//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ declarations. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Diagnostic.h" #include "clang/Parse/DeclSpec.h" #include "llvm/Support/Compiler.h" using namespace clang; //===----------------------------------------------------------------------===// // CheckDefaultArgumentVisitor //===----------------------------------------------------------------------===// namespace { /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses /// the default argument of a parameter to determine whether it /// contains any ill-formed subexpressions. For example, this will /// diagnose the use of local variables or parameters within the /// default argument expression. class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor : public StmtVisitor { Expr *DefaultArg; Sema *S; public: CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) : DefaultArg(defarg), S(s) {} bool VisitExpr(Expr *Node); bool VisitDeclRefExpr(DeclRefExpr *DRE); }; /// VisitExpr - Visit all of the children of this expression. bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { bool IsInvalid = false; for (Stmt::child_iterator I = Node->child_begin(), E = Node->child_end(); I != E; ++I) IsInvalid |= Visit(*I); return IsInvalid; } /// VisitDeclRefExpr - Visit a reference to a declaration, to /// determine whether this declaration can be used in the default /// argument expression. bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { ValueDecl *Decl = DRE->getDecl(); if (ParmVarDecl *Param = dyn_cast(Decl)) { // C++ [dcl.fct.default]p9 // Default arguments are evaluated each time the function is // called. The order of evaluation of function arguments is // unspecified. Consequently, parameters of a function shall not // be used in default argument expressions, even if they are not // evaluated. Parameters of a function declared before a default // argument expression are in scope and can hide namespace and // class member names. return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_param, Param->getName(), DefaultArg->getSourceRange()); } else if (VarDecl *VDecl = dyn_cast(Decl)) { // C++ [dcl.fct.default]p7 // Local variables shall not be used in default argument // expressions. if (VDecl->isBlockVarDecl()) return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_local, VDecl->getName(), DefaultArg->getSourceRange()); } // FIXME: when Clang has support for member functions, "this" // will also need to be diagnosed. return false; } } /// ActOnParamDefaultArgument - Check whether the default argument /// provided for a function parameter is well-formed. If so, attach it /// to the parameter declaration. void Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc, ExprTy *defarg) { ParmVarDecl *Param = (ParmVarDecl *)param; llvm::OwningPtr DefaultArg((Expr *)defarg); QualType ParamType = Param->getType(); // Default arguments are only permitted in C++ if (!getLangOptions().CPlusPlus) { Diag(EqualLoc, diag::err_param_default_argument, DefaultArg->getSourceRange()); return; } // C++ [dcl.fct.default]p5 // A default argument expression is implicitly converted (clause // 4) to the parameter type. The default argument expression has // the same semantic constraints as the initializer expression in // a declaration of a variable of the parameter type, using the // copy-initialization semantics (8.5). // // FIXME: CheckSingleAssignmentConstraints has the wrong semantics // for C++ (since we want copy-initialization, not copy-assignment), // but we don't have the right semantics implemented yet. Because of // this, our error message is also very poor. QualType DefaultArgType = DefaultArg->getType(); Expr *DefaultArgPtr = DefaultArg.get(); AssignConvertType ConvTy = CheckSingleAssignmentConstraints(ParamType, DefaultArgPtr); if (DefaultArgPtr != DefaultArg.get()) { DefaultArg.take(); DefaultArg.reset(DefaultArgPtr); } if (DiagnoseAssignmentResult(ConvTy, DefaultArg->getLocStart(), ParamType, DefaultArgType, DefaultArg.get(), "in default argument")) { return; } // Check that the default argument is well-formed CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); if (DefaultArgChecker.Visit(DefaultArg.get())) return; // Okay: add the default argument to the parameter Param->setDefaultArg(DefaultArg.take()); } /// CheckExtraCXXDefaultArguments - Check for any extra default /// arguments in the declarator, which is not a function declaration /// or definition and therefore is not permitted to have default /// arguments. This routine should be invoked for every declarator /// that is not a function declaration or definition. void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { // C++ [dcl.fct.default]p3 // A default argument expression shall be specified only in the // parameter-declaration-clause of a function declaration or in a // template-parameter (14.1). It shall not be specified for a // parameter pack. If it is specified in a // parameter-declaration-clause, it shall not occur within a // declarator or abstract-declarator of a parameter-declaration. for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) { DeclaratorChunk &chunk = D.getTypeObject(i); if (chunk.Kind == DeclaratorChunk::Function) { for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) { ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param; if (Param->getDefaultArg()) { Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc, Param->getDefaultArg()->getSourceRange()); Param->setDefaultArg(0); } } } } } // MergeCXXFunctionDecl - Merge two declarations of the same C++ // function, once we already know that they have the same // type. Subroutine of MergeFunctionDecl. FunctionDecl * Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { // C++ [dcl.fct.default]p4: // // For non-template functions, default arguments can be added in // later declarations of a function in the same // scope. Declarations in different scopes have completely // distinct sets of default arguments. That is, declarations in // inner scopes do not acquire default arguments from // declarations in outer scopes, and vice versa. In a given // function declaration, all parameters subsequent to a // parameter with a default argument shall have default // arguments supplied in this or previous declarations. A // default argument shall not be redefined by a later // declaration (not even to the same value). for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { ParmVarDecl *OldParam = Old->getParamDecl(p); ParmVarDecl *NewParam = New->getParamDecl(p); if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) { Diag(NewParam->getLocation(), diag::err_param_default_argument_redefinition, NewParam->getDefaultArg()->getSourceRange()); Diag(OldParam->getLocation(), diag::err_previous_definition); } else if (OldParam->getDefaultArg()) { // Merge the old default argument into the new parameter NewParam->setDefaultArg(OldParam->getDefaultArg()); } } return New; } /// CheckCXXDefaultArguments - Verify that the default arguments for a /// function declaration are well-formed according to C++ /// [dcl.fct.default]. void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { unsigned NumParams = FD->getNumParams(); unsigned p; // Find first parameter with a default argument for (p = 0; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->getDefaultArg()) break; } // C++ [dcl.fct.default]p4: // In a given function declaration, all parameters // subsequent to a parameter with a default argument shall // have default arguments supplied in this or previous // declarations. A default argument shall not be redefined // by a later declaration (not even to the same value). unsigned LastMissingDefaultArg = 0; for(; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (!Param->getDefaultArg()) { if (Param->getIdentifier()) Diag(Param->getLocation(), diag::err_param_default_argument_missing_name, Param->getIdentifier()->getName()); else Diag(Param->getLocation(), diag::err_param_default_argument_missing); LastMissingDefaultArg = p; } } if (LastMissingDefaultArg > 0) { // Some default arguments were missing. Clear out all of the // default arguments up to (and including) the last missing // default argument, so that we leave the function parameters // in a semantically valid state. for (p = 0; p <= LastMissingDefaultArg; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->getDefaultArg()) { delete Param->getDefaultArg(); Param->setDefaultArg(0); } } } } /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is /// one entry in the base class list of a class specifier, for /// example: /// class foo : public bar, virtual private baz { /// 'public bar' and 'virtual private baz' are each base-specifiers. void Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeTy *basetype, SourceLocation BaseLoc) { RecordDecl *Decl = (RecordDecl*)classdecl; QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype); // Base specifiers must be record types. if (!BaseType->isRecordType()) { Diag(BaseLoc, diag::err_base_must_be_class, SpecifierRange); return; } // C++ [class.union]p1: // A union shall not be used as a base class. if (BaseType->isUnionType()) { Diag(BaseLoc, diag::err_union_as_base_class, SpecifierRange); return; } // C++ [class.union]p1: // A union shall not have base classes. if (Decl->isUnion()) { Diag(Decl->getLocation(), diag::err_base_clause_on_union, SpecifierRange); Decl->setInvalidDecl(); return; } // C++ [class.derived]p2: // The class-name in a base-specifier shall not be an incompletely // defined class. if (BaseType->isIncompleteType()) { Diag(BaseLoc, diag::err_incomplete_base_class, SpecifierRange); return; } // FIXME: C++ [class.mi]p3: // A class shall not be specified as a direct base class of a // derived class more than once. // FIXME: Attach base class to the record. } //===----------------------------------------------------------------------===// // C++ class member Handling //===----------------------------------------------------------------------===// /// ActOnStartCXXClassDef - This is called at the start of a class/struct/union /// definition, when on C++. void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) { Decl *Dcl = static_cast(D); PushDeclContext(cast(Dcl)); FieldCollector->StartClass(); } /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the /// bitfield width if there is one and 'InitExpr' specifies the initializer if /// any. 'LastInGroup' is non-null for cases where one declspec has multiple /// declarators on it. /// /// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if /// an instance field is declared, a new CXXFieldDecl is created but the method /// does *not* return it; it returns LastInGroup instead. The other C++ members /// (which are all ScopedDecls) are returned after appending them to /// LastInGroup. Sema::DeclTy * Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, ExprTy *BW, ExprTy *InitExpr, DeclTy *LastInGroup) { const DeclSpec &DS = D.getDeclSpec(); IdentifierInfo *II = D.getIdentifier(); Expr *BitWidth = static_cast(BW); Expr *Init = static_cast(InitExpr); SourceLocation Loc = D.getIdentifierLoc(); // C++ 9.2p6: A member shall not be declared to have automatic storage // duration (auto, register) or with the extern storage-class-specifier. switch (DS.getStorageClassSpec()) { case DeclSpec::SCS_unspecified: case DeclSpec::SCS_typedef: case DeclSpec::SCS_static: // FALL THROUGH. break; default: if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), diag::err_storageclass_invalid_for_member); else Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); D.getMutableDeclSpec().ClearStorageClassSpecs(); } QualType T = GetTypeForDeclarator(D, S); // T->isFunctionType() is used instead of D.isFunctionDeclarator() to cover // this case: // // typedef int f(); // f a; bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified && !T->isFunctionType()); Decl *Member; bool InvalidDecl = false; if (isInstField) Member = static_cast(ActOnField(S, Loc, D, BitWidth)); else Member = static_cast(ActOnDeclarator(S, D, LastInGroup)); if (!Member) return LastInGroup; assert(II || isInstField && "No identifier for non-field ?"); // set/getAccess is not part of Decl's interface to avoid bloating it with C++ // specific methods. Use a wrapper class that can be used with all C++ class // member decls. CXXClassMemberWrapper(Member).setAccess(AS); if (BitWidth) { // C++ 9.6p2: Only when declaring an unnamed bit-field may the // constant-expression be a value equal to zero. // FIXME: Check this. if (D.isFunctionDeclarator()) { // FIXME: Emit diagnostic about only constructors taking base initializers // or something similar, when constructor support is in place. Diag(Loc, diag::err_not_bitfield_type, II->getName(), BitWidth->getSourceRange()); InvalidDecl = true; } else if (isInstField || isa(Member)) { // An instance field or a function typedef ("typedef int f(); f a;"). // C++ 9.6p3: A bit-field shall have integral or enumeration type. if (!T->isIntegralType()) { Diag(Loc, diag::err_not_integral_type_bitfield, II->getName(), BitWidth->getSourceRange()); InvalidDecl = true; } } else if (isa(Member)) { // "cannot declare 'A' to be a bit-field type" Diag(Loc, diag::err_not_bitfield_type, II->getName(), BitWidth->getSourceRange()); InvalidDecl = true; } else { assert(isa(Member) && "Didn't we cover all member kinds?"); // C++ 9.6p3: A bit-field shall not be a static member. // "static member 'A' cannot be a bit-field" Diag(Loc, diag::err_static_not_bitfield, II->getName(), BitWidth->getSourceRange()); InvalidDecl = true; } } if (Init) { // C++ 9.2p4: A member-declarator can contain a constant-initializer only // if it declares a static member of const integral or const enumeration // type. if (CXXClassVarDecl *CVD = dyn_cast(Member)) { // ...static member of... CVD->setInit(Init); // ...const integral or const enumeration type. if (Context.getCanonicalType(CVD->getType()).isConstQualified() && CVD->getType()->isIntegralType()) { // constant-initializer if (CheckForConstantInitializer(Init, CVD->getType())) InvalidDecl = true; } else { // not const integral. Diag(Loc, diag::err_member_initialization, II->getName(), Init->getSourceRange()); InvalidDecl = true; } } else { // not static member. Diag(Loc, diag::err_member_initialization, II->getName(), Init->getSourceRange()); InvalidDecl = true; } } if (InvalidDecl) Member->setInvalidDecl(); if (isInstField) { FieldCollector->Add(cast(Member)); return LastInGroup; } return Member; } void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, DeclTy *TagDecl, SourceLocation LBrac, SourceLocation RBrac) { ActOnFields(S, RLoc, TagDecl, (DeclTy**)FieldCollector->getCurFields(), FieldCollector->getCurNumFields(), LBrac, RBrac); } void Sema::ActOnFinishCXXClassDef(DeclTy *D) { CXXRecordDecl *Rec = cast(static_cast(D)); FieldCollector->FinishClass(); PopDeclContext(); // Everything, including inline method definitions, have been parsed. // Let the consumer know of the new TagDecl definition. Consumer.HandleTagDeclDefinition(Rec); } //===----------------------------------------------------------------------===// // Namespace Handling //===----------------------------------------------------------------------===// /// ActOnStartNamespaceDef - This is called at the start of a namespace /// definition. Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace) { NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IdentLoc, II); Namespc->setLBracLoc(LBrace); Scope *DeclRegionScope = NamespcScope->getParent(); if (II) { // C++ [namespace.def]p2: // The identifier in an original-namespace-definition shall not have been // previously defined in the declarative region in which the // original-namespace-definition appears. The identifier in an // original-namespace-definition is the name of the namespace. Subsequently // in that declarative region, it is treated as an original-namespace-name. Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, /*enableLazyBuiltinCreation=*/false); if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) { if (NamespaceDecl *OrigNS = dyn_cast(PrevDecl)) { // This is an extended namespace definition. // Attach this namespace decl to the chain of extended namespace // definitions. NamespaceDecl *NextNS = OrigNS; while (NextNS->getNextNamespace()) NextNS = NextNS->getNextNamespace(); NextNS->setNextNamespace(Namespc); Namespc->setOriginalNamespace(OrigNS); // We won't add this decl to the current scope. We want the namespace // name to return the original namespace decl during a name lookup. } else { // This is an invalid name redefinition. Diag(Namespc->getLocation(), diag::err_redefinition_different_kind, Namespc->getName()); Diag(PrevDecl->getLocation(), diag::err_previous_definition); Namespc->setInvalidDecl(); // Continue on to push Namespc as current DeclContext and return it. } } else { // This namespace name is declared for the first time. PushOnScopeChains(Namespc, DeclRegionScope); } } else { // FIXME: Handle anonymous namespaces } // Although we could have an invalid decl (i.e. the namespace name is a // redefinition), push it as current DeclContext and try to continue parsing. PushDeclContext(Namespc->getOriginalNamespace()); return Namespc; } /// ActOnFinishNamespaceDef - This callback is called after a namespace is /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) { Decl *Dcl = static_cast(D); NamespaceDecl *Namespc = dyn_cast_or_null(Dcl); assert(Namespc && "Invalid parameter, expected NamespaceDecl"); Namespc->setRBracLoc(RBrace); PopDeclContext(); }