//= ValueState.cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This files defines SymbolID, ExprBindKey, and ValueState. // //===----------------------------------------------------------------------===// #include "ValueState.h" using namespace clang; bool ValueState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const { // First, retrieve the NE-set associated with the given symbol. ConstantNotEqTy::TreeTy* T = Data->ConstantNotEq.SlimFind(sym); if (!T) return false; // Second, see if V is present in the NE-set. return T->getValue().second.contains(&V); } const llvm::APSInt* ValueState::getSymVal(SymbolID sym) const { ConstantEqTy::TreeTy* T = Data->ConstantEq.SlimFind(sym); return T ? T->getValue().second : NULL; } ValueState ValueStateManager::RemoveDeadBindings(ValueState St, Stmt* Loc, const LiveVariables& Liveness) { // This code essentially performs a "mark-and-sweep" of the VariableBindings. // The roots are any Block-level exprs and Decls that our liveness algorithm // tells us are live. We then see what Decls they may reference, and keep // those around. This code more than likely can be made faster, and the // frequency of which this method is called should be experimented with // for optimum performance. llvm::SmallVector WList; ValueStateImpl NewSt = *St; // Drop bindings for subexpressions. NewSt.SubExprBindings = EXFactory.GetEmptyMap(); // Iterate over the block-expr bindings. for (ValueState::beb_iterator I=St.beb_begin(), E=St.beb_end(); I!=E ; ++I) { Expr* BlkExpr = I.getKey(); if (Liveness.isLive(Loc, BlkExpr)) { if (isa(I.getData())) { lval::DeclVal LV = cast(I.getData()); WList.push_back(LV.getDecl()); } } else NewSt.BlockExprBindings = Remove(NewSt, BlkExpr); continue; } // Iterate over the variable bindings. for (ValueState::vb_iterator I = St.vb_begin(), E = St.vb_end(); I!=E ; ++I) if (Liveness.isLive(Loc, I.getKey())) WList.push_back(I.getKey()); llvm::SmallPtrSet Marked; while (!WList.empty()) { ValueDecl* V = WList.back(); WList.pop_back(); if (Marked.count(V)) continue; Marked.insert(V); if (V->getType()->isPointerType()) { const LValue& LV = cast(GetValue(St, lval::DeclVal(V))); if (!isa(LV)) continue; const lval::DeclVal& LVD = cast(LV); WList.push_back(LVD.getDecl()); } } for (ValueState::vb_iterator I = St.vb_begin(), E = St.vb_end(); I!=E ; ++I) if (!Marked.count(I.getKey())) NewSt.VarBindings = Remove(NewSt, I.getKey()); return getPersistentState(NewSt); } RValue ValueStateManager::GetValue(ValueState St, const LValue& LV, QualType* T) { if (isa(LV)) return UnknownVal(); switch (LV.getSubKind()) { case lval::DeclValKind: { ValueState::VarBindingsTy::TreeTy* T = // FIXME: We should make lval::DeclVal only contain VarDecl St->VarBindings.SlimFind( cast(cast(LV).getDecl())); return T ? T->getValue().second : UnknownVal(); } // FIXME: We should bind how far a "ContentsOf" will go... case lval::SymbolValKind: { const lval::SymbolVal& SV = cast(LV); assert (T); if (T->getTypePtr()->isPointerType()) return lval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol())); else return nonlval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol())); } default: assert (false && "Invalid LValue."); break; } return UnknownVal(); } ValueState ValueStateManager::AddNE(ValueState St, SymbolID sym, const llvm::APSInt& V) { // First, retrieve the NE-set associated with the given symbol. ValueState::ConstantNotEqTy::TreeTy* T = St->ConstantNotEq.SlimFind(sym); ValueState::IntSetTy S = T ? T->getValue().second : ISetFactory.GetEmptySet(); // Now add V to the NE set. S = ISetFactory.Add(S, &V); // Create a new state with the old binding replaced. ValueStateImpl NewSt = *St; NewSt.ConstantNotEq = CNEFactory.Add(NewSt.ConstantNotEq, sym, S); // Get the persistent copy. return getPersistentState(NewSt); } ValueState ValueStateManager::AddEQ(ValueState St, SymbolID sym, const llvm::APSInt& V) { // Create a new state with the old binding replaced. ValueStateImpl NewSt = *St; NewSt.ConstantEq = CEFactory.Add(NewSt.ConstantEq, sym, &V); // Get the persistent copy. return getPersistentState(NewSt); } RValue ValueStateManager::GetValue(ValueState St, Expr* E, bool* hasVal) { for (;;) { switch (E->getStmtClass()) { case Stmt::AddrLabelExprClass: return LValue::GetValue(cast(E)); // ParenExprs are no-ops. case Stmt::ParenExprClass: E = cast(E)->getSubExpr(); continue; // DeclRefExprs can either evaluate to an LValue or a Non-LValue // (assuming an implicit "load") depending on the context. In this // context we assume that we are retrieving the value contained // within the referenced variables. case Stmt::DeclRefExprClass: return GetValue(St, lval::DeclVal(cast(E)->getDecl())); // Integer literals evaluate to an RValue. Simply retrieve the // RValue for the literal. case Stmt::IntegerLiteralClass: return NonLValue::GetValue(ValMgr, cast(E)); case Stmt::CharacterLiteralClass: { CharacterLiteral* C = cast(E); return NonLValue::GetValue(ValMgr, C->getValue(), C->getType(), C->getLoc()); } // Casts where the source and target type are the same // are no-ops. We blast through these to get the descendant // subexpression that has a value. case Stmt::ImplicitCastExprClass: { ImplicitCastExpr* C = cast(E); if (C->getType() == C->getSubExpr()->getType()) { E = C->getSubExpr(); continue; } break; } case Stmt::CastExprClass: { CastExpr* C = cast(E); if (C->getType() == C->getSubExpr()->getType()) { E = C->getSubExpr(); continue; } break; } // Handle all other Stmt* using a lookup. default: break; }; break; } ValueState::ExprBindingsTy::TreeTy* T = St->SubExprBindings.SlimFind(E); if (T) { if (hasVal) *hasVal = true; return T->getValue().second; } T = St->BlockExprBindings.SlimFind(E); if (T) { if (hasVal) *hasVal = true; return T->getValue().second; } else { if (hasVal) *hasVal = false; return UnknownVal(); } } LValue ValueStateManager::GetLValue(ValueState St, Expr* E) { while (ParenExpr* P = dyn_cast(E)) E = P->getSubExpr(); if (DeclRefExpr* DR = dyn_cast(E)) return lval::DeclVal(DR->getDecl()); if (UnaryOperator* U = dyn_cast(E)) if (U->getOpcode() == UnaryOperator::Deref) return cast(GetValue(St, U->getSubExpr())); return cast(GetValue(St, E)); } ValueState ValueStateManager::SetValue(ValueState St, Expr* E, bool isBlkExpr, const RValue& V) { assert (E); if (V.isUnknown()) return St; ValueStateImpl NewSt = *St; if (isBlkExpr) NewSt.BlockExprBindings = EXFactory.Add(NewSt.BlockExprBindings, E, V); else NewSt.SubExprBindings = EXFactory.Add(NewSt.SubExprBindings, E, V); return getPersistentState(NewSt); } ValueState ValueStateManager::SetValue(ValueState St, const LValue& LV, const RValue& V) { switch (LV.getSubKind()) { case lval::DeclValKind: return V.isKnown() // FIXME: Have DeclVal only contain VarDecl ? BindVar(St, cast(cast(LV).getDecl()), V) : UnbindVar(St, cast(cast(LV).getDecl())); default: assert ("SetValue for given LValue type not yet implemented."); return St; } } ValueState ValueStateManager::BindVar(ValueState St, VarDecl* D, const RValue& V) { // Create a new state with the old binding removed. ValueStateImpl NewSt = *St; NewSt.VarBindings = VBFactory.Add(NewSt.VarBindings, D, V); // Get the persistent copy. return getPersistentState(NewSt); } ValueState ValueStateManager::UnbindVar(ValueState St, VarDecl* D) { // Create a new state with the old binding removed. ValueStateImpl NewSt = *St; NewSt.VarBindings = VBFactory.Remove(NewSt.VarBindings, D); // Get the persistent copy. return getPersistentState(NewSt); } ValueState ValueStateManager::getInitialState() { // Create a state with empty variable bindings. ValueStateImpl StateImpl(EXFactory.GetEmptyMap(), VBFactory.GetEmptyMap(), CNEFactory.GetEmptyMap(), CEFactory.GetEmptyMap()); return getPersistentState(StateImpl); } ValueState ValueStateManager::getPersistentState(const ValueStateImpl &State) { llvm::FoldingSetNodeID ID; State.Profile(ID); void* InsertPos; if (ValueStateImpl* I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) return I; ValueStateImpl* I = (ValueStateImpl*) Alloc.Allocate(); new (I) ValueStateImpl(State); StateSet.InsertNode(I, InsertPos); return I; } void ValueState::printDOT(std::ostream& Out) const { // Print Variable Bindings Out << "Variables:\\l"; bool isFirst = true; for (vb_iterator I=vb_begin(), E=vb_end(); I!=E; ++I) { if (isFirst) isFirst = false; else Out << "\\l"; Out << ' ' << I.getKey()->getName() << " : "; I.getData().print(Out); } // Print Subexpression bindings. isFirst = true; for (seb_iterator I=seb_begin(), E=seb_end(); I != E;++I) { if (isFirst) { Out << "\\l\\lSub-Expressions:\\l"; isFirst = false; } else Out << "\\l"; Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } // Print block-expression bindings. isFirst = true; for (beb_iterator I=beb_begin(), E=beb_end(); I != E; ++I) { if (isFirst) { Out << "\\l\\lBlock-level Expressions:\\l"; isFirst = false; } else Out << "\\l"; Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } // Print equality constraints. if (!Data->ConstantEq.isEmpty()) { Out << "\\l\\|'==' constraints:"; for (ConstantEqTy::iterator I=Data->ConstantEq.begin(), E=Data->ConstantEq.end(); I!=E;++I) Out << "\\l $" << I.getKey() << " : " << I.getData()->toString(); } // Print != constraints. if (!Data->ConstantNotEq.isEmpty()) { Out << "\\l\\|'!=' constraints:"; for (ConstantNotEqTy::iterator I=Data->ConstantNotEq.begin(), EI=Data->ConstantNotEq.end(); I != EI; ++I) { Out << "\\l $" << I.getKey() << " : "; isFirst = true; IntSetTy::iterator J=I.getData().begin(), EJ=I.getData().end(); for ( ; J != EJ; ++J) { if (isFirst) isFirst = false; else Out << ", "; Out << (*J)->toString(); } } } }