 1); ++ ++ if (!tryAddingSymbolicOperand(Address, Address + imm32 + 4, + true, 4, Inst, Decoder)) +- Inst.addOperand(MCOperand::CreateImm(SignExtend32<22>(Val << 1))); ++ Inst.addOperand(MCOperand::CreateImm(imm32)); + return MCDisassembler::Success; + } +