//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for statements. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Diagnostic.h" using namespace clang; Sema::StmtResult Sema::ActOnExprStmt(ExprTy *expr) { Expr *E = static_cast(expr); assert(E && "ActOnExprStmt(): missing expression"); // C99 6.8.3p2: The expression in an expression statement is evaluated as a // void expression for its side effects. Conversion to void allows any // operand, even incomplete types. // Same thing in for stmt first clause (when expr) and third clause. return E; } Sema::StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) { return new NullStmt(SemiLoc); } Sema::StmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc, SourceLocation EndLoc) { if (decl == 0) return true; ScopedDecl *SD = cast(static_cast(decl)); return new DeclStmt(SD, StartLoc, EndLoc); } Action::StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, StmtTy **elts, unsigned NumElts, bool isStmtExpr) { Stmt **Elts = reinterpret_cast(elts); // If we're in C89 mode, check that we don't have any decls after stmts. If // so, emit an extension diagnostic. if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) { // Note that __extension__ can be around a decl. unsigned i = 0; // Skip over all declarations. for (; i != NumElts && isa(Elts[i]); ++i) /*empty*/; // We found the end of the list or a statement. Scan for another declstmt. for (; i != NumElts && !isa(Elts[i]); ++i) /*empty*/; if (i != NumElts) { ScopedDecl *D = cast(Elts[i])->getDecl(); Diag(D->getLocation(), diag::ext_mixed_decls_code); } } // Warn about unused expressions in statements. for (unsigned i = 0; i != NumElts; ++i) { Expr *E = dyn_cast(Elts[i]); if (!E) continue; // Warn about expressions with unused results. if (E->hasLocalSideEffect() || E->getType()->isVoidType()) continue; // The last expr in a stmt expr really is used. if (isStmtExpr && i == NumElts-1) continue; /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in /// a context where the result is unused. Emit a diagnostic to warn about /// this. if (const BinaryOperator *BO = dyn_cast(E)) Diag(BO->getOperatorLoc(), diag::warn_unused_expr, BO->getLHS()->getSourceRange(), BO->getRHS()->getSourceRange()); else if (const UnaryOperator *UO = dyn_cast(E)) Diag(UO->getOperatorLoc(), diag::warn_unused_expr, UO->getSubExpr()->getSourceRange()); else Diag(E->getExprLoc(), diag::warn_unused_expr, E->getSourceRange()); } return new CompoundStmt(Elts, NumElts, L, R); } Action::StmtResult Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval, SourceLocation DotDotDotLoc, ExprTy *rhsval, SourceLocation ColonLoc, StmtTy *subStmt) { Stmt *SubStmt = static_cast(subStmt); Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval); assert((LHSVal != 0) && "missing expression in case statement"); SourceLocation ExpLoc; // C99 6.8.4.2p3: The expression shall be an integer constant. if (!LHSVal->isIntegerConstantExpr(Context, &ExpLoc)) { Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr, LHSVal->getSourceRange()); return SubStmt; } // GCC extension: The expression shall be an integer constant. if (RHSVal && !RHSVal->isIntegerConstantExpr(Context, &ExpLoc)) { Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr, RHSVal->getSourceRange()); RHSVal = 0; // Recover by just forgetting about it. } if (SwitchStack.empty()) { Diag(CaseLoc, diag::err_case_not_in_switch); return SubStmt; } CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc); SwitchStack.back()->addSwitchCase(CS); return CS; } Action::StmtResult Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, StmtTy *subStmt, Scope *CurScope) { Stmt *SubStmt = static_cast(subStmt); if (SwitchStack.empty()) { Diag(DefaultLoc, diag::err_default_not_in_switch); return SubStmt; } DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt); SwitchStack.back()->addSwitchCase(DS); return DS; } Action::StmtResult Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation ColonLoc, StmtTy *subStmt) { Stmt *SubStmt = static_cast(subStmt); // Look up the record for this label identifier. LabelStmt *&LabelDecl = LabelMap[II]; // If not forward referenced or defined already, just create a new LabelStmt. if (LabelDecl == 0) return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt); assert(LabelDecl->getID() == II && "Label mismatch!"); // Otherwise, this label was either forward reference or multiply defined. If // multiply defined, reject it now. if (LabelDecl->getSubStmt()) { Diag(IdentLoc, diag::err_redefinition_of_label, LabelDecl->getName()); Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition); return SubStmt; } // Otherwise, this label was forward declared, and we just found its real // definition. Fill in the forward definition and return it. LabelDecl->setIdentLoc(IdentLoc); LabelDecl->setSubStmt(SubStmt); return LabelDecl; } Action::StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal, StmtTy *ThenVal, SourceLocation ElseLoc, StmtTy *ElseVal) { Expr *condExpr = (Expr *)CondVal; Stmt *thenStmt = (Stmt *)ThenVal; assert(condExpr && "ActOnIfStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); QualType condType = condExpr->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 return true; } else if (!condType->isScalarType()) // C99 6.8.4.1p1 return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar, condType.getAsString(), condExpr->getSourceRange()); // Warn if the if block has a null body without an else value. // this helps prevent bugs due to typos, such as // if (condition); // do_stuff(); if (!ElseVal) { if (NullStmt* stmt = dyn_cast(thenStmt)) Diag(stmt->getSemiLoc(), diag::warn_empty_if_body); } return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal); } Action::StmtResult Sema::ActOnStartOfSwitchStmt(ExprTy *cond) { Expr *Cond = static_cast(cond); if (getLangOptions().CPlusPlus) { // C++ 6.4.2.p2: // The condition shall be of integral type, enumeration type, or of a class // type for which a single conversion function to integral or enumeration // type exists (12.3). If the condition is of class type, the condition is // converted by calling that conversion function, and the result of the // conversion is used in place of the original condition for the remainder // of this section. Integral promotions are performed. QualType Ty = Cond->getType(); // FIXME: Handle class types. // If the type is wrong a diagnostic will be emitted later at // ActOnFinishSwitchStmt. if (Ty->isIntegralType() || Ty->isEnumeralType()) { // Integral promotions are performed. // FIXME: Integral promotions for C++ are not complete. UsualUnaryConversions(Cond); } } else { // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. UsualUnaryConversions(Cond); } SwitchStmt *SS = new SwitchStmt(Cond); SwitchStack.push_back(SS); return SS; } /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID) { // Perform a conversion to the promoted condition type if needed. if (NewWidth > Val.getBitWidth()) { // If this is an extension, just do it. llvm::APSInt OldVal(Val); Val.extend(NewWidth); // If the input was signed and negative and the output is unsigned, // warn. if (!NewSign && OldVal.isSigned() && OldVal.isNegative()) Diag(Loc, DiagID, OldVal.toString(10), Val.toString(10)); Val.setIsSigned(NewSign); } else if (NewWidth < Val.getBitWidth()) { // If this is a truncation, check for overflow. llvm::APSInt ConvVal(Val); ConvVal.trunc(NewWidth); ConvVal.setIsSigned(NewSign); ConvVal.extend(Val.getBitWidth()); ConvVal.setIsSigned(Val.isSigned()); if (ConvVal != Val) Diag(Loc, DiagID, Val.toString(10), ConvVal.toString(10)); // Regardless of whether a diagnostic was emitted, really do the // truncation. Val.trunc(NewWidth); Val.setIsSigned(NewSign); } else if (NewSign != Val.isSigned()) { // Convert the sign to match the sign of the condition. This can cause // overflow as well: unsigned(INTMIN) llvm::APSInt OldVal(Val); Val.setIsSigned(NewSign); if (Val.isNegative()) // Sign bit changes meaning. Diag(Loc, DiagID, OldVal.toString(10), Val.toString(10)); } } namespace { struct CaseCompareFunctor { bool operator()(const std::pair &LHS, const llvm::APSInt &RHS) { return LHS.first < RHS; } bool operator()(const std::pair &LHS, const std::pair &RHS) { return LHS.first < RHS.first; } bool operator()(const llvm::APSInt &LHS, const std::pair &RHS) { return LHS < RHS.first; } }; } /// CmpCaseVals - Comparison predicate for sorting case values. /// static bool CmpCaseVals(const std::pair& lhs, const std::pair& rhs) { if (lhs.first < rhs.first) return true; if (lhs.first == rhs.first && lhs.second->getCaseLoc().getRawEncoding() < rhs.second->getCaseLoc().getRawEncoding()) return true; return false; } Action::StmtResult Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch, ExprTy *Body) { Stmt *BodyStmt = (Stmt*)Body; SwitchStmt *SS = SwitchStack.back(); assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!"); SS->setBody(BodyStmt, SwitchLoc); SwitchStack.pop_back(); Expr *CondExpr = SS->getCond(); QualType CondType = CondExpr->getType(); if (!CondType->isIntegerType()) { // C99 6.8.4.2p1 Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer, CondType.getAsString(), CondExpr->getSourceRange()); return true; } // Get the bitwidth of the switched-on value before promotions. We must // convert the integer case values to this width before comparison. unsigned CondWidth = static_cast(Context.getTypeSize(CondType)); bool CondIsSigned = CondType->isSignedIntegerType(); // Accumulate all of the case values in a vector so that we can sort them // and detect duplicates. This vector contains the APInt for the case after // it has been converted to the condition type. typedef llvm::SmallVector, 64> CaseValsTy; CaseValsTy CaseVals; // Keep track of any GNU case ranges we see. The APSInt is the low value. std::vector > CaseRanges; DefaultStmt *TheDefaultStmt = 0; bool CaseListIsErroneous = false; for (SwitchCase *SC = SS->getSwitchCaseList(); SC; SC = SC->getNextSwitchCase()) { if (DefaultStmt *DS = dyn_cast(SC)) { if (TheDefaultStmt) { Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label); // FIXME: Remove the default statement from the switch block so that // we'll return a valid AST. This requires recursing down the // AST and finding it, not something we are set up to do right now. For // now, just lop the entire switch stmt out of the AST. CaseListIsErroneous = true; } TheDefaultStmt = DS; } else { CaseStmt *CS = cast(SC); // We already verified that the expression has a i-c-e value (C99 // 6.8.4.2p3) - get that value now. Expr *Lo = CS->getLHS(); llvm::APSInt LoVal = Lo->getIntegerConstantExprValue(Context); // Convert the value to the same width/sign as the condition. ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, CS->getLHS()->getLocStart(), diag::warn_case_value_overflow); // If the LHS is not the same type as the condition, insert an implicit // cast. ImpCastExprToType(Lo, CondType); CS->setLHS(Lo); // If this is a case range, remember it in CaseRanges, otherwise CaseVals. if (CS->getRHS()) CaseRanges.push_back(std::make_pair(LoVal, CS)); else CaseVals.push_back(std::make_pair(LoVal, CS)); } } // Sort all the scalar case values so we can easily detect duplicates. std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); if (!CaseVals.empty()) { for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) { if (CaseVals[i].first == CaseVals[i+1].first) { // If we have a duplicate, report it. Diag(CaseVals[i+1].second->getLHS()->getLocStart(), diag::err_duplicate_case, CaseVals[i].first.toString(10)); Diag(CaseVals[i].second->getLHS()->getLocStart(), diag::err_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the substmt, // but we have no way to do this right now. CaseListIsErroneous = true; } } } // Detect duplicate case ranges, which usually don't exist at all in the first // place. if (!CaseRanges.empty()) { // Sort all the case ranges by their low value so we can easily detect // overlaps between ranges. std::stable_sort(CaseRanges.begin(), CaseRanges.end()); // Scan the ranges, computing the high values and removing empty ranges. std::vector HiVals; for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { CaseStmt *CR = CaseRanges[i].second; Expr *Hi = CR->getRHS(); llvm::APSInt HiVal = Hi->getIntegerConstantExprValue(Context); // Convert the value to the same width/sign as the condition. ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, CR->getRHS()->getLocStart(), diag::warn_case_value_overflow); // If the LHS is not the same type as the condition, insert an implicit // cast. ImpCastExprToType(Hi, CondType); CR->setRHS(Hi); // If the low value is bigger than the high value, the case is empty. if (CaseRanges[i].first > HiVal) { Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range, SourceRange(CR->getLHS()->getLocStart(), CR->getRHS()->getLocEnd())); CaseRanges.erase(CaseRanges.begin()+i); --i, --e; continue; } HiVals.push_back(HiVal); } // Rescan the ranges, looking for overlap with singleton values and other // ranges. Since the range list is sorted, we only need to compare case // ranges with their neighbors. for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { llvm::APSInt &CRLo = CaseRanges[i].first; llvm::APSInt &CRHi = HiVals[i]; CaseStmt *CR = CaseRanges[i].second; // Check to see whether the case range overlaps with any singleton cases. CaseStmt *OverlapStmt = 0; llvm::APSInt OverlapVal(32); // Find the smallest value >= the lower bound. If I is in the case range, // then we have overlap. CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), CaseVals.end(), CRLo, CaseCompareFunctor()); if (I != CaseVals.end() && I->first < CRHi) { OverlapVal = I->first; // Found overlap with scalar. OverlapStmt = I->second; } // Find the smallest value bigger than the upper bound. I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); if (I != CaseVals.begin() && (I-1)->first >= CRLo) { OverlapVal = (I-1)->first; // Found overlap with scalar. OverlapStmt = (I-1)->second; } // Check to see if this case stmt overlaps with the subsequent case range. if (i && CRLo <= HiVals[i-1]) { OverlapVal = HiVals[i-1]; // Found overlap with range. OverlapStmt = CaseRanges[i-1].second; } if (OverlapStmt) { // If we have a duplicate, report it. Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case, OverlapVal.toString(10)); Diag(OverlapStmt->getLHS()->getLocStart(), diag::err_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the substmt, // but we have no way to do this right now. CaseListIsErroneous = true; } } } // FIXME: If the case list was broken is some way, we don't have a good system // to patch it up. Instead, just return the whole substmt as broken. if (CaseListIsErroneous) return true; return SS; } Action::StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) { Expr *condExpr = (Expr *)Cond; assert(condExpr && "ActOnWhileStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); QualType condType = condExpr->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 return true; } else if (!condType->isScalarType()) // C99 6.8.5p2 return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar, condType.getAsString(), condExpr->getSourceRange()); return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc); } Action::StmtResult Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body, SourceLocation WhileLoc, ExprTy *Cond) { Expr *condExpr = (Expr *)Cond; assert(condExpr && "ActOnDoStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); QualType condType = condExpr->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 return true; } else if (!condType->isScalarType()) // C99 6.8.5p2 return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar, condType.getAsString(), condExpr->getSourceRange()); return new DoStmt((Stmt*)Body, condExpr, DoLoc); } Action::StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtTy *first, ExprTy *second, ExprTy *third, SourceLocation RParenLoc, StmtTy *body) { Stmt *First = static_cast(first); Expr *Second = static_cast(second); Expr *Third = static_cast(third); Stmt *Body = static_cast(body); if (!getLangOptions().CPlusPlus) { if (DeclStmt *DS = dyn_cast_or_null(First)) { // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare // identifiers for objects having storage class 'auto' or 'register'. for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end(); DI!=DE; ++DI) { VarDecl *VD = dyn_cast(*DI); if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage()) VD = 0; if (VD == 0) Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for); // FIXME: mark decl erroneous! } } } if (Second) { DefaultFunctionArrayConversion(Second); QualType SecondType = Second->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4 return true; } else if (!SecondType->isScalarType()) // C99 6.8.5p2 return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar, SecondType.getAsString(), Second->getSourceRange()); } return new ForStmt(First, Second, Third, Body, ForLoc); } Action::StmtResult Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtTy *first, ExprTy *second, SourceLocation RParenLoc, StmtTy *body) { Stmt *First = static_cast(first); Expr *Second = static_cast(second); Stmt *Body = static_cast(body); if (First) { QualType FirstType; if (DeclStmt *DS = dyn_cast(First)) { FirstType = cast(DS->getDecl())->getType(); // C99 6.8.5p3: The declaration part of a 'for' statement shall only declare // identifiers for objects having storage class 'auto' or 'register'. ScopedDecl *D = DS->getDecl(); VarDecl *VD = cast(D); if (VD->isBlockVarDecl() && !VD->hasLocalStorage()) return Diag(VD->getLocation(), diag::err_non_variable_decl_in_for); if (D->getNextDeclarator()) return Diag(D->getLocation(), diag::err_toomany_element_decls); } else { Expr::isLvalueResult lval = cast(First)->isLvalue(Context); if (lval != Expr::LV_Valid) return Diag(First->getLocStart(), diag::err_selector_element_not_lvalue, First->getSourceRange()); FirstType = static_cast(first)->getType(); } if (!Context.isObjCObjectPointerType(FirstType)) Diag(ForLoc, diag::err_selector_element_type, FirstType.getAsString(), First->getSourceRange()); } if (Second) { DefaultFunctionArrayConversion(Second); QualType SecondType = Second->getType(); if (!Context.isObjCObjectPointerType(SecondType)) Diag(ForLoc, diag::err_collection_expr_type, SecondType.getAsString(), Second->getSourceRange()); } return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc); } Action::StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, IdentifierInfo *LabelII) { // If we are in a block, reject all gotos for now. if (CurBlock) return Diag(GotoLoc, diag::err_goto_in_block); // Look up the record for this label identifier. LabelStmt *&LabelDecl = LabelMap[LabelII]; // If we haven't seen this label yet, create a forward reference. if (LabelDecl == 0) LabelDecl = new LabelStmt(LabelLoc, LabelII, 0); return new GotoStmt(LabelDecl, GotoLoc, LabelLoc); } Action::StmtResult Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc, ExprTy *DestExp) { // FIXME: Verify that the operand is convertible to void*. return new IndirectGotoStmt((Expr*)DestExp); } Action::StmtResult Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { Scope *S = CurScope->getContinueParent(); if (!S) { // C99 6.8.6.2p1: A break shall appear only in or as a loop body. Diag(ContinueLoc, diag::err_continue_not_in_loop); return true; } return new ContinueStmt(ContinueLoc); } Action::StmtResult Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { Scope *S = CurScope->getBreakParent(); if (!S) { // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. Diag(BreakLoc, diag::err_break_not_in_loop_or_switch); return true; } return new BreakStmt(BreakLoc); } /// ActOnBlockReturnStmt - Utilty routine to figure out block's return type. /// Action::StmtResult Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { // If this is the first return we've seen in the block, infer the type of // the block from it. if (CurBlock->ReturnType == 0) { if (RetValExp) { // Don't call UsualUnaryConversions(), since we don't want to do // integer promotions here. DefaultFunctionArrayConversion(RetValExp); CurBlock->ReturnType = RetValExp->getType().getTypePtr(); } else CurBlock->ReturnType = Context.VoidTy.getTypePtr(); return new ReturnStmt(ReturnLoc, RetValExp); } // Otherwise, verify that this result type matches the previous one. We are // pickier with blocks than for normal functions because we don't have GCC // compatibility to worry about here. if (CurBlock->ReturnType->isVoidType()) { if (RetValExp) { Diag(ReturnLoc, diag::err_return_block_has_expr); delete RetValExp; RetValExp = 0; } return new ReturnStmt(ReturnLoc, RetValExp); } if (!RetValExp) { Diag(ReturnLoc, diag::err_block_return_missing_expr); return true; } // we have a non-void block with an expression, continue checking QualType RetValType = RetValExp->getType(); // For now, restrict multiple return statements in a block to have // strict compatible types only. QualType BlockQT = QualType(CurBlock->ReturnType, 0); if (Context.getCanonicalType(BlockQT).getTypePtr() != Context.getCanonicalType(RetValType).getTypePtr()) { DiagnoseAssignmentResult(Incompatible, ReturnLoc, BlockQT, RetValType, RetValExp, "returning"); return true; } if (RetValExp) CheckReturnStackAddr(RetValExp, BlockQT, ReturnLoc); return new ReturnStmt(ReturnLoc, (Expr*)RetValExp); } Action::StmtResult Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) { Expr *RetValExp = static_cast(rex); if (CurBlock) return ActOnBlockReturnStmt(ReturnLoc, RetValExp); QualType FnRetType = getCurFunctionDecl() ? getCurFunctionDecl()->getResultType() : getCurMethodDecl()->getResultType(); if (FnRetType->isVoidType()) { if (RetValExp) // C99 6.8.6.4p1 (ext_ since GCC warns) Diag(ReturnLoc, diag::ext_return_has_expr, ( getCurFunctionDecl() ? getCurFunctionDecl()->getIdentifier()->getName() : getCurMethodDecl()->getSelector().getName() ), RetValExp->getSourceRange()); return new ReturnStmt(ReturnLoc, RetValExp); } else { if (!RetValExp) { const char *funcName = getCurFunctionDecl() ? getCurFunctionDecl()->getIdentifier()->getName() : getCurMethodDecl()->getSelector().getName().c_str(); if (getLangOptions().C99) // C99 6.8.6.4p1 (ext_ since GCC warns) Diag(ReturnLoc, diag::ext_return_missing_expr, funcName); else // C90 6.6.6.4p4 Diag(ReturnLoc, diag::warn_return_missing_expr, funcName); return new ReturnStmt(ReturnLoc, (Expr*)0); } } // we have a non-void function with an expression, continue checking QualType RetValType = RetValExp->getType(); // C99 6.8.6.4p3(136): The return statement is not an assignment. The // overlap restriction of subclause 6.5.16.1 does not apply to the case of // function return. AssignConvertType ConvTy = CheckSingleAssignmentConstraints(FnRetType, RetValExp); if (DiagnoseAssignmentResult(ConvTy, ReturnLoc, FnRetType, RetValType, RetValExp, "returning")) return true; if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); return new ReturnStmt(ReturnLoc, (Expr*)RetValExp); } Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, std::string *Names, ExprTy **constraints, ExprTy **exprs, ExprTy *asmString, unsigned NumClobbers, ExprTy **clobbers, SourceLocation RParenLoc) { StringLiteral **Constraints = reinterpret_cast(constraints); Expr **Exprs = reinterpret_cast(exprs); StringLiteral *AsmString = cast((Expr *)asmString); StringLiteral **Clobbers = reinterpret_cast(clobbers); // The parser verifies that there is a string literal here. if (AsmString->isWide()) // FIXME: We currently leak memory here. return Diag(AsmString->getLocStart(), diag::err_asm_wide_character, AsmString->getSourceRange()); for (unsigned i = 0; i != NumOutputs; i++) { StringLiteral *Literal = Constraints[i]; if (Literal->isWide()) // FIXME: We currently leak memory here. return Diag(Literal->getLocStart(), diag::err_asm_wide_character, Literal->getSourceRange()); std::string OutputConstraint(Literal->getStrData(), Literal->getByteLength()); TargetInfo::ConstraintInfo info; if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info)) // FIXME: We currently leak memory here. return Diag(Literal->getLocStart(), diag::err_asm_invalid_output_constraint, OutputConstraint); // Check that the output exprs are valid lvalues. ParenExpr *OutputExpr = cast(Exprs[i]); Expr::isLvalueResult Result = OutputExpr->isLvalue(Context); if (Result != Expr::LV_Valid) { // FIXME: We currently leak memory here. return Diag(OutputExpr->getSubExpr()->getLocStart(), diag::err_asm_invalid_lvalue_in_output, OutputExpr->getSubExpr()->getSourceRange()); } } for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { StringLiteral *Literal = Constraints[i]; if (Literal->isWide()) // FIXME: We currently leak memory here. return Diag(Literal->getLocStart(), diag::err_asm_wide_character, Literal->getSourceRange()); std::string InputConstraint(Literal->getStrData(), Literal->getByteLength()); TargetInfo::ConstraintInfo info; if (!Context.Target.validateInputConstraint(InputConstraint.c_str(), NumOutputs, info)) { // FIXME: We currently leak memory here. return Diag(Literal->getLocStart(), diag::err_asm_invalid_input_constraint, InputConstraint); } // Check that the input exprs aren't of type void. ParenExpr *InputExpr = cast(Exprs[i]); if (InputExpr->getType()->isVoidType()) { // FIXME: We currently leak memory here. return Diag(InputExpr->getSubExpr()->getLocStart(), diag::err_asm_invalid_type_in_input, InputExpr->getType().getAsString(), InputConstraint, InputExpr->getSubExpr()->getSourceRange()); } } // Check that the clobbers are valid. for (unsigned i = 0; i != NumClobbers; i++) { StringLiteral *Literal = Clobbers[i]; if (Literal->isWide()) // FIXME: We currently leak memory here. return Diag(Literal->getLocStart(), diag::err_asm_wide_character, Literal->getSourceRange()); llvm::SmallString<16> Clobber(Literal->getStrData(), Literal->getStrData() + Literal->getByteLength()); if (!Context.Target.isValidGCCRegisterName(Clobber.c_str())) // FIXME: We currently leak memory here. return Diag(Literal->getLocStart(), diag::err_asm_unknown_register_name, Clobber.c_str()); } return new AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, NumClobbers, Clobbers, RParenLoc); } Action::StmtResult Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, StmtTy *Parm, StmtTy *Body, StmtTy *CatchList) { ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen, static_cast(Parm), static_cast(Body), static_cast(CatchList)); return CatchList ? CatchList : CS; } Action::StmtResult Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) { ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc, static_cast(Body)); return FS; } Action::StmtResult Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtTy *Try, StmtTy *Catch, StmtTy *Finally) { ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast(Try), static_cast(Catch), static_cast(Finally)); return TS; } Action::StmtResult Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) { ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast(Throw)); return TS; } Action::StmtResult Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr, StmtTy *SynchBody) { ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc, static_cast(SynchExpr), static_cast(SynchBody)); return SS; }