//===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/DataEncoder.h" #include "lldb/Core/Log.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Expression/ClangExpressionDeclMap.h" #include "lldb/Expression/ClangExpressionVariable.h" #include "lldb/Expression/IRForTarget.h" #include "lldb/Expression/IRInterpreter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/Support/raw_ostream.h" #include "llvm/IR/DataLayout.h" #include using namespace llvm; static std::string PrintValue(const Value *value, bool truncate = false) { std::string s; raw_string_ostream rso(s); value->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); size_t offset; while ((offset = s.find('\n')) != s.npos) s.erase(offset, 1); while (s[0] == ' ' || s[0] == '\t') s.erase(0, 1); return s; } static std::string PrintType(const Type *type, bool truncate = false) { std::string s; raw_string_ostream rso(s); type->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); return s; } class InterpreterStackFrame { public: typedef std::map ValueMap; struct PlacedValue { lldb_private::Value lldb_value; lldb::addr_t process_address; size_t size; PlacedValue (lldb_private::Value &_lldb_value, lldb::addr_t _process_address, size_t _size) : lldb_value(_lldb_value), process_address(_process_address), size(_size) { } }; typedef std::vector PlacedValueVector; ValueMap m_values; PlacedValueVector m_placed_values; DataLayout &m_target_data; lldb_private::ClangExpressionDeclMap *m_decl_map; lldb_private::IRMemoryMap &m_memory_map; const BasicBlock *m_bb; BasicBlock::const_iterator m_ii; BasicBlock::const_iterator m_ie; lldb::ByteOrder m_byte_order; size_t m_addr_byte_size; InterpreterStackFrame (DataLayout &target_data, lldb_private::ClangExpressionDeclMap *decl_map, lldb_private::IRMemoryMap &memory_map) : m_target_data (target_data), m_decl_map (decl_map), m_memory_map (memory_map) { m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig); m_addr_byte_size = (target_data.getPointerSize(0)); } void Jump (const BasicBlock *bb) { m_bb = bb; m_ii = m_bb->begin(); m_ie = m_bb->end(); } std::string SummarizeValue (const Value *value) { lldb_private::StreamString ss; ss.Printf("%s", PrintValue(value).c_str()); ValueMap::iterator i = m_values.find(value); if (i != m_values.end()) { lldb::addr_t addr = i->second; ss.Printf(" 0x%llx", (unsigned long long)addr); } return ss.GetString(); } bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type) { size_t type_size = m_target_data.getTypeStoreSize(type); switch (type_size) { case 1: scalar = (uint8_t)u64value; break; case 2: scalar = (uint16_t)u64value; break; case 4: scalar = (uint32_t)u64value; break; case 8: scalar = (uint64_t)u64value; break; default: return false; } return true; } bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module) { const Constant *constant = dyn_cast(value); if (constant) { if (const ConstantInt *constant_int = dyn_cast(constant)) { return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType()); } } else { lldb::addr_t process_address = ResolveValue(value, module); size_t value_size = m_target_data.getTypeStoreSize(value->getType()); lldb_private::DataExtractor value_extractor; lldb_private::Error extract_error; m_memory_map.GetMemoryData(value_extractor, process_address, value_size, extract_error); if (!extract_error.Success()) return false; lldb::offset_t offset = 0; uint64_t u64value = value_extractor.GetMaxU64(&offset, value_size); return AssignToMatchType(scalar, u64value, value->getType()); } return false; } bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module) { lldb::addr_t process_address = ResolveValue (value, module); if (process_address == LLDB_INVALID_ADDRESS) return false; lldb_private::Scalar cast_scalar; if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType())) return false; size_t value_byte_size = m_target_data.getTypeStoreSize(value->getType()); lldb_private::DataBufferHeap buf(value_byte_size, 0); lldb_private::Error get_data_error; if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, get_data_error)) return false; lldb_private::Error write_error; m_memory_map.WriteMemory(process_address, buf.GetBytes(), buf.GetByteSize(), write_error); return write_error.Success(); } bool ResolveConstantValue (APInt &value, const Constant *constant) { if (const ConstantInt *constant_int = dyn_cast(constant)) { value = constant_int->getValue(); return true; } else if (const ConstantFP *constant_fp = dyn_cast(constant)) { value = constant_fp->getValueAPF().bitcastToAPInt(); return true; } else if (const ConstantExpr *constant_expr = dyn_cast(constant)) { switch (constant_expr->getOpcode()) { default: return false; case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::BitCast: return ResolveConstantValue(value, constant_expr->getOperand(0)); case Instruction::GetElementPtr: { ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin(); ConstantExpr::const_op_iterator op_end = constant_expr->op_end(); Constant *base = dyn_cast(*op_cursor); if (!base) return false; if (!ResolveConstantValue(value, base)) return false; op_cursor++; if (op_cursor == op_end) return true; // no offset to apply! SmallVector indices (op_cursor, op_end); uint64_t offset = m_target_data.getIndexedOffset(base->getType(), indices); const bool is_signed = true; value += APInt(value.getBitWidth(), offset, is_signed); return true; } } } return false; } bool ResolveConstant (lldb::addr_t process_address, const Constant *constant) { APInt resolved_value; if (!ResolveConstantValue(resolved_value, constant)) return false; const uint64_t *raw_data = resolved_value.getRawData(); size_t constant_size = m_target_data.getTypeStoreSize(constant->getType()); lldb_private::Error write_error; m_memory_map.WriteMemory(process_address, (uint8_t*)raw_data, constant_size, write_error); return write_error.Success(); } lldb::addr_t MallocPointer () { lldb_private::Error alloc_error; lldb::addr_t ret = m_memory_map.Malloc(m_target_data.getPointerSize(), m_target_data.getPointerPrefAlignment(), lldb::ePermissionsReadable | lldb::ePermissionsWritable, lldb_private::IRMemoryMap::eAllocationPolicyMirror, alloc_error); if (alloc_error.Success()) return ret; else return LLDB_INVALID_ADDRESS; } lldb::addr_t Malloc (llvm::Type *type, size_t override_byte_size = 0) { lldb_private::Error alloc_error; if (!override_byte_size) override_byte_size = m_target_data.getTypeStoreSize(type); lldb::addr_t ret = m_memory_map.Malloc(override_byte_size, m_target_data.getPrefTypeAlignment(type), lldb::ePermissionsReadable | lldb::ePermissionsWritable, lldb_private::IRMemoryMap::eAllocationPolicyMirror, alloc_error); if (alloc_error.Success()) return ret; else return LLDB_INVALID_ADDRESS; } lldb::addr_t PlaceLLDBValue (const llvm::Value *value, lldb_private::Value lldb_value) { if (!m_decl_map) return false; lldb_private::Error alloc_error; lldb_private::RegisterInfo *reg_info = lldb_value.GetRegisterInfo(); lldb::addr_t ret; size_t value_size = m_target_data.getTypeStoreSize(value->getType()); if (reg_info && (reg_info->encoding == lldb::eEncodingVector)) value_size = reg_info->byte_size; if (!reg_info && (lldb_value.GetValueType() == lldb_private::Value::eValueTypeLoadAddress)) return lldb_value.GetScalar().ULongLong(); ret = Malloc(value->getType(), value_size); if (ret == LLDB_INVALID_ADDRESS) return LLDB_INVALID_ADDRESS; lldb_private::DataBufferHeap buf(value_size, 0); m_decl_map->ReadTarget(m_memory_map, buf.GetBytes(), lldb_value, value_size); lldb_private::Error write_error; m_memory_map.WriteMemory(ret, buf.GetBytes(), buf.GetByteSize(), write_error); if (!write_error.Success()) { lldb_private::Error free_error; m_memory_map.Free(ret, free_error); return LLDB_INVALID_ADDRESS; } m_placed_values.push_back(PlacedValue(lldb_value, ret, value_size)); return ret; } void RestoreLLDBValues () { if (!m_decl_map) return; for (PlacedValue &placed_value : m_placed_values) { lldb_private::DataBufferHeap buf(placed_value.size, 0); lldb_private::Error read_error; m_memory_map.ReadMemory(buf.GetBytes(), placed_value.process_address, buf.GetByteSize(), read_error); if (read_error.Success()) m_decl_map->WriteTarget(m_memory_map, placed_value.lldb_value, buf.GetBytes(), buf.GetByteSize()); } } std::string PrintData (lldb::addr_t addr, llvm::Type *type) { size_t length = m_target_data.getTypeStoreSize(type); lldb_private::DataBufferHeap buf(length, 0); lldb_private::Error read_error; m_memory_map.ReadMemory(buf.GetBytes(), addr, length, read_error); if (!read_error.Success()) return std::string(""); lldb_private::StreamString ss; for (size_t i = 0; i < length; i++) { if ((!(i & 0xf)) && i) ss.Printf("%02hhx - ", buf.GetBytes()[i]); else ss.Printf("%02hhx ", buf.GetBytes()[i]); } return ss.GetString(); } lldb::addr_t ResolveValue (const Value *value, Module &module) { if (!m_decl_map) return LLDB_INVALID_ADDRESS; ValueMap::iterator i = m_values.find(value); if (i != m_values.end()) return i->second; const GlobalValue *global_value = dyn_cast(value); // If the variable is indirected through the argument // array then we need to build an extra level of indirection // for it. This is the default; only magic arguments like // "this", "self", and "_cmd" are direct. bool variable_is_this = false; // If the variable is a function pointer, we do not need to // build an extra layer of indirection for it because it is // accessed directly. bool variable_is_function_address = false; // Attempt to resolve the value using the program's data. // If it is, the values to be created are: // // data_region - a region of memory in which the variable's data resides. // ref_region - a region of memory in which its address (i.e., &var) resides. // In the JIT case, this region would be a member of the struct passed in. // pointer_region - a region of memory in which the address of the pointer // resides. This is an IR-level variable. do { lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); lldb_private::Value resolved_value; lldb_private::ClangExpressionVariable::FlagType flags = 0; if (global_value) { clang::NamedDecl *decl = IRForTarget::DeclForGlobal(global_value, &module); if (!decl) break; if (isa(decl)) variable_is_function_address = true; resolved_value = m_decl_map->LookupDecl(decl, flags); } else { // Special-case "this", "self", and "_cmd" std::string name_str = value->getName().str(); if (name_str == "this" || name_str == "self" || name_str == "_cmd") { resolved_value = m_decl_map->GetSpecialValue(lldb_private::ConstString(name_str.c_str())); variable_is_this = true; } } if (resolved_value.GetScalar().GetType() != lldb_private::Scalar::e_void) { if (resolved_value.GetContextType() == lldb_private::Value::eContextTypeRegisterInfo) { if (variable_is_this) { lldb_private::Error alloc_error; lldb::addr_t ref_addr = Malloc(value->getType()); if (ref_addr == LLDB_INVALID_ADDRESS) return LLDB_INVALID_ADDRESS; lldb_private::Error write_error; m_memory_map.WritePointerToMemory(ref_addr, resolved_value.GetScalar().ULongLong(), write_error); if (!write_error.Success()) return LLDB_INVALID_ADDRESS; if (log) { log->Printf("Made an allocation for \"this\" register variable %s", PrintValue(value).c_str()); log->Printf(" Data region : %llx", (unsigned long long)resolved_value.GetScalar().ULongLong()); log->Printf(" Ref region : %llx", (unsigned long long)ref_addr); } m_values[value] = ref_addr; return ref_addr; } else if (flags & lldb_private::ClangExpressionVariable::EVBareRegister) { lldb::addr_t data_address = PlaceLLDBValue(value, resolved_value); if (!data_address) return LLDB_INVALID_ADDRESS; lldb::addr_t ref_address = MallocPointer(); if (ref_address == LLDB_INVALID_ADDRESS) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); return LLDB_INVALID_ADDRESS; } lldb_private::Error write_error; m_memory_map.WritePointerToMemory(ref_address, data_address, write_error); if (!write_error.Success()) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); m_memory_map.Free(ref_address, free_error); return LLDB_INVALID_ADDRESS; } if (log) { log->Printf("Made an allocation for bare register variable %s", PrintValue(value).c_str()); log->Printf(" Data contents : %s", PrintData(data_address, value->getType()).c_str()); log->Printf(" Data region : 0x%llx", (unsigned long long)data_address); log->Printf(" Ref region : 0x%llx", (unsigned long long)ref_address); } m_values[value] = ref_address; return ref_address; } else { lldb::addr_t data_address = PlaceLLDBValue(value, resolved_value); if (data_address == LLDB_INVALID_ADDRESS) return LLDB_INVALID_ADDRESS; lldb::addr_t ref_address = MallocPointer(); if (ref_address == LLDB_INVALID_ADDRESS) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); return LLDB_INVALID_ADDRESS; } lldb::addr_t pointer_address = MallocPointer(); if (pointer_address == LLDB_INVALID_ADDRESS) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); m_memory_map.Free(ref_address, free_error); return LLDB_INVALID_ADDRESS; } lldb_private::Error write_error; m_memory_map.WritePointerToMemory(ref_address, data_address, write_error); if (!write_error.Success()) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); m_memory_map.Free(ref_address, free_error); m_memory_map.Free(pointer_address, free_error); return LLDB_INVALID_ADDRESS; } write_error.Clear(); m_memory_map.WritePointerToMemory(pointer_address, ref_address, write_error); if (!write_error.Success()) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); m_memory_map.Free(ref_address, free_error); m_memory_map.Free(pointer_address, free_error); return LLDB_INVALID_ADDRESS; } if (log) { log->Printf("Made an allocation for ordinary register variable %s", PrintValue(value).c_str()); log->Printf(" Data contents : %s", PrintData(data_address, value->getType()).c_str()); log->Printf(" Data region : 0x%llx", (unsigned long long)data_address); log->Printf(" Ref region : 0x%llx", (unsigned long long)ref_address); log->Printf(" Pointer region : 0x%llx", (unsigned long long)pointer_address); } m_values[value] = pointer_address; return pointer_address; } } else { bool no_extra_redirect = (variable_is_this || variable_is_function_address); lldb::addr_t data_address = PlaceLLDBValue(value, resolved_value); if (data_address == LLDB_INVALID_ADDRESS) return LLDB_INVALID_ADDRESS; lldb::addr_t ref_address = MallocPointer(); if (ref_address == LLDB_INVALID_ADDRESS) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); return LLDB_INVALID_ADDRESS; } lldb::addr_t pointer_address = LLDB_INVALID_ADDRESS; if (!no_extra_redirect) { pointer_address = MallocPointer(); if (pointer_address == LLDB_INVALID_ADDRESS) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); m_memory_map.Free(ref_address, free_error); return LLDB_INVALID_ADDRESS; } } lldb_private::Error write_error; m_memory_map.WritePointerToMemory(ref_address, data_address, write_error); if (!write_error.Success()) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); m_memory_map.Free(ref_address, free_error); if (pointer_address != LLDB_INVALID_ADDRESS) m_memory_map.Free(pointer_address, free_error); return LLDB_INVALID_ADDRESS; } if (!no_extra_redirect) { write_error.Clear(); m_memory_map.WritePointerToMemory(pointer_address, ref_address, write_error); if (!write_error.Success()) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); m_memory_map.Free(ref_address, free_error); if (pointer_address != LLDB_INVALID_ADDRESS) m_memory_map.Free(pointer_address, free_error); return LLDB_INVALID_ADDRESS; } } if (log) { log->Printf("Made an allocation for %s", PrintValue(value).c_str()); log->Printf(" Data contents : %s", PrintData(data_address, value->getType()).c_str()); log->Printf(" Data region : %llx", (unsigned long long)data_address); log->Printf(" Ref region : %llx", (unsigned long long)ref_address); if (!variable_is_this) log->Printf(" Pointer region : %llx", (unsigned long long)pointer_address); } if (no_extra_redirect) { m_values[value] = ref_address; return ref_address; } else { m_values[value] = pointer_address; return pointer_address; } } } } while(0); // Fall back and allocate space [allocation type Alloca] lldb::addr_t data_address = Malloc(value->getType()); if (const Constant *constant = dyn_cast(value)) { if (!ResolveConstant (data_address, constant)) { lldb_private::Error free_error; m_memory_map.Free(data_address, free_error); return LLDB_INVALID_ADDRESS; } } m_values[value] = data_address; return data_address; } bool ConstructResult (lldb::ClangExpressionVariableSP &result, const GlobalValue *result_value, const lldb_private::ConstString &result_name, lldb_private::TypeFromParser result_type, Module &module) { if (!m_decl_map) return false; // The result_value resolves to P, a pointer to a region R containing the result data. // If the result variable is a reference, the region R contains a pointer to the result R_final in the original process. if (!result_value) return true; // There was no slot for a result – the expression doesn't return one. ValueMap::iterator i = m_values.find(result_value); if (i == m_values.end()) return false; // There was a slot for the result, but we didn't write into it. lldb::addr_t P = i->second; Type *pointer_ty = result_value->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) return false; Type *R_ty = pointer_ptr_ty->getElementType(); lldb_private::Error read_error; lldb::addr_t R; m_memory_map.ReadPointerFromMemory(&R, P, read_error); if (!read_error.Success()) return false; lldb_private::Value base; bool transient = false; bool maybe_make_load = false; if (m_decl_map->ResultIsReference(result_name)) { PointerType *R_ptr_ty = dyn_cast(R_ty); if (!R_ptr_ty) return false; read_error.Clear(); lldb::addr_t R_pointer; m_memory_map.ReadPointerFromMemory(&R_pointer, R, read_error); if (!read_error.Success()) return false; // We got a bare pointer. We are going to treat it as a load address // or a file address, letting decl_map make the choice based on whether // or not a process exists. bool was_placed = false; for (PlacedValue &value : m_placed_values) { if (value.process_address == R_pointer) { base = value.lldb_value; was_placed = true; break; } } if (!was_placed) { base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); base.SetValueType(lldb_private::Value::eValueTypeFileAddress); base.GetScalar() = (unsigned long long)R_pointer; maybe_make_load = true; } } else { base.SetContext(lldb_private::Value::eContextTypeInvalid, NULL); base.SetValueType(lldb_private::Value::eValueTypeLoadAddress); base.GetScalar() = (unsigned long long)R; } return m_decl_map->CompleteResultVariable (result, m_memory_map, base, result_name, result_type, transient, maybe_make_load); } }; bool IRInterpreter::maybeRunOnFunction (lldb_private::ClangExpressionDeclMap *decl_map, lldb_private::IRMemoryMap &memory_map, lldb_private::Stream *error_stream, lldb::ClangExpressionVariableSP &result, const lldb_private::ConstString &result_name, lldb_private::TypeFromParser result_type, Function &llvm_function, Module &llvm_module, lldb_private::Error &err) { if (supportsFunction (llvm_function, err)) return runOnFunction(decl_map, memory_map, error_stream, result, result_name, result_type, llvm_function, llvm_module, err); else return false; } static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes"; //static const char *interpreter_initialization_error = "Interpreter couldn't be initialized"; static const char *interpreter_internal_error = "Interpreter encountered an internal error"; static const char *bad_value_error = "Interpreter couldn't resolve a value during execution"; static const char *memory_allocation_error = "Interpreter couldn't allocate memory"; static const char *memory_write_error = "Interpreter couldn't write to memory"; static const char *memory_read_error = "Interpreter couldn't read from memory"; static const char *infinite_loop_error = "Interpreter ran for too many cycles"; static const char *bad_result_error = "Result of expression is in bad memory"; bool IRInterpreter::supportsFunction (Function &llvm_function, lldb_private::Error &err) { lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); for (Function::iterator bbi = llvm_function.begin(), bbe = llvm_function.end(); bbi != bbe; ++bbi) { for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end(); ii != ie; ++ii) { switch (ii->getOpcode()) { default: { if (log) log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str()); err.SetErrorToGenericError(); err.SetErrorString(unsupported_opcode_error); return false; } case Instruction::Add: case Instruction::Alloca: case Instruction::BitCast: case Instruction::Br: case Instruction::GetElementPtr: break; case Instruction::ICmp: { ICmpInst *icmp_inst = dyn_cast(ii); if (!icmp_inst) { err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } switch (icmp_inst->getPredicate()) { default: { if (log) log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str()); err.SetErrorToGenericError(); err.SetErrorString(unsupported_opcode_error); return false; } case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: break; } } break; case Instruction::And: case Instruction::AShr: case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::Load: case Instruction::LShr: case Instruction::Mul: case Instruction::Or: case Instruction::Ret: case Instruction::SDiv: case Instruction::Shl: case Instruction::SRem: case Instruction::Store: case Instruction::Sub: case Instruction::UDiv: case Instruction::URem: case Instruction::Xor: case Instruction::ZExt: break; } } } return true; } bool IRInterpreter::runOnFunction (lldb_private::ClangExpressionDeclMap *decl_map, lldb_private::IRMemoryMap &memory_map, lldb_private::Stream *error_stream, lldb::ClangExpressionVariableSP &result, const lldb_private::ConstString &result_name, lldb_private::TypeFromParser result_type, Function &llvm_function, Module &llvm_module, lldb_private::Error &err) { lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); DataLayout target_data(&llvm_module); InterpreterStackFrame frame(target_data, decl_map, memory_map); uint32_t num_insts = 0; frame.Jump(llvm_function.begin()); while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) { const Instruction *inst = frame.m_ii; if (log) log->Printf("Interpreting %s", PrintValue(inst).c_str()); switch (inst->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { const BinaryOperator *bin_op = dyn_cast(inst); if (!bin_op) { if (log) log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Value *lhs = inst->getOperand(0); Value *rhs = inst->getOperand(1); lldb_private::Scalar L; lldb_private::Scalar R; if (!frame.EvaluateValue(L, lhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (!frame.EvaluateValue(R, rhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } lldb_private::Scalar result; switch (inst->getOpcode()) { default: break; case Instruction::Add: result = L + R; break; case Instruction::Mul: result = L * R; break; case Instruction::Sub: result = L - R; break; case Instruction::SDiv: result = L / R; break; case Instruction::UDiv: result = L.GetRawBits64(0) / R.GetRawBits64(1); break; case Instruction::SRem: result = L % R; break; case Instruction::URem: result = L.GetRawBits64(0) % R.GetRawBits64(1); break; case Instruction::Shl: result = L << R; break; case Instruction::AShr: result = L >> R; break; case Instruction::LShr: result = L; result.ShiftRightLogical(R); break; case Instruction::And: result = L & R; break; case Instruction::Or: result = L | R; break; case Instruction::Xor: result = L ^ R; break; } frame.AssignValue(inst, result, llvm_module); if (log) { log->Printf("Interpreted a %s", inst->getOpcodeName()); log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::Alloca: { const AllocaInst *alloca_inst = dyn_cast(inst); if (!alloca_inst) { if (log) log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } if (alloca_inst->isArrayAllocation()) { if (log) log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); err.SetErrorToGenericError(); err.SetErrorString(unsupported_opcode_error); return false; } // The semantics of Alloca are: // Create a region R of virtual memory of type T, backed by a data buffer // Create a region P of virtual memory of type T*, backed by a data buffer // Write the virtual address of R into P Type *T = alloca_inst->getAllocatedType(); Type *Tptr = alloca_inst->getType(); lldb::addr_t R = frame.Malloc(T); if (R == LLDB_INVALID_ADDRESS) { if (log) log->Printf("Couldn't allocate memory for an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_allocation_error); return false; } lldb::addr_t P = frame.Malloc(Tptr); if (P == LLDB_INVALID_ADDRESS) { if (log) log->Printf("Couldn't allocate the result pointer for an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_allocation_error); return false; } lldb_private::Error write_error; memory_map.WritePointerToMemory(P, R, write_error); if (!write_error.Success()) { if (log) log->Printf("Couldn't write the result pointer for an AllocaInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_write_error); lldb_private::Error free_error; memory_map.Free(P, free_error); memory_map.Free(R, free_error); return false; } frame.m_values[alloca_inst] = P; if (log) { log->Printf("Interpreted an AllocaInst"); log->Printf(" R : 0x%llx", R); log->Printf(" P : 0x%llx", P); } } break; case Instruction::BitCast: case Instruction::ZExt: { const CastInst *cast_inst = dyn_cast(inst); if (!cast_inst) { if (log) log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName()); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Value *source = cast_inst->getOperand(0); lldb_private::Scalar S; if (!frame.EvaluateValue(S, source, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, S, llvm_module); } break; case Instruction::Br: { const BranchInst *br_inst = dyn_cast(inst); if (!br_inst) { if (log) log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } if (br_inst->isConditional()) { Value *condition = br_inst->getCondition(); lldb_private::Scalar C; if (!frame.EvaluateValue(C, condition, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (C.GetRawBits64(0)) frame.Jump(br_inst->getSuccessor(0)); else frame.Jump(br_inst->getSuccessor(1)); if (log) { log->Printf("Interpreted a BrInst with a condition"); log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); } } else { frame.Jump(br_inst->getSuccessor(0)); if (log) { log->Printf("Interpreted a BrInst with no condition"); } } } continue; case Instruction::GetElementPtr: { const GetElementPtrInst *gep_inst = dyn_cast(inst); if (!gep_inst) { if (log) log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } const Value *pointer_operand = gep_inst->getPointerOperand(); Type *pointer_type = pointer_operand->getType(); lldb_private::Scalar P; if (!frame.EvaluateValue(P, pointer_operand, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } typedef SmallVector IndexVector; typedef IndexVector::iterator IndexIterator; SmallVector indices (gep_inst->idx_begin(), gep_inst->idx_end()); SmallVector const_indices; for (IndexIterator ii = indices.begin(), ie = indices.end(); ii != ie; ++ii) { ConstantInt *constant_index = dyn_cast(*ii); if (!constant_index) { lldb_private::Scalar I; if (!frame.EvaluateValue(I, *ii, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (log) log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS)); constant_index = cast(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS))); } const_indices.push_back(constant_index); } uint64_t offset = target_data.getIndexedOffset(pointer_type, const_indices); lldb_private::Scalar Poffset = P + offset; frame.AssignValue(inst, Poffset, llvm_module); if (log) { log->Printf("Interpreted a GetElementPtrInst"); log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::ICmp: { const ICmpInst *icmp_inst = dyn_cast(inst); if (!icmp_inst) { if (log) log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } CmpInst::Predicate predicate = icmp_inst->getPredicate(); Value *lhs = inst->getOperand(0); Value *rhs = inst->getOperand(1); lldb_private::Scalar L; lldb_private::Scalar R; if (!frame.EvaluateValue(L, lhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (!frame.EvaluateValue(R, rhs, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } lldb_private::Scalar result; switch (predicate) { default: return false; case CmpInst::ICMP_EQ: result = (L == R); break; case CmpInst::ICMP_NE: result = (L != R); break; case CmpInst::ICMP_UGT: result = (L.GetRawBits64(0) > R.GetRawBits64(0)); break; case CmpInst::ICMP_UGE: result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); break; case CmpInst::ICMP_ULT: result = (L.GetRawBits64(0) < R.GetRawBits64(0)); break; case CmpInst::ICMP_ULE: result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); break; case CmpInst::ICMP_SGT: result = (L > R); break; case CmpInst::ICMP_SGE: result = (L >= R); break; case CmpInst::ICMP_SLT: result = (L < R); break; case CmpInst::ICMP_SLE: result = (L <= R); break; } frame.AssignValue(inst, result, llvm_module); if (log) { log->Printf("Interpreted an ICmpInst"); log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::IntToPtr: { const IntToPtrInst *int_to_ptr_inst = dyn_cast(inst); if (!int_to_ptr_inst) { if (log) log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Value *src_operand = int_to_ptr_inst->getOperand(0); lldb_private::Scalar I; if (!frame.EvaluateValue(I, src_operand, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, I, llvm_module); if (log) { log->Printf("Interpreted an IntToPtr"); log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::PtrToInt: { const PtrToIntInst *ptr_to_int_inst = dyn_cast(inst); if (!ptr_to_int_inst) { if (log) log->Printf("getOpcode() returns PtrToInt, but instruction is not an PtrToIntInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Value *src_operand = ptr_to_int_inst->getOperand(0); lldb_private::Scalar I; if (!frame.EvaluateValue(I, src_operand, llvm_module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, I, llvm_module); if (log) { log->Printf("Interpreted a PtrToInt"); log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::Load: { const LoadInst *load_inst = dyn_cast(inst); if (!load_inst) { if (log) log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } // The semantics of Load are: // Create a region D that will contain the loaded data // Resolve the region P containing a pointer // Dereference P to get the region R that the data should be loaded from // Transfer a unit of type type(D) from R to D const Value *pointer_operand = load_inst->getPointerOperand(); Type *pointer_ty = pointer_operand->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) { if (log) log->Printf("getPointerOperand()->getType() is not a PointerType"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } Type *target_ty = pointer_ptr_ty->getElementType(); lldb::addr_t D = frame.ResolveValue(load_inst, llvm_module); lldb::addr_t P = frame.ResolveValue(pointer_operand, llvm_module); if (D == LLDB_INVALID_ADDRESS) { if (log) log->Printf("LoadInst's value doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (P == LLDB_INVALID_ADDRESS) { if (log) log->Printf("LoadInst's pointer doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } lldb::addr_t R; lldb_private::Error read_error; memory_map.ReadPointerFromMemory(&R, P, read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read the address to be loaded for a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } size_t target_size = target_data.getTypeStoreSize(target_ty); lldb_private::DataBufferHeap buffer(target_size, 0); read_error.Clear(); memory_map.ReadMemory(buffer.GetBytes(), R, buffer.GetByteSize(), read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read from a region on behalf of a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } lldb_private::Error write_error; memory_map.WriteMemory(D, buffer.GetBytes(), buffer.GetByteSize(), write_error); if (!write_error.Success()) { if (log) log->Printf("Couldn't write to a region on behalf of a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } if (log) { log->Printf("Interpreted a LoadInst"); log->Printf(" P : 0x%llx", P); log->Printf(" R : 0x%llx", R); log->Printf(" D : 0x%llx", D); } } break; case Instruction::Ret: { frame.RestoreLLDBValues(); if (result_name.IsEmpty()) return true; GlobalValue *result_value = llvm_module.getNamedValue(result_name.GetCString()); if (!frame.ConstructResult(result, result_value, result_name, result_type, llvm_module)) { if (log) log->Printf("Couldn't construct the expression's result"); err.SetErrorToGenericError(); err.SetErrorString(bad_result_error); return false; } return true; } case Instruction::Store: { const StoreInst *store_inst = dyn_cast(inst); if (!store_inst) { if (log) log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); err.SetErrorToGenericError(); err.SetErrorString(interpreter_internal_error); return false; } // The semantics of Store are: // Resolve the region D containing the data to be stored // Resolve the region P containing a pointer // Dereference P to get the region R that the data should be stored in // Transfer a unit of type type(D) from D to R const Value *value_operand = store_inst->getValueOperand(); const Value *pointer_operand = store_inst->getPointerOperand(); Type *pointer_ty = pointer_operand->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) return false; Type *target_ty = pointer_ptr_ty->getElementType(); lldb::addr_t D = frame.ResolveValue(value_operand, llvm_module); lldb::addr_t P = frame.ResolveValue(pointer_operand, llvm_module); if (D == LLDB_INVALID_ADDRESS) { if (log) log->Printf("StoreInst's value doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } if (P == LLDB_INVALID_ADDRESS) { if (log) log->Printf("StoreInst's pointer doesn't resolve to anything"); err.SetErrorToGenericError(); err.SetErrorString(bad_value_error); return false; } lldb::addr_t R; lldb_private::Error read_error; memory_map.ReadPointerFromMemory(&R, P, read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read the address to be loaded for a LoadInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } size_t target_size = target_data.getTypeStoreSize(target_ty); lldb_private::DataBufferHeap buffer(target_size, 0); read_error.Clear(); memory_map.ReadMemory(buffer.GetBytes(), D, buffer.GetByteSize(), read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read from a region on behalf of a StoreInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } lldb_private::Error write_error; memory_map.WriteMemory(R, buffer.GetBytes(), buffer.GetByteSize(), write_error); if (!write_error.Success()) { if (log) log->Printf("Couldn't write to a region on behalf of a StoreInst"); err.SetErrorToGenericError(); err.SetErrorString(memory_read_error); return false; } if (log) { log->Printf("Interpreted a StoreInst"); log->Printf(" D : 0x%llx", D); log->Printf(" P : 0x%llx", P); log->Printf(" R : 0x%llx", R); } } break; } ++frame.m_ii; } if (num_insts >= 4096) { err.SetErrorToGenericError(); err.SetErrorString(infinite_loop_error); return false; } return false; } // new api bool IRInterpreter::CanInterpret (llvm::Module &module, llvm::Function &function, lldb_private::Error &error) { return supportsFunction(function, error); } bool IRInterpreter::Interpret (llvm::Module &module, llvm::Function &function, lldb_private::IRMemoryMap &memory_map, lldb_private::Error &error) { lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS)); DataLayout data_layout(&module); InterpreterStackFrame frame(data_layout, NULL, memory_map); uint32_t num_insts = 0; frame.Jump(function.begin()); while (frame.m_ii != frame.m_ie && (++num_insts < 4096)) { const Instruction *inst = frame.m_ii; if (log) log->Printf("Interpreting %s", PrintValue(inst).c_str()); switch (inst->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { const BinaryOperator *bin_op = dyn_cast(inst); if (!bin_op) { if (log) log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName()); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } Value *lhs = inst->getOperand(0); Value *rhs = inst->getOperand(1); lldb_private::Scalar L; lldb_private::Scalar R; if (!frame.EvaluateValue(L, lhs, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } if (!frame.EvaluateValue(R, rhs, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } lldb_private::Scalar result; switch (inst->getOpcode()) { default: break; case Instruction::Add: result = L + R; break; case Instruction::Mul: result = L * R; break; case Instruction::Sub: result = L - R; break; case Instruction::SDiv: result = L / R; break; case Instruction::UDiv: result = L.GetRawBits64(0) / R.GetRawBits64(1); break; case Instruction::SRem: result = L % R; break; case Instruction::URem: result = L.GetRawBits64(0) % R.GetRawBits64(1); break; case Instruction::Shl: result = L << R; break; case Instruction::AShr: result = L >> R; break; case Instruction::LShr: result = L; result.ShiftRightLogical(R); break; case Instruction::And: result = L & R; break; case Instruction::Or: result = L | R; break; case Instruction::Xor: result = L ^ R; break; } frame.AssignValue(inst, result, module); if (log) { log->Printf("Interpreted a %s", inst->getOpcodeName()); log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::Alloca: { const AllocaInst *alloca_inst = dyn_cast(inst); if (!alloca_inst) { if (log) log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } if (alloca_inst->isArrayAllocation()) { if (log) log->Printf("AllocaInsts are not handled if isArrayAllocation() is true"); error.SetErrorToGenericError(); error.SetErrorString(unsupported_opcode_error); return false; } // The semantics of Alloca are: // Create a region R of virtual memory of type T, backed by a data buffer // Create a region P of virtual memory of type T*, backed by a data buffer // Write the virtual address of R into P Type *T = alloca_inst->getAllocatedType(); Type *Tptr = alloca_inst->getType(); lldb::addr_t R = frame.Malloc(T); if (R == LLDB_INVALID_ADDRESS) { if (log) log->Printf("Couldn't allocate memory for an AllocaInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_allocation_error); return false; } lldb::addr_t P = frame.Malloc(Tptr); if (P == LLDB_INVALID_ADDRESS) { if (log) log->Printf("Couldn't allocate the result pointer for an AllocaInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_allocation_error); return false; } lldb_private::Error write_error; memory_map.WritePointerToMemory(P, R, write_error); if (!write_error.Success()) { if (log) log->Printf("Couldn't write the result pointer for an AllocaInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_write_error); lldb_private::Error free_error; memory_map.Free(P, free_error); memory_map.Free(R, free_error); return false; } frame.m_values[alloca_inst] = P; if (log) { log->Printf("Interpreted an AllocaInst"); log->Printf(" R : 0x%llx", R); log->Printf(" P : 0x%llx", P); } } break; case Instruction::BitCast: case Instruction::ZExt: { const CastInst *cast_inst = dyn_cast(inst); if (!cast_inst) { if (log) log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName()); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } Value *source = cast_inst->getOperand(0); lldb_private::Scalar S; if (!frame.EvaluateValue(S, source, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(source).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, S, module); } break; case Instruction::Br: { const BranchInst *br_inst = dyn_cast(inst); if (!br_inst) { if (log) log->Printf("getOpcode() returns Br, but instruction is not a BranchInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } if (br_inst->isConditional()) { Value *condition = br_inst->getCondition(); lldb_private::Scalar C; if (!frame.EvaluateValue(C, condition, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } if (C.GetRawBits64(0)) frame.Jump(br_inst->getSuccessor(0)); else frame.Jump(br_inst->getSuccessor(1)); if (log) { log->Printf("Interpreted a BrInst with a condition"); log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str()); } } else { frame.Jump(br_inst->getSuccessor(0)); if (log) { log->Printf("Interpreted a BrInst with no condition"); } } } continue; case Instruction::GetElementPtr: { const GetElementPtrInst *gep_inst = dyn_cast(inst); if (!gep_inst) { if (log) log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } const Value *pointer_operand = gep_inst->getPointerOperand(); Type *pointer_type = pointer_operand->getType(); lldb_private::Scalar P; if (!frame.EvaluateValue(P, pointer_operand, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } typedef SmallVector IndexVector; typedef IndexVector::iterator IndexIterator; SmallVector indices (gep_inst->idx_begin(), gep_inst->idx_end()); SmallVector const_indices; for (IndexIterator ii = indices.begin(), ie = indices.end(); ii != ie; ++ii) { ConstantInt *constant_index = dyn_cast(*ii); if (!constant_index) { lldb_private::Scalar I; if (!frame.EvaluateValue(I, *ii, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } if (log) log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS)); constant_index = cast(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS))); } const_indices.push_back(constant_index); } uint64_t offset = data_layout.getIndexedOffset(pointer_type, const_indices); lldb_private::Scalar Poffset = P + offset; frame.AssignValue(inst, Poffset, module); if (log) { log->Printf("Interpreted a GetElementPtrInst"); log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str()); log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::ICmp: { const ICmpInst *icmp_inst = dyn_cast(inst); if (!icmp_inst) { if (log) log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } CmpInst::Predicate predicate = icmp_inst->getPredicate(); Value *lhs = inst->getOperand(0); Value *rhs = inst->getOperand(1); lldb_private::Scalar L; lldb_private::Scalar R; if (!frame.EvaluateValue(L, lhs, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } if (!frame.EvaluateValue(R, rhs, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } lldb_private::Scalar result; switch (predicate) { default: return false; case CmpInst::ICMP_EQ: result = (L == R); break; case CmpInst::ICMP_NE: result = (L != R); break; case CmpInst::ICMP_UGT: result = (L.GetRawBits64(0) > R.GetRawBits64(0)); break; case CmpInst::ICMP_UGE: result = (L.GetRawBits64(0) >= R.GetRawBits64(0)); break; case CmpInst::ICMP_ULT: result = (L.GetRawBits64(0) < R.GetRawBits64(0)); break; case CmpInst::ICMP_ULE: result = (L.GetRawBits64(0) <= R.GetRawBits64(0)); break; case CmpInst::ICMP_SGT: result = (L > R); break; case CmpInst::ICMP_SGE: result = (L >= R); break; case CmpInst::ICMP_SLT: result = (L < R); break; case CmpInst::ICMP_SLE: result = (L <= R); break; } frame.AssignValue(inst, result, module); if (log) { log->Printf("Interpreted an ICmpInst"); log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str()); log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::IntToPtr: { const IntToPtrInst *int_to_ptr_inst = dyn_cast(inst); if (!int_to_ptr_inst) { if (log) log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } Value *src_operand = int_to_ptr_inst->getOperand(0); lldb_private::Scalar I; if (!frame.EvaluateValue(I, src_operand, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, I, module); if (log) { log->Printf("Interpreted an IntToPtr"); log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::PtrToInt: { const PtrToIntInst *ptr_to_int_inst = dyn_cast(inst); if (!ptr_to_int_inst) { if (log) log->Printf("getOpcode() returns PtrToInt, but instruction is not an PtrToIntInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } Value *src_operand = ptr_to_int_inst->getOperand(0); lldb_private::Scalar I; if (!frame.EvaluateValue(I, src_operand, module)) { if (log) log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str()); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } frame.AssignValue(inst, I, module); if (log) { log->Printf("Interpreted a PtrToInt"); log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str()); log->Printf(" = : %s", frame.SummarizeValue(inst).c_str()); } } break; case Instruction::Load: { const LoadInst *load_inst = dyn_cast(inst); if (!load_inst) { if (log) log->Printf("getOpcode() returns Load, but instruction is not a LoadInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } // The semantics of Load are: // Create a region D that will contain the loaded data // Resolve the region P containing a pointer // Dereference P to get the region R that the data should be loaded from // Transfer a unit of type type(D) from R to D const Value *pointer_operand = load_inst->getPointerOperand(); Type *pointer_ty = pointer_operand->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) { if (log) log->Printf("getPointerOperand()->getType() is not a PointerType"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } Type *target_ty = pointer_ptr_ty->getElementType(); lldb::addr_t D = frame.ResolveValue(load_inst, module); lldb::addr_t P = frame.ResolveValue(pointer_operand, module); if (D == LLDB_INVALID_ADDRESS) { if (log) log->Printf("LoadInst's value doesn't resolve to anything"); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } if (P == LLDB_INVALID_ADDRESS) { if (log) log->Printf("LoadInst's pointer doesn't resolve to anything"); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } lldb::addr_t R; lldb_private::Error read_error; memory_map.ReadPointerFromMemory(&R, P, read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read the address to be loaded for a LoadInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_read_error); return false; } size_t target_size = data_layout.getTypeStoreSize(target_ty); lldb_private::DataBufferHeap buffer(target_size, 0); read_error.Clear(); memory_map.ReadMemory(buffer.GetBytes(), R, buffer.GetByteSize(), read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read from a region on behalf of a LoadInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_read_error); return false; } lldb_private::Error write_error; memory_map.WriteMemory(D, buffer.GetBytes(), buffer.GetByteSize(), write_error); if (!write_error.Success()) { if (log) log->Printf("Couldn't write to a region on behalf of a LoadInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_read_error); return false; } if (log) { log->Printf("Interpreted a LoadInst"); log->Printf(" P : 0x%llx", P); log->Printf(" R : 0x%llx", R); log->Printf(" D : 0x%llx", D); } } break; case Instruction::Ret: { return true; } case Instruction::Store: { const StoreInst *store_inst = dyn_cast(inst); if (!store_inst) { if (log) log->Printf("getOpcode() returns Store, but instruction is not a StoreInst"); error.SetErrorToGenericError(); error.SetErrorString(interpreter_internal_error); return false; } // The semantics of Store are: // Resolve the region D containing the data to be stored // Resolve the region P containing a pointer // Dereference P to get the region R that the data should be stored in // Transfer a unit of type type(D) from D to R const Value *value_operand = store_inst->getValueOperand(); const Value *pointer_operand = store_inst->getPointerOperand(); Type *pointer_ty = pointer_operand->getType(); PointerType *pointer_ptr_ty = dyn_cast(pointer_ty); if (!pointer_ptr_ty) return false; Type *target_ty = pointer_ptr_ty->getElementType(); lldb::addr_t D = frame.ResolveValue(value_operand, module); lldb::addr_t P = frame.ResolveValue(pointer_operand, module); if (D == LLDB_INVALID_ADDRESS) { if (log) log->Printf("StoreInst's value doesn't resolve to anything"); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } if (P == LLDB_INVALID_ADDRESS) { if (log) log->Printf("StoreInst's pointer doesn't resolve to anything"); error.SetErrorToGenericError(); error.SetErrorString(bad_value_error); return false; } lldb::addr_t R; lldb_private::Error read_error; memory_map.ReadPointerFromMemory(&R, P, read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read the address to be loaded for a LoadInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_read_error); return false; } size_t target_size = data_layout.getTypeStoreSize(target_ty); lldb_private::DataBufferHeap buffer(target_size, 0); read_error.Clear(); memory_map.ReadMemory(buffer.GetBytes(), D, buffer.GetByteSize(), read_error); if (!read_error.Success()) { if (log) log->Printf("Couldn't read from a region on behalf of a StoreInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_read_error); return false; } lldb_private::Error write_error; memory_map.WriteMemory(R, buffer.GetBytes(), buffer.GetByteSize(), write_error); if (!write_error.Success()) { if (log) log->Printf("Couldn't write to a region on behalf of a StoreInst"); error.SetErrorToGenericError(); error.SetErrorString(memory_read_error); return false; } if (log) { log->Printf("Interpreted a StoreInst"); log->Printf(" D : 0x%llx", D); log->Printf(" P : 0x%llx", P); log->Printf(" R : 0x%llx", R); } } break; } ++frame.m_ii; } if (num_insts >= 4096) { error.SetErrorToGenericError(); error.SetErrorString(infinite_loop_error); return false; } return false; }