//= ValueState.cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This files defines SymbolID, ExprBindKey, and ValueState. // //===----------------------------------------------------------------------===// #include "ValueState.h" using namespace clang; bool ValueState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const { // First, retrieve the NE-set associated with the given symbol. ConstantNotEqTy::TreeTy* T = Data->ConstantNotEq.SlimFind(sym); if (!T) return false; // Second, see if V is present in the NE-set. return T->getValue().second.contains(&V); } const llvm::APSInt* ValueState::getSymVal(SymbolID sym) const { ConstantEqTy::TreeTy* T = Data->ConstantEq.SlimFind(sym); return T ? T->getValue().second : NULL; } ValueState ValueStateManager::RemoveDeadBindings(ValueState St, Stmt* Loc, const LiveVariables& Liveness) { // This code essentially performs a "mark-and-sweep" of the VariableBindings. // The roots are any Block-level exprs and Decls that our liveness algorithm // tells us are live. We then see what Decls they may reference, and keep // those around. This code more than likely can be made faster, and the // frequency of which this method is called should be experimented with // for optimum performance. llvm::SmallVector WList; for (StateTy::vb_iterator I = St.begin(), E = St.end(); I!=E ; ++I) { // Remove old bindings for subexpressions. if (I.getKey().isSubExpr()) { St = Remove(St, I.getKey()); continue; } if (I.getKey().isBlkExpr()) { if (Liveness.isLive(Loc, cast(I.getKey()))) { if (isa(I.getData())) { lval::DeclVal LV = cast(I.getData()); WList.push_back(LV.getDecl()); } } else St = Remove(St, I.getKey()); continue; } assert (I.getKey().isDecl()); if (VarDecl* V = dyn_cast(cast(I.getKey()))) if (Liveness.isLive(Loc, V)) WList.push_back(V); } llvm::SmallPtrSet Marked; while (!WList.empty()) { ValueDecl* V = WList.back(); WList.pop_back(); if (Marked.count(V)) continue; Marked.insert(V); if (V->getType()->isPointerType()) { const LValue& LV = cast(GetValue(St, lval::DeclVal(V))); if (!isa(LV)) continue; const lval::DeclVal& LVD = cast(LV); WList.push_back(LVD.getDecl()); } } for (StateTy::vb_iterator I = St.begin(), E = St.end(); I!=E ; ++I) if (I.getKey().isDecl()) if (VarDecl* V = dyn_cast(cast(I.getKey()))) if (!Marked.count(V)) St = Remove(St, V); return St; } RValue ValueStateManager::GetValue(const StateTy& St, const LValue& LV, QualType* T) { if (isa(LV)) return UnknownVal(); switch (LV.getSubKind()) { case lval::DeclValKind: { StateTy::VarBindingsTy::TreeTy* T = St.getImpl()->VarBindings.SlimFind(cast(LV).getDecl()); return T ? T->getValue().second : UnknownVal(); } // FIXME: We should bind how far a "ContentsOf" will go... case lval::SymbolValKind: { const lval::SymbolVal& SV = cast(LV); assert (T); if (T->getTypePtr()->isPointerType()) return lval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol())); else return nonlval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol())); } default: assert (false && "Invalid LValue."); break; } return UnknownVal(); } ValueStateManager::StateTy ValueStateManager::AddNE(StateTy St, SymbolID sym, const llvm::APSInt& V) { // First, retrieve the NE-set associated with the given symbol. ValueState::ConstantNotEqTy::TreeTy* T = St.getImpl()->ConstantNotEq.SlimFind(sym); ValueState::IntSetTy S = T ? T->getValue().second : ISetFactory.GetEmptySet(); // Now add V to the NE set. S = ISetFactory.Add(S, &V); // Create a new state with the old binding replaced. ValueStateImpl NewStateImpl = *St.getImpl(); NewStateImpl.ConstantNotEq = CNEFactory.Add(NewStateImpl.ConstantNotEq, sym, S); // Get the persistent copy. return getPersistentState(NewStateImpl); } ValueStateManager::StateTy ValueStateManager::AddEQ(StateTy St, SymbolID sym, const llvm::APSInt& V) { // Create a new state with the old binding replaced. ValueStateImpl NewStateImpl = *St.getImpl(); NewStateImpl.ConstantEq = CEFactory.Add(NewStateImpl.ConstantEq, sym, &V); // Get the persistent copy. return getPersistentState(NewStateImpl); } RValue ValueStateManager::GetValue(const StateTy& St, Expr* S, bool* hasVal) { for (;;) { switch (S->getStmtClass()) { // ParenExprs are no-ops. case Stmt::ParenExprClass: S = cast(S)->getSubExpr(); continue; // DeclRefExprs can either evaluate to an LValue or a Non-LValue // (assuming an implicit "load") depending on the context. In this // context we assume that we are retrieving the value contained // within the referenced variables. case Stmt::DeclRefExprClass: return GetValue(St, lval::DeclVal(cast(S)->getDecl())); // Integer literals evaluate to an RValue. Simply retrieve the // RValue for the literal. case Stmt::IntegerLiteralClass: return NonLValue::GetValue(ValMgr, cast(S)); // Casts where the source and target type are the same // are no-ops. We blast through these to get the descendant // subexpression that has a value. case Stmt::ImplicitCastExprClass: { ImplicitCastExpr* C = cast(S); if (C->getType() == C->getSubExpr()->getType()) { S = C->getSubExpr(); continue; } break; } case Stmt::CastExprClass: { CastExpr* C = cast(S); if (C->getType() == C->getSubExpr()->getType()) { S = C->getSubExpr(); continue; } break; } // Handle all other Stmt* using a lookup. default: break; }; break; } StateTy::VarBindingsTy::TreeTy* T = St.getImpl()->VarBindings.SlimFind(S); if (T) { if (hasVal) *hasVal = true; return T->getValue().second; } else { if (hasVal) *hasVal = false; return UnknownVal(); } } LValue ValueStateManager::GetLValue(const StateTy& St, Expr* S) { while (ParenExpr* P = dyn_cast(S)) S = P->getSubExpr(); if (DeclRefExpr* DR = dyn_cast(S)) return lval::DeclVal(DR->getDecl()); if (UnaryOperator* U = dyn_cast(S)) if (U->getOpcode() == UnaryOperator::Deref) return cast(GetValue(St, U->getSubExpr())); return cast(GetValue(St, S)); } ValueStateManager::StateTy ValueStateManager::SetValue(StateTy St, Expr* S, bool isBlkExpr, const RValue& V) { assert (S); return V.isKnown() ? Add(St, ExprBindKey(S, isBlkExpr), V) : St; } ValueStateManager::StateTy ValueStateManager::SetValue(StateTy St, const LValue& LV, const RValue& V) { switch (LV.getSubKind()) { case lval::DeclValKind: return V.isKnown() ? Add(St, cast(LV).getDecl(), V) : Remove(St, cast(LV).getDecl()); default: assert ("SetValue for given LValue type not yet implemented."); return St; } } ValueStateManager::StateTy ValueStateManager::Remove(StateTy St, ExprBindKey K) { // Create a new state with the old binding removed. ValueStateImpl NewStateImpl = *St.getImpl(); NewStateImpl.VarBindings = VBFactory.Remove(NewStateImpl.VarBindings, K); // Get the persistent copy. return getPersistentState(NewStateImpl); } ValueStateManager::StateTy ValueStateManager::Add(StateTy St, ExprBindKey K, const RValue& V) { // Create a new state with the old binding removed. ValueStateImpl NewStateImpl = *St.getImpl(); NewStateImpl.VarBindings = VBFactory.Add(NewStateImpl.VarBindings, K, V); // Get the persistent copy. return getPersistentState(NewStateImpl); } ValueStateManager::StateTy ValueStateManager::getInitialState() { // Create a state with empty variable bindings. ValueStateImpl StateImpl(VBFactory.GetEmptyMap(), CNEFactory.GetEmptyMap(), CEFactory.GetEmptyMap()); return getPersistentState(StateImpl); } ValueStateManager::StateTy ValueStateManager::getPersistentState(const ValueStateImpl &State) { llvm::FoldingSetNodeID ID; State.Profile(ID); void* InsertPos; if (ValueStateImpl* I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) return I; ValueStateImpl* I = (ValueStateImpl*) Alloc.Allocate(); new (I) ValueStateImpl(State); StateSet.InsertNode(I, InsertPos); return I; }