//==- UninitializedValues.cpp - Find Unintialized Values --------*- C++ --*-==// // // The LLVM Compiler Infrastructure // // This file was developed by Ted Kremenek and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Uninitialized Values analysis for source-level CFGs. // //===----------------------------------------------------------------------===// #include "clang/Analysis/UninitializedValues.h" #include "clang/Analysis/CFGStmtVisitor.h" #include "clang/Analysis/LocalCheckers.h" #include "clang/Basic/Diagnostic.h" #include "clang/AST/ASTContext.h" #include "DataflowSolver.h" #include "llvm/ADT/SmallPtrSet.h" using namespace clang; //===----------------------------------------------------------------------===// // Dataflow initialization logic. //===----------------------------------------------------------------------===// namespace { class RegisterDeclsAndExprs : public CFGStmtVisitor { UninitializedValues::AnalysisDataTy& AD; public: RegisterDeclsAndExprs(UninitializedValues::AnalysisDataTy& ad) : AD(ad) {} void VisitBlockVarDecl(BlockVarDecl* VD) { if (AD.VMap.find(VD) == AD.VMap.end()) AD.VMap[VD] = AD.NumDecls++; } void VisitDeclChain(ScopedDecl* D) { for (; D != NULL; D = D->getNextDeclarator()) if (BlockVarDecl* VD = dyn_cast(D)) VisitBlockVarDecl(VD); } void BlockStmt_VisitExpr(Expr* E) { if (AD.EMap.find(E) == AD.EMap.end()) AD.EMap[E] = AD.NumBlockExprs++; Visit(E); } void VisitDeclRefExpr(DeclRefExpr* DR) { VisitDeclChain(DR->getDecl()); } void VisitDeclStmt(DeclStmt* S) { VisitDeclChain(S->getDecl()); } void VisitStmt(Stmt* S) { VisitChildren(S); } }; } // end anonymous namespace void UninitializedValues::InitializeValues(const CFG& cfg) { RegisterDeclsAndExprs R(this->getAnalysisData()); for (CFG::const_iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I) for (CFGBlock::const_iterator BI=I->begin(), BE=I->end(); BI!=BE; ++BI) R.BlockStmt_Visit(*BI); } //===----------------------------------------------------------------------===// // Transfer functions. //===----------------------------------------------------------------------===// namespace { class TransferFuncs : public CFGStmtVisitor { UninitializedValues::ValTy V; UninitializedValues::AnalysisDataTy& AD; bool InitWithAssigns; public: TransferFuncs(UninitializedValues::AnalysisDataTy& ad, bool init_with_assigns=true) : AD(ad), InitWithAssigns(init_with_assigns) { V.resetValues(AD); } UninitializedValues::ValTy& getVal() { return V; } bool VisitDeclRefExpr(DeclRefExpr* DR); bool VisitBinaryOperator(BinaryOperator* B); bool VisitUnaryOperator(UnaryOperator* U); bool VisitStmt(Stmt* S); bool VisitCallExpr(CallExpr* C); bool BlockStmt_VisitExpr(Expr* E); bool VisitDeclStmt(DeclStmt* D); static inline bool Initialized() { return true; } static inline bool Uninitialized() { return false; } }; bool TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) { if (BlockVarDecl* VD = dyn_cast(DR->getDecl())) { assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl."); if (AD.Observer) AD.Observer->ObserveDeclRefExpr(V,AD,DR,VD); return V.DeclBV[ AD.VMap[VD] ]; } else return Initialized(); } bool TransferFuncs::VisitBinaryOperator(BinaryOperator* B) { if (CFG::hasImplicitControlFlow(B)) { assert ( AD.EMap.find(B) != AD.EMap.end() && "Unknown block-level expr."); return V.ExprBV[ AD.EMap[B] ]; } if (B->isAssignmentOp()) { // Get the Decl for the LHS, if any for (Stmt* S = B->getLHS() ;; ) { if (ParenExpr* P = dyn_cast(S)) S = P->getSubExpr(); else if (DeclRefExpr* DR = dyn_cast(S)) if (BlockVarDecl* VD = dyn_cast(DR->getDecl())) { assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl."); if(InitWithAssigns) { // Pseudo-hack to prevent cascade of warnings. If the RHS uses // an uninitialized value, then we are already going to flag a warning // related to the "cause". Thus, propogating uninitialized doesn't // make sense, since we are just adding extra messages that don't // contribute to diagnosing the bug. In InitWithAssigns mode // we unconditionally set the assigned variable to Initialized to // prevent Uninitialized propogation. return V.DeclBV[AD.VMap[VD]] = Initialized(); } else return V.DeclBV[ AD.VMap[VD] ] = Visit(B->getRHS()); } break; } } return VisitStmt(B); } bool TransferFuncs::VisitDeclStmt(DeclStmt* S) { bool x = Initialized(); for (ScopedDecl* D = S->getDecl(); D != NULL; D = D->getNextDeclarator()) if (BlockVarDecl* VD = dyn_cast(D)) if (Stmt* I = VD->getInit()) { assert ( AD.EMap.find(cast(I)) != AD.EMap.end() && "Unknown Expr."); assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl."); x = V.ExprBV[ AD.EMap[cast(I)] ]; V.DeclBV[ AD.VMap[VD] ] = x; } return x; } bool TransferFuncs::VisitCallExpr(CallExpr* C) { VisitStmt(C); return Initialized(); } bool TransferFuncs::VisitUnaryOperator(UnaryOperator* U) { switch (U->getOpcode()) { case UnaryOperator::AddrOf: { // Blast through parentheses and find the decl (if any). Treat it // as initialized from this point forward. for (Stmt* S = U->getSubExpr() ;; ) if (ParenExpr* P = dyn_cast(S)) S = P->getSubExpr(); else if (DeclRefExpr* DR = dyn_cast(S)) { if (BlockVarDecl* VD = dyn_cast(DR->getDecl())) { assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl."); V.DeclBV[ AD.VMap[VD] ] = Initialized(); } break; } else { // Evaluate the transfer function for subexpressions, even // if we cannot reason more deeply about the &-expression. return Visit(U->getSubExpr()); } return Initialized(); } default: return Visit(U->getSubExpr()); } } bool TransferFuncs::VisitStmt(Stmt* S) { bool x = Initialized(); // We don't stop at the first subexpression that is Uninitialized because // evaluating some subexpressions may result in propogating "Uninitialized" // or "Initialized" to variables referenced in the other subexpressions. for (Stmt::child_iterator I=S->child_begin(), E=S->child_end(); I!=E; ++I) if (Visit(*I) == Uninitialized()) x = Uninitialized(); return x; } bool TransferFuncs::BlockStmt_VisitExpr(Expr* E) { assert ( AD.EMap.find(E) != AD.EMap.end() ); return V.ExprBV[ AD.EMap[E] ] = Visit(E); } } // end anonymous namespace //===----------------------------------------------------------------------===// // Merge operator. // // In our transfer functions we take the approach that any // combination of unintialized values, e.g. Unitialized + ___ = Unitialized. // // Merges take the opposite approach. // // In the merge of dataflow values (for Decls) we prefer unsoundness, and // prefer false negatives to false positives. At merges, if a value for a // tracked Decl is EVER initialized in any of the predecessors we treat it as // initialized at the confluence point. // // For tracked CFGBlock-level expressions (such as the result of // short-circuit), we do the opposite merge: if a value is EVER uninitialized // in a predecessor we treat it as uninitalized at the confluence point. // The reason we do this is because dataflow values for tracked Exprs are // not as control-dependent as dataflow values for tracked Decls. //===----------------------------------------------------------------------===// namespace { struct Merge { void operator()(UninitializedValues::ValTy& Dst, UninitializedValues::ValTy& Src) { assert (Dst.DeclBV.size() == Src.DeclBV.size() && "Bitvector sizes do not match."); Dst.DeclBV |= Src.DeclBV; assert (Dst.ExprBV.size() == Src.ExprBV.size() && "Bitvector sizes do not match."); Dst.ExprBV &= Src.ExprBV; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Unitialized values checker. Scan an AST and flag variable uses //===----------------------------------------------------------------------===// UninitializedValues_ValueTypes::ObserverTy::~ObserverTy() {} namespace { class UninitializedValuesChecker : public UninitializedValues::ObserverTy { ASTContext &Ctx; Diagnostic &Diags; llvm::SmallPtrSet AlreadyWarned; public: UninitializedValuesChecker(ASTContext &ctx, Diagnostic &diags) : Ctx(ctx), Diags(diags) {} virtual void ObserveDeclRefExpr(UninitializedValues::ValTy& V, UninitializedValues::AnalysisDataTy& AD, DeclRefExpr* DR, BlockVarDecl* VD) { assert ( AD.VMap.find(VD) != AD.VMap.end() && "Unknown VarDecl."); if (V.DeclBV[ AD.VMap[VD] ] == TransferFuncs::Uninitialized()) if (AlreadyWarned.insert(VD)) Diags.Report(DR->getSourceRange().Begin(), diag::warn_uninit_val); } }; } // end anonymous namespace namespace clang { void CheckUninitializedValues(CFG& cfg, ASTContext &Ctx, Diagnostic &Diags) { typedef DataflowSolver Solver; // Compute the unitialized values information. UninitializedValues U; Solver S(U); S.runOnCFG(cfg); // Scan for DeclRefExprs that use uninitialized values. UninitializedValuesChecker Observer(Ctx,Diags); U.getAnalysisData().Observer = &Observer; for (CFG::iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I) S.runOnBlock(&*I); } }