//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This coordinates the per-module state used while generating code. // //===----------------------------------------------------------------------===// #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Intrinsics.h" #include using namespace clang; using namespace CodeGen; CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO, llvm::Module &M, const llvm::TargetData &TD, Diagnostic &diags) : Context(C), Features(LO), TheModule(M), TheTargetData(TD), Diags(diags), Types(C, M, TD), MemCpyFn(0), CFConstantStringClassRef(0) {} /// WarnUnsupported - Print out a warning that codegen doesn't support the /// specified stmt yet. void CodeGenModule::WarnUnsupported(const Stmt *S, const char *Type) { unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning, "cannot codegen this %0 yet"); SourceRange Range = S->getSourceRange(); std::string Msg = Type; getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID, &Msg, 1, &Range, 1); } /// ReplaceMapValuesWith - This is a really slow and bad function that /// searches for any entries in GlobalDeclMap that point to OldVal, changing /// them to point to NewVal. This is badbadbad, FIXME! void CodeGenModule::ReplaceMapValuesWith(llvm::Constant *OldVal, llvm::Constant *NewVal) { for (llvm::DenseMap::iterator I = GlobalDeclMap.begin(), E = GlobalDeclMap.end(); I != E; ++I) if (I->second == OldVal) I->second = NewVal; } llvm::Constant *CodeGenModule::GetAddrOfFunctionDecl(const FunctionDecl *D, bool isDefinition) { // See if it is already in the map. If so, just return it. llvm::Constant *&Entry = GlobalDeclMap[D]; if (Entry) return Entry; const llvm::Type *Ty = getTypes().ConvertType(D->getType()); // Check to see if the function already exists. llvm::Function *F = getModule().getFunction(D->getName()); const llvm::FunctionType *FTy = cast(Ty); // If it doesn't already exist, just create and return an entry. if (F == 0) { // FIXME: param attributes for sext/zext etc. return Entry = new llvm::Function(FTy, llvm::Function::ExternalLinkage, D->getName(), &getModule()); } // If the pointer type matches, just return it. llvm::Type *PFTy = llvm::PointerType::getUnqual(Ty); if (PFTy == F->getType()) return Entry = F; // If this isn't a definition, just return it casted to the right type. if (!isDefinition) return Entry = llvm::ConstantExpr::getBitCast(F, PFTy); // Otherwise, we have a definition after a prototype with the wrong type. // F is the Function* for the one with the wrong type, we must make a new // Function* and update everything that used F (a declaration) with the new // Function* (which will be a definition). // // This happens if there is a prototype for a function (e.g. "int f()") and // then a definition of a different type (e.g. "int f(int x)"). Start by // making a new function of the correct type, RAUW, then steal the name. llvm::Function *NewFn = new llvm::Function(FTy, llvm::Function::ExternalLinkage, "", &getModule()); NewFn->takeName(F); // Replace uses of F with the Function we will endow with a body. llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(NewFn, F->getType()); F->replaceAllUsesWith(NewPtrForOldDecl); // FIXME: Update the globaldeclmap for the previous decl of this name. We // really want a way to walk all of these, but we don't have it yet. This // is incredibly slow! ReplaceMapValuesWith(F, NewPtrForOldDecl); // Ok, delete the old function now, which is dead. assert(F->isDeclaration() && "Shouldn't replace non-declaration"); F->eraseFromParent(); // Return the new function which has the right type. return Entry = NewFn; } llvm::Constant *CodeGenModule::GetAddrOfFileVarDecl(const FileVarDecl *D, bool isDefinition) { // See if it is already in the map. llvm::Constant *&Entry = GlobalDeclMap[D]; if (Entry) return Entry; const llvm::Type *Ty = getTypes().ConvertType(D->getType()); // Check to see if the global already exists. llvm::GlobalVariable *GV = getModule().getGlobalVariable(D->getName()); // If it doesn't already exist, just create and return an entry. if (GV == 0) { return Entry = new llvm::GlobalVariable(Ty, false, llvm::GlobalValue::ExternalLinkage, 0, D->getName(), &getModule()); } // If the pointer type matches, just return it. llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); if (PTy == GV->getType()) return Entry = GV; // If this isn't a definition, just return it casted to the right type. if (!isDefinition) return Entry = llvm::ConstantExpr::getBitCast(GV, PTy); // Otherwise, we have a definition after a prototype with the wrong type. // GV is the GlobalVariable* for the one with the wrong type, we must make a /// new GlobalVariable* and update everything that used GV (a declaration) // with the new GlobalVariable* (which will be a definition). // // This happens if there is a prototype for a global (e.g. "extern int x[];") // and then a definition of a different type (e.g. "int x[10];"). Start by // making a new global of the correct type, RAUW, then steal the name. llvm::GlobalVariable *NewGV = new llvm::GlobalVariable(Ty, false, llvm::GlobalValue::ExternalLinkage, 0, D->getName(), &getModule()); NewGV->takeName(GV); // Replace uses of GV with the globalvalue we will endow with a body. llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(NewGV, GV->getType()); GV->replaceAllUsesWith(NewPtrForOldDecl); // FIXME: Update the globaldeclmap for the previous decl of this name. We // really want a way to walk all of these, but we don't have it yet. This // is incredibly slow! ReplaceMapValuesWith(GV, NewPtrForOldDecl); // Ok, delete the old global now, which is dead. assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); GV->eraseFromParent(); // Return the new global which has the right type. return Entry = NewGV; } void CodeGenModule::EmitFunction(const FunctionDecl *FD) { // If this is not a prototype, emit the body. if (FD->getBody()) CodeGenFunction(*this).GenerateCode(FD); } static llvm::Constant *GenerateConstantExpr(const Expr *Expression, CodeGenModule &CGM); /// GenerateConversionToBool - Generate comparison to zero for conversion to /// bool static llvm::Constant *GenerateConversionToBool(llvm::Constant *Expression, QualType Source) { if (Source->isRealFloatingType()) { // Compare against 0.0 for fp scalars. llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType()); return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Expression, Zero); } assert((Source->isIntegerType() || Source->isPointerType()) && "Unknown scalar type to convert"); // Compare against an integer or pointer null. llvm::Constant *Zero = llvm::Constant::getNullValue(Expression->getType()); return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Expression, Zero); } /// GenerateConstantCast - Generates a constant cast to convert the Expression /// into the Target type. static llvm::Constant *GenerateConstantCast(const Expr *Expression, QualType Target, CodeGenModule &CGM) { CodeGenTypes& Types = CGM.getTypes(); QualType Source = Expression->getType().getCanonicalType(); Target = Target.getCanonicalType(); assert (!Target->isVoidType()); llvm::Constant *SubExpr = GenerateConstantExpr(Expression, CGM); if (Source == Target) return SubExpr; // Handle conversions to bool first, they are special: comparisons against 0. if (Target->isBooleanType()) return GenerateConversionToBool(SubExpr, Source); const llvm::Type *SourceType = Types.ConvertType(Source); const llvm::Type *TargetType = Types.ConvertType(Target); // Ignore conversions like int -> uint. if (SubExpr->getType() == TargetType) return SubExpr; // Handle pointer conversions next: pointers can only be converted to/from // other pointers and integers. if (isa(TargetType)) { // The source value may be an integer, or a pointer. if (isa(SubExpr->getType())) return llvm::ConstantExpr::getBitCast(SubExpr, TargetType); assert(Source->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); return llvm::ConstantExpr::getIntToPtr(SubExpr, TargetType); } if (isa(SourceType)) { // Must be an ptr to int cast. assert(isa(TargetType) && "not ptr->int?"); return llvm::ConstantExpr::getPtrToInt(SubExpr, TargetType); } if (Source->isRealFloatingType() && Target->isRealFloatingType()) { return llvm::ConstantExpr::getFPCast(SubExpr, TargetType); } // Finally, we have the arithmetic types: real int/float. if (isa(SourceType)) { bool InputSigned = Source->isSignedIntegerType(); if (isa(TargetType)) return llvm::ConstantExpr::getIntegerCast(SubExpr, TargetType, InputSigned); else if (InputSigned) return llvm::ConstantExpr::getSIToFP(SubExpr, TargetType); else return llvm::ConstantExpr::getUIToFP(SubExpr, TargetType); } assert(SubExpr->getType()->isFloatingPoint() && "Unknown real conversion"); if (isa(TargetType)) { if (Target->isSignedIntegerType()) return llvm::ConstantExpr::getFPToSI(SubExpr, TargetType); else return llvm::ConstantExpr::getFPToUI(SubExpr, TargetType); } assert(TargetType->isFloatingPoint() && "Unknown real conversion"); if (TargetType->getTypeID() < SubExpr->getType()->getTypeID()) return llvm::ConstantExpr::getFPTrunc(SubExpr, TargetType); else return llvm::ConstantExpr::getFPExtend(SubExpr, TargetType); assert (!"Unsupported cast type in global intialiser."); return 0; } /// GenerateAggregateInit - Generate a Constant initaliser for global array or /// struct typed variables. static llvm::Constant *GenerateAggregateInit(const InitListExpr *ILE, CodeGenModule &CGM) { assert (ILE->getType()->isArrayType() || ILE->getType()->isStructureType()); CodeGenTypes& Types = CGM.getTypes(); unsigned NumInitElements = ILE->getNumInits(); unsigned NumInitableElts = NumInitElements; const llvm::CompositeType *CType = cast(Types.ConvertType(ILE->getType())); assert(CType); std::vector Elts; // Initialising an array requires us to automatically initialise any // elements that have not been initialised explicitly const llvm::ArrayType *AType = 0; const llvm::Type *AElemTy = 0; unsigned NumArrayElements = 0; // If this is an array, we may have to truncate the initializer if ((AType = dyn_cast(CType))) { NumArrayElements = AType->getNumElements(); AElemTy = AType->getElementType(); NumInitableElts = std::min(NumInitableElts, NumArrayElements); } // Copy initializer elements. unsigned i = 0; for (i = 0; i < NumInitableElts; ++i) { llvm::Constant *C = GenerateConstantExpr(ILE->getInit(i), CGM); assert (C && "Failed to create initialiser expression"); Elts.push_back(C); } if (ILE->getType()->isStructureType()) return llvm::ConstantStruct::get(cast(CType), Elts); // Make sure we have an array at this point assert(AType); // Initialize remaining array elements. for (; i < NumArrayElements; ++i) Elts.push_back(llvm::Constant::getNullValue(AElemTy)); return llvm::ConstantArray::get(AType, Elts); } /// GenerateConstantExpr - Recursively builds a constant initialiser for the /// given expression. static llvm::Constant *GenerateConstantExpr(const Expr *Expression, CodeGenModule &CGM) { CodeGenTypes& Types = CGM.getTypes(); ASTContext& Context = CGM.getContext(); assert ((Expression->isConstantExpr(Context, 0) || Expression->getStmtClass() == Stmt::InitListExprClass) && "Only constant global initialisers are supported."); QualType type = Expression->getType().getCanonicalType(); if (type->isIntegerType()) { llvm::APSInt Value(static_cast(Context.getTypeSize(type, SourceLocation()))); if (Expression->isIntegerConstantExpr(Value, Context)) { return llvm::ConstantInt::get(Value); } } switch (Expression->getStmtClass()) { default: break; // default emits a warning and returns bogus value. case Stmt::DeclRefExprClass: { const ValueDecl *Decl = cast(Expression)->getDecl(); if (const FunctionDecl *FD = dyn_cast(Decl)) return CGM.GetAddrOfFunctionDecl(FD, false); break; } // Generate constant for floating point literal values. case Stmt::FloatingLiteralClass: { const FloatingLiteral *FLiteral = cast(Expression); return llvm::ConstantFP::get(Types.ConvertType(type), FLiteral->getValue()); } // Generate constant for string literal values. case Stmt::StringLiteralClass: { const StringLiteral *String = cast(Expression); const char *StrData = String->getStrData(); unsigned Len = String->getByteLength(); // If the string has a pointer type, emit it as a global and use the pointer // to the global as its value. if (String->getType()->isPointerType()) return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len)); // Otherwise this must be a string initializing an array in a static // initializer. Don't emit it as the address of the string, emit the string // data itself as an inline array. const ConstantArrayType *CAT = String->getType()->getAsConstantArrayType(); assert(CAT && "String isn't pointer or array!"); std::string Str(StrData, StrData + Len); // Null terminate the string before potentially truncating it. // FIXME: What about wchar_t strings? Str.push_back(0); uint64_t RealLen = CAT->getSize().getZExtValue(); // String or grow the initializer to the required size. if (RealLen != Str.size()) Str.resize(RealLen); return llvm::ConstantArray::get(Str, false); } // Elide parenthesis. case Stmt::ParenExprClass: return GenerateConstantExpr(cast(Expression)->getSubExpr(), CGM); // Generate constant for sizeof operator. // FIXME: Need to support AlignOf case Stmt::SizeOfAlignOfTypeExprClass: { const SizeOfAlignOfTypeExpr *SOExpr = cast(Expression); assert (SOExpr->isSizeOf()); return llvm::ConstantExpr::getSizeOf(Types.ConvertType(type)); } // Generate constant cast expressions. case Stmt::CastExprClass: return GenerateConstantCast(cast(Expression)->getSubExpr(), type, CGM); case Stmt::ImplicitCastExprClass: { const ImplicitCastExpr *ICExpr = cast(Expression); // If this is due to array->pointer conversion, emit the array expression as // an l-value. if (ICExpr->getSubExpr()->getType()->isArrayType()) { // Note that VLAs can't exist for global variables. // The only thing that can have array type like this is a // DeclRefExpr(FileVarDecl)? const DeclRefExpr *DRE = cast(ICExpr->getSubExpr()); const FileVarDecl *FVD = cast(DRE->getDecl()); llvm::Constant *C = CGM.GetAddrOfFileVarDecl(FVD, false); assert(isa(C->getType()) && isa(cast(C->getType()) ->getElementType())); llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); llvm::Constant *Ops[] = {Idx0, Idx0}; C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2); // The resultant pointer type can be implicitly casted to other pointer // types as well, for example void*. const llvm::Type *DestPTy = Types.ConvertType(type); assert(isa(DestPTy) && "Only expect implicit cast to pointer"); return llvm::ConstantExpr::getBitCast(C, DestPTy); } return GenerateConstantCast(ICExpr->getSubExpr(), type, CGM); } // Generate a constant array access expression // FIXME: Clang's semantic analysis incorrectly prevents array access in // global initialisers, preventing us from testing this. case Stmt::ArraySubscriptExprClass: { const ArraySubscriptExpr* ASExpr = cast(Expression); llvm::Constant *Base = GenerateConstantExpr(ASExpr->getBase(), CGM); llvm::Constant *Index = GenerateConstantExpr(ASExpr->getIdx(), CGM); return llvm::ConstantExpr::getExtractElement(Base, Index); } // Generate a constant expression to initialise an aggregate type, such as // an array or struct. case Stmt::InitListExprClass: return GenerateAggregateInit(cast(Expression), CGM); } CGM.WarnUnsupported(Expression, "initializer"); return llvm::UndefValue::get(Types.ConvertType(type)); } llvm::Constant *CodeGenModule::EmitGlobalInit(const Expr *Expression) { return GenerateConstantExpr(Expression, *this); } void CodeGenModule::EmitGlobalVar(const FileVarDecl *D) { // If this is just a forward declaration of the variable, don't emit it now, // allow it to be emitted lazily on its first use. if (D->getStorageClass() == VarDecl::Extern && D->getInit() == 0) return; // Get the global, forcing it to be a direct reference. llvm::GlobalVariable *GV = cast(GetAddrOfFileVarDecl(D, true)); // Convert the initializer, or use zero if appropriate. llvm::Constant *Init = 0; if (D->getInit() == 0) { Init = llvm::Constant::getNullValue(GV->getType()->getElementType()); } else if (D->getType()->isIntegerType()) { llvm::APSInt Value(static_cast( getContext().getTypeSize(D->getInit()->getType(), SourceLocation()))); if (D->getInit()->isIntegerConstantExpr(Value, Context)) Init = llvm::ConstantInt::get(Value); } if (!Init) Init = EmitGlobalInit(D->getInit()); assert(GV->getType()->getElementType() == Init->getType() && "Initializer codegen type mismatch!"); GV->setInitializer(Init); // Set the llvm linkage type as appropriate. // FIXME: This isn't right. This should handle common linkage and other // stuff. switch (D->getStorageClass()) { case VarDecl::Auto: case VarDecl::Register: assert(0 && "Can't have auto or register globals"); case VarDecl::None: case VarDecl::Extern: // todo: common break; case VarDecl::Static: GV->setLinkage(llvm::GlobalVariable::InternalLinkage); break; } } /// EmitGlobalVarDeclarator - Emit all the global vars attached to the specified /// declarator chain. void CodeGenModule::EmitGlobalVarDeclarator(const FileVarDecl *D) { for (; D; D = cast_or_null(D->getNextDeclarator())) EmitGlobalVar(D); } /// getBuiltinLibFunction llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { if (BuiltinID > BuiltinFunctions.size()) BuiltinFunctions.resize(BuiltinID); // Cache looked up functions. Since builtin id #0 is invalid we don't reserve // a slot for it. assert(BuiltinID && "Invalid Builtin ID"); llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID-1]; if (FunctionSlot) return FunctionSlot; assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn"); // Get the name, skip over the __builtin_ prefix. const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10; // Get the type for the builtin. QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context); const llvm::FunctionType *Ty = cast(getTypes().ConvertType(Type)); // FIXME: This has a serious problem with code like this: // void abs() {} // ... __builtin_abs(x); // The two versions of abs will collide. The fix is for the builtin to win, // and for the existing one to be turned into a constantexpr cast of the // builtin. In the case where the existing one is a static function, it // should just be renamed. if (llvm::Function *Existing = getModule().getFunction(Name)) { if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage()) return FunctionSlot = Existing; assert(Existing == 0 && "FIXME: Name collision"); } // FIXME: param attributes for sext/zext etc. return FunctionSlot = new llvm::Function(Ty, llvm::Function::ExternalLinkage, Name, &getModule()); } llvm::Function *CodeGenModule::getMemCpyFn() { if (MemCpyFn) return MemCpyFn; llvm::Intrinsic::ID IID; uint64_t Size; unsigned Align; Context.Target.getPointerInfo(Size, Align, FullSourceLoc()); switch (Size) { default: assert(0 && "Unknown ptr width"); case 32: IID = llvm::Intrinsic::memcpy_i32; break; case 64: IID = llvm::Intrinsic::memcpy_i64; break; } return MemCpyFn = llvm::Intrinsic::getDeclaration(&TheModule, IID); } llvm::Constant *CodeGenModule:: GetAddrOfConstantCFString(const std::string &str) { llvm::StringMapEntry &Entry = CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); if (Entry.getValue()) return Entry.getValue(); std::vector Fields; if (!CFConstantStringClassRef) { const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); Ty = llvm::ArrayType::get(Ty, 0); CFConstantStringClassRef = new llvm::GlobalVariable(Ty, false, llvm::GlobalVariable::ExternalLinkage, 0, "__CFConstantStringClassReference", &getModule()); } // Class pointer. llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); llvm::Constant *Zeros[] = { Zero, Zero }; llvm::Constant *C = llvm::ConstantExpr::getGetElementPtr(CFConstantStringClassRef, Zeros, 2); Fields.push_back(C); // Flags. const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); Fields.push_back(llvm::ConstantInt::get(Ty, 1992)); // String pointer. C = llvm::ConstantArray::get(str); C = new llvm::GlobalVariable(C->getType(), true, llvm::GlobalValue::InternalLinkage, C, ".str", &getModule()); C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); Fields.push_back(C); // String length. Ty = getTypes().ConvertType(getContext().LongTy); Fields.push_back(llvm::ConstantInt::get(Ty, str.length())); // The struct. Ty = getTypes().ConvertType(getContext().getCFConstantStringType()); C = llvm::ConstantStruct::get(cast(Ty), Fields); llvm::GlobalVariable *GV = new llvm::GlobalVariable(C->getType(), true, llvm::GlobalVariable::InternalLinkage, C, "", &getModule()); GV->setSection("__DATA,__cfstring"); Entry.setValue(GV); return GV; } /// GenerateWritableString -- Creates storage for a string literal static llvm::Constant *GenerateStringLiteral(const std::string &str, bool constant, CodeGenModule &CGM) { // Create Constant for this string literal llvm::Constant *C=llvm::ConstantArray::get(str); // Create a global variable for this string C = new llvm::GlobalVariable(C->getType(), constant, llvm::GlobalValue::InternalLinkage, C, ".str", &CGM.getModule()); llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); llvm::Constant *Zeros[] = { Zero, Zero }; C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); return C; } /// CodeGenModule::GetAddrOfConstantString -- returns a pointer to the first /// element of a character array containing the literal. llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str) { // Don't share any string literals if writable-strings is turned on. if (Features.WritableStrings) return GenerateStringLiteral(str, false, *this); llvm::StringMapEntry &Entry = ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); if (Entry.getValue()) return Entry.getValue(); // Create a global variable for this. llvm::Constant *C = GenerateStringLiteral(str, true, *this); Entry.setValue(C); return C; }