//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ declarations. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "SemaInherit.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/TypeOrdering.h" #include "clang/AST/StmtVisitor.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/Diagnostic.h" #include "clang/Parse/DeclSpec.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include // for std::equal #include using namespace clang; //===----------------------------------------------------------------------===// // CheckDefaultArgumentVisitor //===----------------------------------------------------------------------===// namespace { /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses /// the default argument of a parameter to determine whether it /// contains any ill-formed subexpressions. For example, this will /// diagnose the use of local variables or parameters within the /// default argument expression. class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor : public StmtVisitor { Expr *DefaultArg; Sema *S; public: CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) : DefaultArg(defarg), S(s) {} bool VisitExpr(Expr *Node); bool VisitDeclRefExpr(DeclRefExpr *DRE); bool VisitCXXThisExpr(CXXThisExpr *ThisE); }; /// VisitExpr - Visit all of the children of this expression. bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { bool IsInvalid = false; for (Stmt::child_iterator I = Node->child_begin(), E = Node->child_end(); I != E; ++I) IsInvalid |= Visit(*I); return IsInvalid; } /// VisitDeclRefExpr - Visit a reference to a declaration, to /// determine whether this declaration can be used in the default /// argument expression. bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { NamedDecl *Decl = DRE->getDecl(); if (ParmVarDecl *Param = dyn_cast(Decl)) { // C++ [dcl.fct.default]p9 // Default arguments are evaluated each time the function is // called. The order of evaluation of function arguments is // unspecified. Consequently, parameters of a function shall not // be used in default argument expressions, even if they are not // evaluated. Parameters of a function declared before a default // argument expression are in scope and can hide namespace and // class member names. return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_param) << Param->getDeclName() << DefaultArg->getSourceRange(); } else if (VarDecl *VDecl = dyn_cast(Decl)) { // C++ [dcl.fct.default]p7 // Local variables shall not be used in default argument // expressions. if (VDecl->isBlockVarDecl()) return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_local) << VDecl->getDeclName() << DefaultArg->getSourceRange(); } return false; } /// VisitCXXThisExpr - Visit a C++ "this" expression. bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { // C++ [dcl.fct.default]p8: // The keyword this shall not be used in a default argument of a // member function. return S->Diag(ThisE->getSourceRange().getBegin(), diag::err_param_default_argument_references_this) << ThisE->getSourceRange(); } } /// ActOnParamDefaultArgument - Check whether the default argument /// provided for a function parameter is well-formed. If so, attach it /// to the parameter declaration. void Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc, ExprTy *defarg) { ParmVarDecl *Param = (ParmVarDecl *)param; llvm::OwningPtr DefaultArg((Expr *)defarg); QualType ParamType = Param->getType(); // Default arguments are only permitted in C++ if (!getLangOptions().CPlusPlus) { Diag(EqualLoc, diag::err_param_default_argument) << DefaultArg->getSourceRange(); Param->setInvalidDecl(); return; } // C++ [dcl.fct.default]p5 // A default argument expression is implicitly converted (clause // 4) to the parameter type. The default argument expression has // the same semantic constraints as the initializer expression in // a declaration of a variable of the parameter type, using the // copy-initialization semantics (8.5). Expr *DefaultArgPtr = DefaultArg.get(); bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType, EqualLoc, Param->getDeclName()); if (DefaultArgPtr != DefaultArg.get()) { DefaultArg.take(); DefaultArg.reset(DefaultArgPtr); } if (DefaultInitFailed) { return; } // Check that the default argument is well-formed CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); if (DefaultArgChecker.Visit(DefaultArg.get())) { Param->setInvalidDecl(); return; } // Okay: add the default argument to the parameter Param->setDefaultArg(DefaultArg.take()); } /// ActOnParamUnparsedDefaultArgument - We've seen a default /// argument for a function parameter, but we can't parse it yet /// because we're inside a class definition. Note that this default /// argument will be parsed later. void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param, SourceLocation EqualLoc) { ParmVarDecl *Param = (ParmVarDecl*)param; if (Param) Param->setUnparsedDefaultArg(); } /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of /// the default argument for the parameter param failed. void Sema::ActOnParamDefaultArgumentError(DeclTy *param) { ((ParmVarDecl*)param)->setInvalidDecl(); } /// CheckExtraCXXDefaultArguments - Check for any extra default /// arguments in the declarator, which is not a function declaration /// or definition and therefore is not permitted to have default /// arguments. This routine should be invoked for every declarator /// that is not a function declaration or definition. void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { // C++ [dcl.fct.default]p3 // A default argument expression shall be specified only in the // parameter-declaration-clause of a function declaration or in a // template-parameter (14.1). It shall not be specified for a // parameter pack. If it is specified in a // parameter-declaration-clause, it shall not occur within a // declarator or abstract-declarator of a parameter-declaration. for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) { DeclaratorChunk &chunk = D.getTypeObject(i); if (chunk.Kind == DeclaratorChunk::Function) { for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) { ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param; if (Param->hasUnparsedDefaultArg()) { CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); delete Toks; chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; } else if (Param->getDefaultArg()) { Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << Param->getDefaultArg()->getSourceRange(); Param->setDefaultArg(0); } } } } } // MergeCXXFunctionDecl - Merge two declarations of the same C++ // function, once we already know that they have the same // type. Subroutine of MergeFunctionDecl. FunctionDecl * Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { // C++ [dcl.fct.default]p4: // // For non-template functions, default arguments can be added in // later declarations of a function in the same // scope. Declarations in different scopes have completely // distinct sets of default arguments. That is, declarations in // inner scopes do not acquire default arguments from // declarations in outer scopes, and vice versa. In a given // function declaration, all parameters subsequent to a // parameter with a default argument shall have default // arguments supplied in this or previous declarations. A // default argument shall not be redefined by a later // declaration (not even to the same value). for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { ParmVarDecl *OldParam = Old->getParamDecl(p); ParmVarDecl *NewParam = New->getParamDecl(p); if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) { Diag(NewParam->getLocation(), diag::err_param_default_argument_redefinition) << NewParam->getDefaultArg()->getSourceRange(); Diag(OldParam->getLocation(), diag::note_previous_definition); } else if (OldParam->getDefaultArg()) { // Merge the old default argument into the new parameter NewParam->setDefaultArg(OldParam->getDefaultArg()); } } return New; } /// CheckCXXDefaultArguments - Verify that the default arguments for a /// function declaration are well-formed according to C++ /// [dcl.fct.default]. void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { unsigned NumParams = FD->getNumParams(); unsigned p; // Find first parameter with a default argument for (p = 0; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->getDefaultArg()) break; } // C++ [dcl.fct.default]p4: // In a given function declaration, all parameters // subsequent to a parameter with a default argument shall // have default arguments supplied in this or previous // declarations. A default argument shall not be redefined // by a later declaration (not even to the same value). unsigned LastMissingDefaultArg = 0; for(; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (!Param->getDefaultArg()) { if (Param->isInvalidDecl()) /* We already complained about this parameter. */; else if (Param->getIdentifier()) Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) << Param->getIdentifier(); else Diag(Param->getLocation(), diag::err_param_default_argument_missing); LastMissingDefaultArg = p; } } if (LastMissingDefaultArg > 0) { // Some default arguments were missing. Clear out all of the // default arguments up to (and including) the last missing // default argument, so that we leave the function parameters // in a semantically valid state. for (p = 0; p <= LastMissingDefaultArg; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->getDefaultArg()) { if (!Param->hasUnparsedDefaultArg()) Param->getDefaultArg()->Destroy(Context); Param->setDefaultArg(0); } } } } /// isCurrentClassName - Determine whether the identifier II is the /// name of the class type currently being defined. In the case of /// nested classes, this will only return true if II is the name of /// the innermost class. bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, const CXXScopeSpec *SS) { CXXRecordDecl *CurDecl; if (SS) { DeclContext *DC = static_cast(SS->getScopeRep()); CurDecl = dyn_cast_or_null(DC); } else CurDecl = dyn_cast_or_null(CurContext); if (CurDecl) return &II == CurDecl->getIdentifier(); else return false; } /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is /// one entry in the base class list of a class specifier, for /// example: /// class foo : public bar, virtual private baz { /// 'public bar' and 'virtual private baz' are each base-specifiers. Sema::BaseResult Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeTy *basetype, SourceLocation BaseLoc) { RecordDecl *Decl = (RecordDecl*)classdecl; QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype); // Base specifiers must be record types. if (!BaseType->isRecordType()) return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; // C++ [class.union]p1: // A union shall not be used as a base class. if (BaseType->isUnionType()) return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; // C++ [class.union]p1: // A union shall not have base classes. if (Decl->isUnion()) return Diag(Decl->getLocation(), diag::err_base_clause_on_union) << SpecifierRange; // C++ [class.derived]p2: // The class-name in a base-specifier shall not be an incompletely // defined class. if (BaseType->isIncompleteType()) return Diag(BaseLoc, diag::err_incomplete_base_class) << SpecifierRange; // If the base class is polymorphic, the new one is, too. RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl(); assert(BaseDecl && "Record type has no declaration"); BaseDecl = BaseDecl->getDefinition(Context); assert(BaseDecl && "Base type is not incomplete, but has no definition"); if (cast(BaseDecl)->isPolymorphic()) cast(Decl)->setPolymorphic(true); // Create the base specifier. return new CXXBaseSpecifier(SpecifierRange, Virtual, BaseType->isClassType(), Access, BaseType); } /// ActOnBaseSpecifiers - Attach the given base specifiers to the /// class, after checking whether there are any duplicate base /// classes. void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases, unsigned NumBases) { if (NumBases == 0) return; // Used to keep track of which base types we have already seen, so // that we can properly diagnose redundant direct base types. Note // that the key is always the unqualified canonical type of the base // class. std::map KnownBaseTypes; // Copy non-redundant base specifiers into permanent storage. CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases; unsigned NumGoodBases = 0; for (unsigned idx = 0; idx < NumBases; ++idx) { QualType NewBaseType = Context.getCanonicalType(BaseSpecs[idx]->getType()); NewBaseType = NewBaseType.getUnqualifiedType(); if (KnownBaseTypes[NewBaseType]) { // C++ [class.mi]p3: // A class shall not be specified as a direct base class of a // derived class more than once. Diag(BaseSpecs[idx]->getSourceRange().getBegin(), diag::err_duplicate_base_class) << KnownBaseTypes[NewBaseType]->getType() << BaseSpecs[idx]->getSourceRange(); // Delete the duplicate base class specifier; we're going to // overwrite its pointer later. delete BaseSpecs[idx]; } else { // Okay, add this new base class. KnownBaseTypes[NewBaseType] = BaseSpecs[idx]; BaseSpecs[NumGoodBases++] = BaseSpecs[idx]; } } // Attach the remaining base class specifiers to the derived class. CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl; Decl->setBases(BaseSpecs, NumGoodBases); // Delete the remaining (good) base class specifiers, since their // data has been copied into the CXXRecordDecl. for (unsigned idx = 0; idx < NumGoodBases; ++idx) delete BaseSpecs[idx]; } //===----------------------------------------------------------------------===// // C++ class member Handling //===----------------------------------------------------------------------===// /// ActOnStartCXXClassDef - This is called at the start of a class/struct/union /// definition, when on C++. void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) { CXXRecordDecl *Dcl = cast(static_cast(D)); PushDeclContext(S, Dcl); FieldCollector->StartClass(); if (Dcl->getIdentifier()) { // C++ [class]p2: // [...] The class-name is also inserted into the scope of the // class itself; this is known as the injected-class-name. For // purposes of access checking, the injected-class-name is treated // as if it were a public member name. PushOnScopeChains(CXXRecordDecl::Create(Context, Dcl->getTagKind(), CurContext, Dcl->getLocation(), Dcl->getIdentifier(), Dcl), S); } } /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the /// bitfield width if there is one and 'InitExpr' specifies the initializer if /// any. 'LastInGroup' is non-null for cases where one declspec has multiple /// declarators on it. /// /// FIXME: The note below is out-of-date. /// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if /// an instance field is declared, a new CXXFieldDecl is created but the method /// does *not* return it; it returns LastInGroup instead. The other C++ members /// (which are all ScopedDecls) are returned after appending them to /// LastInGroup. Sema::DeclTy * Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, ExprTy *BW, ExprTy *InitExpr, DeclTy *LastInGroup) { const DeclSpec &DS = D.getDeclSpec(); DeclarationName Name = GetNameForDeclarator(D); Expr *BitWidth = static_cast(BW); Expr *Init = static_cast(InitExpr); SourceLocation Loc = D.getIdentifierLoc(); bool isFunc = D.isFunctionDeclarator(); // C++ 9.2p6: A member shall not be declared to have automatic storage // duration (auto, register) or with the extern storage-class-specifier. // C++ 7.1.1p8: The mutable specifier can be applied only to names of class // data members and cannot be applied to names declared const or static, // and cannot be applied to reference members. switch (DS.getStorageClassSpec()) { case DeclSpec::SCS_unspecified: case DeclSpec::SCS_typedef: case DeclSpec::SCS_static: // FALL THROUGH. break; case DeclSpec::SCS_mutable: if (isFunc) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); else Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); // FIXME: It would be nicer if the keyword was ignored only for this // declarator. Otherwise we could get follow-up errors. D.getMutableDeclSpec().ClearStorageClassSpecs(); } else { QualType T = GetTypeForDeclarator(D, S); diag::kind err = static_cast(0); if (T->isReferenceType()) err = diag::err_mutable_reference; else if (T.isConstQualified()) err = diag::err_mutable_const; if (err != 0) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), err); else Diag(DS.getThreadSpecLoc(), err); // FIXME: It would be nicer if the keyword was ignored only for this // declarator. Otherwise we could get follow-up errors. D.getMutableDeclSpec().ClearStorageClassSpecs(); } } break; default: if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), diag::err_storageclass_invalid_for_member); else Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); D.getMutableDeclSpec().ClearStorageClassSpecs(); } if (!isFunc && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef && D.getNumTypeObjects() == 0) { // Check also for this case: // // typedef int f(); // f a; // Decl *TD = static_cast(DS.getTypeRep()); isFunc = Context.getTypeDeclType(cast(TD))->isFunctionType(); } bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && !isFunc); Decl *Member; bool InvalidDecl = false; if (isInstField) Member = static_cast(ActOnField(S, cast(CurContext), Loc, D, BitWidth)); else Member = static_cast(ActOnDeclarator(S, D, LastInGroup)); if (!Member) return LastInGroup; assert((Name || isInstField) && "No identifier for non-field ?"); // set/getAccess is not part of Decl's interface to avoid bloating it with C++ // specific methods. Use a wrapper class that can be used with all C++ class // member decls. CXXClassMemberWrapper(Member).setAccess(AS); // C++ [dcl.init.aggr]p1: // An aggregate is an array or a class (clause 9) with [...] no // private or protected non-static data members (clause 11). if (isInstField && (AS == AS_private || AS == AS_protected)) cast(CurContext)->setAggregate(false); if (DS.isVirtualSpecified()) { if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) { Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function); InvalidDecl = true; } else { CXXRecordDecl *CurClass = cast(CurContext); CurClass->setAggregate(false); CurClass->setPolymorphic(true); } } if (BitWidth) { // C++ 9.6p2: Only when declaring an unnamed bit-field may the // constant-expression be a value equal to zero. // FIXME: Check this. if (D.isFunctionDeclarator()) { // FIXME: Emit diagnostic about only constructors taking base initializers // or something similar, when constructor support is in place. Diag(Loc, diag::err_not_bitfield_type) << Name << BitWidth->getSourceRange(); InvalidDecl = true; } else if (isInstField) { // C++ 9.6p3: A bit-field shall have integral or enumeration type. if (!cast(Member)->getType()->isIntegralType()) { Diag(Loc, diag::err_not_integral_type_bitfield) << Name << BitWidth->getSourceRange(); InvalidDecl = true; } } else if (isa(Member)) { // A function typedef ("typedef int f(); f a;"). // C++ 9.6p3: A bit-field shall have integral or enumeration type. Diag(Loc, diag::err_not_integral_type_bitfield) << Name << BitWidth->getSourceRange(); InvalidDecl = true; } else if (isa(Member)) { // "cannot declare 'A' to be a bit-field type" Diag(Loc, diag::err_not_bitfield_type) << Name << BitWidth->getSourceRange(); InvalidDecl = true; } else { assert(isa(Member) && "Didn't we cover all member kinds?"); // C++ 9.6p3: A bit-field shall not be a static member. // "static member 'A' cannot be a bit-field" Diag(Loc, diag::err_static_not_bitfield) << Name << BitWidth->getSourceRange(); InvalidDecl = true; } } if (Init) { // C++ 9.2p4: A member-declarator can contain a constant-initializer only // if it declares a static member of const integral or const enumeration // type. if (CXXClassVarDecl *CVD = dyn_cast(Member)) { // ...static member of... CVD->setInit(Init); // ...const integral or const enumeration type. if (Context.getCanonicalType(CVD->getType()).isConstQualified() && CVD->getType()->isIntegralType()) { // constant-initializer if (CheckForConstantInitializer(Init, CVD->getType())) InvalidDecl = true; } else { // not const integral. Diag(Loc, diag::err_member_initialization) << Name << Init->getSourceRange(); InvalidDecl = true; } } else { // not static member. Diag(Loc, diag::err_member_initialization) << Name << Init->getSourceRange(); InvalidDecl = true; } } if (InvalidDecl) Member->setInvalidDecl(); if (isInstField) { FieldCollector->Add(cast(Member)); return LastInGroup; } return Member; } /// ActOnMemInitializer - Handle a C++ member initializer. Sema::MemInitResult Sema::ActOnMemInitializer(DeclTy *ConstructorD, Scope *S, IdentifierInfo *MemberOrBase, SourceLocation IdLoc, SourceLocation LParenLoc, ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { CXXConstructorDecl *Constructor = dyn_cast((Decl*)ConstructorD); if (!Constructor) { // The user wrote a constructor initializer on a function that is // not a C++ constructor. Ignore the error for now, because we may // have more member initializers coming; we'll diagnose it just // once in ActOnMemInitializers. return true; } CXXRecordDecl *ClassDecl = Constructor->getParent(); // C++ [class.base.init]p2: // Names in a mem-initializer-id are looked up in the scope of the // constructor’s class and, if not found in that scope, are looked // up in the scope containing the constructor’s // definition. [Note: if the constructor’s class contains a member // with the same name as a direct or virtual base class of the // class, a mem-initializer-id naming the member or base class and // composed of a single identifier refers to the class member. A // mem-initializer-id for the hidden base class may be specified // using a qualified name. ] // Look for a member, first. FieldDecl *Member = 0; DeclContext::lookup_result Result = ClassDecl->lookup(Context, MemberOrBase); if (Result.first != Result.second) Member = dyn_cast(*Result.first); // FIXME: Handle members of an anonymous union. if (Member) { // FIXME: Perform direct initialization of the member. return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs); } // It didn't name a member, so see if it names a class. TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/); if (!BaseTy) return Diag(IdLoc, diag::err_mem_init_not_member_or_class) << MemberOrBase << SourceRange(IdLoc, RParenLoc); QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy); if (!BaseType->isRecordType()) return Diag(IdLoc, diag::err_base_init_does_not_name_class) << BaseType << SourceRange(IdLoc, RParenLoc); // C++ [class.base.init]p2: // [...] Unless the mem-initializer-id names a nonstatic data // member of the constructor’s class or a direct or virtual base // of that class, the mem-initializer is ill-formed. A // mem-initializer-list can initialize a base class using any // name that denotes that base class type. // First, check for a direct base class. const CXXBaseSpecifier *DirectBaseSpec = 0; for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { if (Context.getCanonicalType(BaseType).getUnqualifiedType() == Context.getCanonicalType(Base->getType()).getUnqualifiedType()) { // We found a direct base of this type. That's what we're // initializing. DirectBaseSpec = &*Base; break; } } // Check for a virtual base class. // FIXME: We might be able to short-circuit this if we know in // advance that there are no virtual bases. const CXXBaseSpecifier *VirtualBaseSpec = 0; if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { // We haven't found a base yet; search the class hierarchy for a // virtual base class. BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { for (BasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (Path->back().Base->isVirtual()) { VirtualBaseSpec = Path->back().Base; break; } } } } // C++ [base.class.init]p2: // If a mem-initializer-id is ambiguous because it designates both // a direct non-virtual base class and an inherited virtual base // class, the mem-initializer is ill-formed. if (DirectBaseSpec && VirtualBaseSpec) return Diag(IdLoc, diag::err_base_init_direct_and_virtual) << MemberOrBase << SourceRange(IdLoc, RParenLoc); return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs); } void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, DeclTy *TagDecl, SourceLocation LBrac, SourceLocation RBrac) { ActOnFields(S, RLoc, TagDecl, (DeclTy**)FieldCollector->getCurFields(), FieldCollector->getCurNumFields(), LBrac, RBrac, 0); AddImplicitlyDeclaredMembersToClass(cast((Decl*)TagDecl)); } /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared /// special functions, such as the default constructor, copy /// constructor, or destructor, to the given C++ class (C++ /// [special]p1). This routine can only be executed just before the /// definition of the class is complete. void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { QualType ClassType = Context.getTypeDeclType(ClassDecl); ClassType = Context.getCanonicalType(ClassType); if (!ClassDecl->hasUserDeclaredConstructor()) { // C++ [class.ctor]p5: // A default constructor for a class X is a constructor of class X // that can be called without an argument. If there is no // user-declared constructor for class X, a default constructor is // implicitly declared. An implicitly-declared default constructor // is an inline public member of its class. DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(ClassType); CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, Context.getFunctionType(Context.VoidTy, 0, 0, false, 0), /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true); DefaultCon->setAccess(AS_public); ClassDecl->addDecl(Context, DefaultCon); // Notify the class that we've added a constructor. ClassDecl->addedConstructor(Context, DefaultCon); } if (!ClassDecl->hasUserDeclaredCopyConstructor()) { // C++ [class.copy]p4: // If the class definition does not explicitly declare a copy // constructor, one is declared implicitly. // C++ [class.copy]p5: // The implicitly-declared copy constructor for a class X will // have the form // // X::X(const X&) // // if bool HasConstCopyConstructor = true; // -- each direct or virtual base class B of X has a copy // constructor whose first parameter is of type const B& or // const volatile B&, and for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { const CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAsRecordType()->getDecl()); HasConstCopyConstructor = BaseClassDecl->hasConstCopyConstructor(Context); } // -- for all the nonstatic data members of X that are of a // class type M (or array thereof), each such class type // has a copy constructor whose first parameter is of type // const M& or const volatile M&. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) { QualType FieldType = (*Field)->getType(); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { const CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); HasConstCopyConstructor = FieldClassDecl->hasConstCopyConstructor(Context); } } // Otherwise, the implicitly declared copy constructor will have // the form // // X::X(X&) QualType ArgType = Context.getTypeDeclType(ClassDecl); if (HasConstCopyConstructor) ArgType = ArgType.withConst(); ArgType = Context.getReferenceType(ArgType); // An implicitly-declared copy constructor is an inline public // member of its class. DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(ClassType); CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, Context.getFunctionType(Context.VoidTy, &ArgType, 1, false, 0), /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true); CopyConstructor->setAccess(AS_public); // Add the parameter to the constructor. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, ClassDecl->getLocation(), /*IdentifierInfo=*/0, ArgType, VarDecl::None, 0, 0); CopyConstructor->setParams(&FromParam, 1); ClassDecl->addedConstructor(Context, CopyConstructor); ClassDecl->addDecl(Context, CopyConstructor); } if (!ClassDecl->hasUserDeclaredDestructor()) { // C++ [class.dtor]p2: // If a class has no user-declared destructor, a destructor is // declared implicitly. An implicitly-declared destructor is an // inline public member of its class. DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(ClassType); CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, Context.getFunctionType(Context.VoidTy, 0, 0, false, 0), /*isInline=*/true, /*isImplicitlyDeclared=*/true); Destructor->setAccess(AS_public); ClassDecl->addDecl(Context, Destructor); } // FIXME: Implicit copy assignment operator } void Sema::ActOnFinishCXXClassDef(DeclTy *D) { CXXRecordDecl *Rec = cast(static_cast(D)); FieldCollector->FinishClass(); PopDeclContext(); // Everything, including inline method definitions, have been parsed. // Let the consumer know of the new TagDecl definition. Consumer.HandleTagDeclDefinition(Rec); } /// ActOnStartDelayedCXXMethodDeclaration - We have completed /// parsing a top-level (non-nested) C++ class, and we are now /// parsing those parts of the given Method declaration that could /// not be parsed earlier (C++ [class.mem]p2), such as default /// arguments. This action should enter the scope of the given /// Method declaration as if we had just parsed the qualified method /// name. However, it should not bring the parameters into scope; /// that will be performed by ActOnDelayedCXXMethodParameter. void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) { CXXScopeSpec SS; SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext()); ActOnCXXEnterDeclaratorScope(S, SS); } /// ActOnDelayedCXXMethodParameter - We've already started a delayed /// C++ method declaration. We're (re-)introducing the given /// function parameter into scope for use in parsing later parts of /// the method declaration. For example, we could see an /// ActOnParamDefaultArgument event for this parameter. void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) { ParmVarDecl *Param = (ParmVarDecl*)ParamD; // If this parameter has an unparsed default argument, clear it out // to make way for the parsed default argument. if (Param->hasUnparsedDefaultArg()) Param->setDefaultArg(0); S->AddDecl(Param); if (Param->getDeclName()) IdResolver.AddDecl(Param); } /// ActOnFinishDelayedCXXMethodDeclaration - We have finished /// processing the delayed method declaration for Method. The method /// declaration is now considered finished. There may be a separate /// ActOnStartOfFunctionDef action later (not necessarily /// immediately!) for this method, if it was also defined inside the /// class body. void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) { FunctionDecl *Method = (FunctionDecl*)MethodD; CXXScopeSpec SS; SS.setScopeRep(Method->getDeclContext()); ActOnCXXExitDeclaratorScope(S, SS); // Now that we have our default arguments, check the constructor // again. It could produce additional diagnostics or affect whether // the class has implicitly-declared destructors, among other // things. if (CXXConstructorDecl *Constructor = dyn_cast(Method)) { if (CheckConstructor(Constructor)) Constructor->setInvalidDecl(); } // Check the default arguments, which we may have added. if (!Method->isInvalidDecl()) CheckCXXDefaultArguments(Method); } /// CheckConstructorDeclarator - Called by ActOnDeclarator to check /// the well-formedness of the constructor declarator @p D with type @p /// R. If there are any errors in the declarator, this routine will /// emit diagnostics and return true. Otherwise, it will return /// false. Either way, the type @p R will be updated to reflect a /// well-formed type for the constructor. bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC) { bool isVirtual = D.getDeclSpec().isVirtualSpecified(); bool isInvalid = false; // C++ [class.ctor]p3: // A constructor shall not be virtual (10.3) or static (9.4). A // constructor can be invoked for a const, volatile or const // volatile object. A constructor shall not be declared const, // volatile, or const volatile (9.3.2). if (isVirtual) { Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) << SourceRange(D.getIdentifierLoc()); isInvalid = true; } if (SC == FunctionDecl::Static) { Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); isInvalid = true; SC = FunctionDecl::None; } if (D.getDeclSpec().hasTypeSpecifier()) { // Constructors don't have return types, but the parser will // happily parse something like: // // class X { // float X(float); // }; // // The return type will be eliminated later. Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); } if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) { DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.TypeQuals & QualType::Const) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "const" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & QualType::Volatile) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "volatile" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & QualType::Restrict) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "restrict" << SourceRange(D.getIdentifierLoc()); } // Rebuild the function type "R" without any type qualifiers (in // case any of the errors above fired) and with "void" as the // return type, since constructors don't have return types. We // *always* have to do this, because GetTypeForDeclarator will // put in a result type of "int" when none was specified. const FunctionTypeProto *Proto = R->getAsFunctionTypeProto(); R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), Proto->getNumArgs(), Proto->isVariadic(), 0); return isInvalid; } /// CheckConstructor - Checks a fully-formed constructor for /// well-formedness, issuing any diagnostics required. Returns true if /// the constructor declarator is invalid. bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) { if (Constructor->isInvalidDecl()) return true; CXXRecordDecl *ClassDecl = cast(Constructor->getDeclContext()); bool Invalid = false; // C++ [class.copy]p3: // A declaration of a constructor for a class X is ill-formed if // its first parameter is of type (optionally cv-qualified) X and // either there are no other parameters or else all other // parameters have default arguments. if ((Constructor->getNumParams() == 1) || (Constructor->getNumParams() > 1 && Constructor->getParamDecl(1)->getDefaultArg() != 0)) { QualType ParamType = Constructor->getParamDecl(0)->getType(); QualType ClassTy = Context.getTagDeclType(ClassDecl); if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg) << SourceRange(Constructor->getParamDecl(0)->getLocation()); Invalid = true; } } // Notify the class that we've added a constructor. ClassDecl->addedConstructor(Context, Constructor); return Invalid; } /// CheckDestructorDeclarator - Called by ActOnDeclarator to check /// the well-formednes of the destructor declarator @p D with type @p /// R. If there are any errors in the declarator, this routine will /// emit diagnostics and return true. Otherwise, it will return /// false. Either way, the type @p R will be updated to reflect a /// well-formed type for the destructor. bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC) { bool isInvalid = false; // C++ [class.dtor]p1: // [...] A typedef-name that names a class is a class-name // (7.1.3); however, a typedef-name that names a class shall not // be used as the identifier in the declarator for a destructor // declaration. TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType(); if (const TypedefDecl *TypedefD = dyn_cast(DeclaratorTypeD)) { Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) << TypedefD->getDeclName(); isInvalid = true; } // C++ [class.dtor]p2: // A destructor is used to destroy objects of its class type. A // destructor takes no parameters, and no return type can be // specified for it (not even void). The address of a destructor // shall not be taken. A destructor shall not be static. A // destructor can be invoked for a const, volatile or const // volatile object. A destructor shall not be declared const, // volatile or const volatile (9.3.2). if (SC == FunctionDecl::Static) { Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); isInvalid = true; SC = FunctionDecl::None; } if (D.getDeclSpec().hasTypeSpecifier()) { // Destructors don't have return types, but the parser will // happily parse something like: // // class X { // float ~X(); // }; // // The return type will be eliminated later. Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); } if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) { DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.TypeQuals & QualType::Const) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "const" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & QualType::Volatile) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "volatile" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & QualType::Restrict) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "restrict" << SourceRange(D.getIdentifierLoc()); } // Make sure we don't have any parameters. if (R->getAsFunctionTypeProto()->getNumArgs() > 0) { Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); // Delete the parameters. DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.NumArgs) { delete [] FTI.ArgInfo; FTI.NumArgs = 0; FTI.ArgInfo = 0; } } // Make sure the destructor isn't variadic. if (R->getAsFunctionTypeProto()->isVariadic()) Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); // Rebuild the function type "R" without any type qualifiers or // parameters (in case any of the errors above fired) and with // "void" as the return type, since destructors don't have return // types. We *always* have to do this, because GetTypeForDeclarator // will put in a result type of "int" when none was specified. R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0); return isInvalid; } /// CheckConversionDeclarator - Called by ActOnDeclarator to check the /// well-formednes of the conversion function declarator @p D with /// type @p R. If there are any errors in the declarator, this routine /// will emit diagnostics and return true. Otherwise, it will return /// false. Either way, the type @p R will be updated to reflect a /// well-formed type for the conversion operator. bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC) { bool isInvalid = false; // C++ [class.conv.fct]p1: // Neither parameter types nor return type can be specified. The // type of a conversion function (8.3.5) is “function taking no // parameter returning conversion-type-id.” if (SC == FunctionDecl::Static) { Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); isInvalid = true; SC = FunctionDecl::None; } if (D.getDeclSpec().hasTypeSpecifier()) { // Conversion functions don't have return types, but the parser will // happily parse something like: // // class X { // float operator bool(); // }; // // The return type will be changed later anyway. Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); } // Make sure we don't have any parameters. if (R->getAsFunctionTypeProto()->getNumArgs() > 0) { Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); // Delete the parameters. DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.NumArgs) { delete [] FTI.ArgInfo; FTI.NumArgs = 0; FTI.ArgInfo = 0; } } // Make sure the conversion function isn't variadic. if (R->getAsFunctionTypeProto()->isVariadic()) Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); // C++ [class.conv.fct]p4: // The conversion-type-id shall not represent a function type nor // an array type. QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); if (ConvType->isArrayType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); ConvType = Context.getPointerType(ConvType); } else if (ConvType->isFunctionType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); ConvType = Context.getPointerType(ConvType); } // Rebuild the function type "R" without any parameters (in case any // of the errors above fired) and with the conversion type as the // return type. R = Context.getFunctionType(ConvType, 0, 0, false, R->getAsFunctionTypeProto()->getTypeQuals()); return isInvalid; } /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete /// the declaration of the given C++ conversion function. This routine /// is responsible for recording the conversion function in the C++ /// class, if possible. Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { assert(Conversion && "Expected to receive a conversion function declaration"); // Set the lexical context of this conversion function Conversion->setLexicalDeclContext(CurContext); CXXRecordDecl *ClassDecl = cast(Conversion->getDeclContext()); // Make sure we aren't redeclaring the conversion function. QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); // C++ [class.conv.fct]p1: // [...] A conversion function is never used to convert a // (possibly cv-qualified) object to the (possibly cv-qualified) // same object type (or a reference to it), to a (possibly // cv-qualified) base class of that type (or a reference to it), // or to (possibly cv-qualified) void. // FIXME: Suppress this warning if the conversion function ends up // being a virtual function that overrides a virtual function in a // base class. QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType()) ConvType = ConvTypeRef->getPointeeType(); if (ConvType->isRecordType()) { ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); if (ConvType == ClassType) Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) << ClassType; else if (IsDerivedFrom(ClassType, ConvType)) Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) << ClassType << ConvType; } else if (ConvType->isVoidType()) { Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) << ClassType << ConvType; } if (Conversion->getPreviousDeclaration()) { OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions(); for (OverloadedFunctionDecl::function_iterator Conv = Conversions->function_begin(), ConvEnd = Conversions->function_end(); Conv != ConvEnd; ++Conv) { if (*Conv == Conversion->getPreviousDeclaration()) { *Conv = Conversion; return (DeclTy *)Conversion; } } assert(Conversion->isInvalidDecl() && "Conversion should not get here."); } else ClassDecl->addConversionFunction(Context, Conversion); return (DeclTy *)Conversion; } //===----------------------------------------------------------------------===// // Namespace Handling //===----------------------------------------------------------------------===// /// ActOnStartNamespaceDef - This is called at the start of a namespace /// definition. Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace) { NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IdentLoc, II); Namespc->setLBracLoc(LBrace); Scope *DeclRegionScope = NamespcScope->getParent(); if (II) { // C++ [namespace.def]p2: // The identifier in an original-namespace-definition shall not have been // previously defined in the declarative region in which the // original-namespace-definition appears. The identifier in an // original-namespace-definition is the name of the namespace. Subsequently // in that declarative region, it is treated as an original-namespace-name. Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, 0, /*enableLazyBuiltinCreation=*/false, /*LookupInParent=*/false); if (NamespaceDecl *OrigNS = dyn_cast_or_null(PrevDecl)) { // This is an extended namespace definition. // Attach this namespace decl to the chain of extended namespace // definitions. OrigNS->setNextNamespace(Namespc); Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); // Remove the previous declaration from the scope. if (DeclRegionScope->isDeclScope(OrigNS)) { IdResolver.RemoveDecl(OrigNS); DeclRegionScope->RemoveDecl(OrigNS); } } else if (PrevDecl) { // This is an invalid name redefinition. Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) << Namespc->getDeclName(); Diag(PrevDecl->getLocation(), diag::note_previous_definition); Namespc->setInvalidDecl(); // Continue on to push Namespc as current DeclContext and return it. } PushOnScopeChains(Namespc, DeclRegionScope); } else { // FIXME: Handle anonymous namespaces } // Although we could have an invalid decl (i.e. the namespace name is a // redefinition), push it as current DeclContext and try to continue parsing. // FIXME: We should be able to push Namespc here, so that the // each DeclContext for the namespace has the declarations // that showed up in that particular namespace definition. PushDeclContext(NamespcScope, Namespc); return Namespc; } /// ActOnFinishNamespaceDef - This callback is called after a namespace is /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) { Decl *Dcl = static_cast(D); NamespaceDecl *Namespc = dyn_cast_or_null(Dcl); assert(Namespc && "Invalid parameter, expected NamespaceDecl"); Namespc->setRBracLoc(RBrace); PopDeclContext(); } Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, SourceLocation NamespcLoc, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, AttributeList *AttrList) { assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); assert(NamespcName && "Invalid NamespcName."); assert(IdentLoc.isValid() && "Invalid NamespceName location."); // FIXME: This still requires lot more checks, and AST support. // Lookup namespace name. DeclContext *DC = static_cast(SS.getScopeRep()); Decl *NS = 0; if ((NS = LookupNamespaceName(NamespcName, S, DC))) { assert(isa(NS) && "expected namespace decl"); } else { DiagnosticBuilder Builder = Diag(IdentLoc, diag::err_expected_namespace_name); if (SS.isSet()) Builder << SS.getRange(); } // FIXME: We ignore AttrList for now, and delete it to avoid leak. delete AttrList; return 0; } /// AddCXXDirectInitializerToDecl - This action is called immediately after /// ActOnDeclarator, when a C++ direct initializer is present. /// e.g: "int x(1);" void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc, ExprTy **ExprTys, unsigned NumExprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(NumExprs != 0 && ExprTys && "missing expressions"); Decl *RealDecl = static_cast(Dcl); // If there is no declaration, there was an error parsing it. Just ignore // the initializer. if (RealDecl == 0) { for (unsigned i = 0; i != NumExprs; ++i) delete static_cast(ExprTys[i]); return; } VarDecl *VDecl = dyn_cast(RealDecl); if (!VDecl) { Diag(RealDecl->getLocation(), diag::err_illegal_initializer); RealDecl->setInvalidDecl(); return; } // We will treat direct-initialization as a copy-initialization: // int x(1); -as-> int x = 1; // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); // // Clients that want to distinguish between the two forms, can check for // direct initializer using VarDecl::hasCXXDirectInitializer(). // A major benefit is that clients that don't particularly care about which // exactly form was it (like the CodeGen) can handle both cases without // special case code. // C++ 8.5p11: // The form of initialization (using parentheses or '=') is generally // insignificant, but does matter when the entity being initialized has a // class type. QualType DeclInitType = VDecl->getType(); if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) DeclInitType = Array->getElementType(); if (VDecl->getType()->isRecordType()) { CXXConstructorDecl *Constructor = PerformInitializationByConstructor(DeclInitType, (Expr **)ExprTys, NumExprs, VDecl->getLocation(), SourceRange(VDecl->getLocation(), RParenLoc), VDecl->getDeclName(), IK_Direct); if (!Constructor) { RealDecl->setInvalidDecl(); } // Let clients know that initialization was done with a direct // initializer. VDecl->setCXXDirectInitializer(true); // FIXME: Add ExprTys and Constructor to the RealDecl as part of // the initializer. return; } if (NumExprs > 1) { Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg) << SourceRange(VDecl->getLocation(), RParenLoc); RealDecl->setInvalidDecl(); return; } // Let clients know that initialization was done with a direct initializer. VDecl->setCXXDirectInitializer(true); assert(NumExprs == 1 && "Expected 1 expression"); // Set the init expression, handles conversions. AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0])); } /// PerformInitializationByConstructor - Perform initialization by /// constructor (C++ [dcl.init]p14), which may occur as part of /// direct-initialization or copy-initialization. We are initializing /// an object of type @p ClassType with the given arguments @p /// Args. @p Loc is the location in the source code where the /// initializer occurs (e.g., a declaration, member initializer, /// functional cast, etc.) while @p Range covers the whole /// initialization. @p InitEntity is the entity being initialized, /// which may by the name of a declaration or a type. @p Kind is the /// kind of initialization we're performing, which affects whether /// explicit constructors will be considered. When successful, returns /// the constructor that will be used to perform the initialization; /// when the initialization fails, emits a diagnostic and returns /// null. CXXConstructorDecl * Sema::PerformInitializationByConstructor(QualType ClassType, Expr **Args, unsigned NumArgs, SourceLocation Loc, SourceRange Range, DeclarationName InitEntity, InitializationKind Kind) { const RecordType *ClassRec = ClassType->getAsRecordType(); assert(ClassRec && "Can only initialize a class type here"); // C++ [dcl.init]p14: // // If the initialization is direct-initialization, or if it is // copy-initialization where the cv-unqualified version of the // source type is the same class as, or a derived class of, the // class of the destination, constructors are considered. The // applicable constructors are enumerated (13.3.1.3), and the // best one is chosen through overload resolution (13.3). The // constructor so selected is called to initialize the object, // with the initializer expression(s) as its argument(s). If no // constructor applies, or the overload resolution is ambiguous, // the initialization is ill-formed. const CXXRecordDecl *ClassDecl = cast(ClassRec->getDecl()); OverloadCandidateSet CandidateSet; // Add constructors to the overload set. DeclarationName ConstructorName = Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(ClassType.getUnqualifiedType())); DeclContext::lookup_const_iterator Con, ConEnd; for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName); Con != ConEnd; ++Con) { CXXConstructorDecl *Constructor = cast(*Con); if ((Kind == IK_Direct) || (Kind == IK_Copy && Constructor->isConvertingConstructor()) || (Kind == IK_Default && Constructor->isDefaultConstructor())) AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet); } // FIXME: When we decide not to synthesize the implicitly-declared // constructors, we'll need to make them appear here. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: // We found a constructor. Return it. return cast(Best->Function); case OR_No_Viable_Function: Diag(Loc, diag::err_ovl_no_viable_function_in_init) << InitEntity << (unsigned)CandidateSet.size() << Range; PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); return 0; case OR_Ambiguous: Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range; PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return 0; } return 0; } /// CompareReferenceRelationship - Compare the two types T1 and T2 to /// determine whether they are reference-related, /// reference-compatible, reference-compatible with added /// qualification, or incompatible, for use in C++ initialization by /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference /// type, and the first type (T1) is the pointee type of the reference /// type being initialized. Sema::ReferenceCompareResult Sema::CompareReferenceRelationship(QualType T1, QualType T2, bool& DerivedToBase) { assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type"); assert(!T2->isReferenceType() && "T2 cannot be a reference type"); T1 = Context.getCanonicalType(T1); T2 = Context.getCanonicalType(T2); QualType UnqualT1 = T1.getUnqualifiedType(); QualType UnqualT2 = T2.getUnqualifiedType(); // C++ [dcl.init.ref]p4: // Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is // reference-related to “cv2 T2” if T1 is the same type as T2, or // T1 is a base class of T2. if (UnqualT1 == UnqualT2) DerivedToBase = false; else if (IsDerivedFrom(UnqualT2, UnqualT1)) DerivedToBase = true; else return Ref_Incompatible; // At this point, we know that T1 and T2 are reference-related (at // least). // C++ [dcl.init.ref]p4: // "cv1 T1” is reference-compatible with “cv2 T2” if T1 is // reference-related to T2 and cv1 is the same cv-qualification // as, or greater cv-qualification than, cv2. For purposes of // overload resolution, cases for which cv1 is greater // cv-qualification than cv2 are identified as // reference-compatible with added qualification (see 13.3.3.2). if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) return Ref_Compatible; else if (T1.isMoreQualifiedThan(T2)) return Ref_Compatible_With_Added_Qualification; else return Ref_Related; } /// CheckReferenceInit - Check the initialization of a reference /// variable with the given initializer (C++ [dcl.init.ref]). Init is /// the initializer (either a simple initializer or an initializer /// list), and DeclType is the type of the declaration. When ICS is /// non-null, this routine will compute the implicit conversion /// sequence according to C++ [over.ics.ref] and will not produce any /// diagnostics; when ICS is null, it will emit diagnostics when any /// errors are found. Either way, a return value of true indicates /// that there was a failure, a return value of false indicates that /// the reference initialization succeeded. /// /// When @p SuppressUserConversions, user-defined conversions are /// suppressed. bool Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType, ImplicitConversionSequence *ICS, bool SuppressUserConversions) { assert(DeclType->isReferenceType() && "Reference init needs a reference"); QualType T1 = DeclType->getAsReferenceType()->getPointeeType(); QualType T2 = Init->getType(); // If the initializer is the address of an overloaded function, try // to resolve the overloaded function. If all goes well, T2 is the // type of the resulting function. if (T2->isOverloadType()) { FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType, ICS != 0); if (Fn) { // Since we're performing this reference-initialization for // real, update the initializer with the resulting function. if (!ICS) FixOverloadedFunctionReference(Init, Fn); T2 = Fn->getType(); } } // Compute some basic properties of the types and the initializer. bool DerivedToBase = false; Expr::isLvalueResult InitLvalue = Init->isLvalue(Context); ReferenceCompareResult RefRelationship = CompareReferenceRelationship(T1, T2, DerivedToBase); // Most paths end in a failed conversion. if (ICS) ICS->ConversionKind = ImplicitConversionSequence::BadConversion; // C++ [dcl.init.ref]p5: // A reference to type “cv1 T1” is initialized by an expression // of type “cv2 T2” as follows: // -- If the initializer expression bool BindsDirectly = false; // -- is an lvalue (but is not a bit-field), and “cv1 T1” is // reference-compatible with “cv2 T2,” or // // Note that the bit-field check is skipped if we are just computing // the implicit conversion sequence (C++ [over.best.ics]p2). if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) && RefRelationship >= Ref_Compatible_With_Added_Qualification) { BindsDirectly = true; if (ICS) { // C++ [over.ics.ref]p1: // When a parameter of reference type binds directly (8.5.3) // to an argument expression, the implicit conversion sequence // is the identity conversion, unless the argument expression // has a type that is a derived class of the parameter type, // in which case the implicit conversion sequence is a // derived-to-base Conversion (13.3.3.1). ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; ICS->Standard.First = ICK_Identity; ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; ICS->Standard.Third = ICK_Identity; ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); ICS->Standard.ReferenceBinding = true; ICS->Standard.DirectBinding = true; // Nothing more to do: the inaccessibility/ambiguity check for // derived-to-base conversions is suppressed when we're // computing the implicit conversion sequence (C++ // [over.best.ics]p2). return false; } else { // Perform the conversion. // FIXME: Binding to a subobject of the lvalue is going to require // more AST annotation than this. ImpCastExprToType(Init, T1, /*isLvalue=*/true); } } // -- has a class type (i.e., T2 is a class type) and can be // implicitly converted to an lvalue of type “cv3 T3,” // where “cv1 T1” is reference-compatible with “cv3 T3” // 92) (this conversion is selected by enumerating the // applicable conversion functions (13.3.1.6) and choosing // the best one through overload resolution (13.3)), if (!SuppressUserConversions && T2->isRecordType()) { // FIXME: Look for conversions in base classes! CXXRecordDecl *T2RecordDecl = dyn_cast(T2->getAsRecordType()->getDecl()); OverloadCandidateSet CandidateSet; OverloadedFunctionDecl *Conversions = T2RecordDecl->getConversionFunctions(); for (OverloadedFunctionDecl::function_iterator Func = Conversions->function_begin(); Func != Conversions->function_end(); ++Func) { CXXConversionDecl *Conv = cast(*Func); // If the conversion function doesn't return a reference type, // it can't be considered for this conversion. // FIXME: This will change when we support rvalue references. if (Conv->getConversionType()->isReferenceType()) AddConversionCandidate(Conv, Init, DeclType, CandidateSet); } OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: // This is a direct binding. BindsDirectly = true; if (ICS) { // C++ [over.ics.ref]p1: // // [...] If the parameter binds directly to the result of // applying a conversion function to the argument // expression, the implicit conversion sequence is a // user-defined conversion sequence (13.3.3.1.2), with the // second standard conversion sequence either an identity // conversion or, if the conversion function returns an // entity of a type that is a derived class of the parameter // type, a derived-to-base Conversion. ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion; ICS->UserDefined.Before = Best->Conversions[0].Standard; ICS->UserDefined.After = Best->FinalConversion; ICS->UserDefined.ConversionFunction = Best->Function; assert(ICS->UserDefined.After.ReferenceBinding && ICS->UserDefined.After.DirectBinding && "Expected a direct reference binding!"); return false; } else { // Perform the conversion. // FIXME: Binding to a subobject of the lvalue is going to require // more AST annotation than this. ImpCastExprToType(Init, T1, /*isLvalue=*/true); } break; case OR_Ambiguous: assert(false && "Ambiguous reference binding conversions not implemented."); return true; case OR_No_Viable_Function: // There was no suitable conversion; continue with other checks. break; } } if (BindsDirectly) { // C++ [dcl.init.ref]p4: // [...] In all cases where the reference-related or // reference-compatible relationship of two types is used to // establish the validity of a reference binding, and T1 is a // base class of T2, a program that necessitates such a binding // is ill-formed if T1 is an inaccessible (clause 11) or // ambiguous (10.2) base class of T2. // // Note that we only check this condition when we're allowed to // complain about errors, because we should not be checking for // ambiguity (or inaccessibility) unless the reference binding // actually happens. if (DerivedToBase) return CheckDerivedToBaseConversion(T2, T1, Init->getSourceRange().getBegin(), Init->getSourceRange()); else return false; } // -- Otherwise, the reference shall be to a non-volatile const // type (i.e., cv1 shall be const). if (T1.getCVRQualifiers() != QualType::Const) { if (!ICS) Diag(Init->getSourceRange().getBegin(), diag::err_not_reference_to_const_init) << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") << T2 << Init->getSourceRange(); return true; } // -- If the initializer expression is an rvalue, with T2 a // class type, and “cv1 T1” is reference-compatible with // “cv2 T2,” the reference is bound in one of the // following ways (the choice is implementation-defined): // // -- The reference is bound to the object represented by // the rvalue (see 3.10) or to a sub-object within that // object. // // -- A temporary of type “cv1 T2” [sic] is created, and // a constructor is called to copy the entire rvalue // object into the temporary. The reference is bound to // the temporary or to a sub-object within the // temporary. // // // The constructor that would be used to make the copy // shall be callable whether or not the copy is actually // done. // // Note that C++0x [dcl.ref.init]p5 takes away this implementation // freedom, so we will always take the first option and never build // a temporary in this case. FIXME: We will, however, have to check // for the presence of a copy constructor in C++98/03 mode. if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && RefRelationship >= Ref_Compatible_With_Added_Qualification) { if (ICS) { ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; ICS->Standard.First = ICK_Identity; ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; ICS->Standard.Third = ICK_Identity; ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); ICS->Standard.ReferenceBinding = true; ICS->Standard.DirectBinding = false; } else { // FIXME: Binding to a subobject of the rvalue is going to require // more AST annotation than this. ImpCastExprToType(Init, T1, /*isLvalue=*/true); } return false; } // -- Otherwise, a temporary of type “cv1 T1” is created and // initialized from the initializer expression using the // rules for a non-reference copy initialization (8.5). The // reference is then bound to the temporary. If T1 is // reference-related to T2, cv1 must be the same // cv-qualification as, or greater cv-qualification than, // cv2; otherwise, the program is ill-formed. if (RefRelationship == Ref_Related) { // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then // we would be reference-compatible or reference-compatible with // added qualification. But that wasn't the case, so the reference // initialization fails. if (!ICS) Diag(Init->getSourceRange().getBegin(), diag::err_reference_init_drops_quals) << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") << T2 << Init->getSourceRange(); return true; } // Actually try to convert the initializer to T1. if (ICS) { /// C++ [over.ics.ref]p2: /// /// When a parameter of reference type is not bound directly to /// an argument expression, the conversion sequence is the one /// required to convert the argument expression to the /// underlying type of the reference according to /// 13.3.3.1. Conceptually, this conversion sequence corresponds /// to copy-initializing a temporary of the underlying type with /// the argument expression. Any difference in top-level /// cv-qualification is subsumed by the initialization itself /// and does not constitute a conversion. *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions); return ICS->ConversionKind == ImplicitConversionSequence::BadConversion; } else { return PerformImplicitConversion(Init, T1, "initializing"); } } /// CheckOverloadedOperatorDeclaration - Check whether the declaration /// of this overloaded operator is well-formed. If so, returns false; /// otherwise, emits appropriate diagnostics and returns true. bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { assert(FnDecl && FnDecl->isOverloadedOperator() && "Expected an overloaded operator declaration"); OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); // C++ [over.oper]p5: // The allocation and deallocation functions, operator new, // operator new[], operator delete and operator delete[], are // described completely in 3.7.3. The attributes and restrictions // found in the rest of this subclause do not apply to them unless // explicitly stated in 3.7.3. // FIXME: Write a separate routine for checking this. For now, just // allow it. if (Op == OO_New || Op == OO_Array_New || Op == OO_Delete || Op == OO_Array_Delete) return false; // C++ [over.oper]p6: // An operator function shall either be a non-static member // function or be a non-member function and have at least one // parameter whose type is a class, a reference to a class, an // enumeration, or a reference to an enumeration. if (CXXMethodDecl *MethodDecl = dyn_cast(FnDecl)) { if (MethodDecl->isStatic()) return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) << FnDecl->getDeclName(); } else { bool ClassOrEnumParam = false; for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), ParamEnd = FnDecl->param_end(); Param != ParamEnd; ++Param) { QualType ParamType = (*Param)->getType().getNonReferenceType(); if (ParamType->isRecordType() || ParamType->isEnumeralType()) { ClassOrEnumParam = true; break; } } if (!ClassOrEnumParam) return Diag(FnDecl->getLocation(), diag::err_operator_overload_needs_class_or_enum) << FnDecl->getDeclName(); } // C++ [over.oper]p8: // An operator function cannot have default arguments (8.3.6), // except where explicitly stated below. // // Only the function-call operator allows default arguments // (C++ [over.call]p1). if (Op != OO_Call) { for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); Param != FnDecl->param_end(); ++Param) { if ((*Param)->hasUnparsedDefaultArg()) return Diag((*Param)->getLocation(), diag::err_operator_overload_default_arg) << FnDecl->getDeclName(); else if (Expr *DefArg = (*Param)->getDefaultArg()) return Diag((*Param)->getLocation(), diag::err_operator_overload_default_arg) << FnDecl->getDeclName() << DefArg->getSourceRange(); } } static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { { false, false, false } #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ , { Unary, Binary, MemberOnly } #include "clang/Basic/OperatorKinds.def" }; bool CanBeUnaryOperator = OperatorUses[Op][0]; bool CanBeBinaryOperator = OperatorUses[Op][1]; bool MustBeMemberOperator = OperatorUses[Op][2]; // C++ [over.oper]p8: // [...] Operator functions cannot have more or fewer parameters // than the number required for the corresponding operator, as // described in the rest of this subclause. unsigned NumParams = FnDecl->getNumParams() + (isa(FnDecl)? 1 : 0); if (Op != OO_Call && ((NumParams == 1 && !CanBeUnaryOperator) || (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || (NumParams > 2))) { // We have the wrong number of parameters. unsigned ErrorKind; if (CanBeUnaryOperator && CanBeBinaryOperator) { ErrorKind = 2; // 2 -> unary or binary. } else if (CanBeUnaryOperator) { ErrorKind = 0; // 0 -> unary } else { assert(CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"); ErrorKind = 1; // 1 -> binary } return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) << FnDecl->getDeclName() << NumParams << ErrorKind; } // Overloaded operators other than operator() cannot be variadic. if (Op != OO_Call && FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) << FnDecl->getDeclName(); } // Some operators must be non-static member functions. if (MustBeMemberOperator && !isa(FnDecl)) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be_member) << FnDecl->getDeclName(); } // C++ [over.inc]p1: // The user-defined function called operator++ implements the // prefix and postfix ++ operator. If this function is a member // function with no parameters, or a non-member function with one // parameter of class or enumeration type, it defines the prefix // increment operator ++ for objects of that type. If the function // is a member function with one parameter (which shall be of type // int) or a non-member function with two parameters (the second // of which shall be of type int), it defines the postfix // increment operator ++ for objects of that type. if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); bool ParamIsInt = false; if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType()) ParamIsInt = BT->getKind() == BuiltinType::Int; if (!ParamIsInt) return Diag(LastParam->getLocation(), diag::err_operator_overload_post_incdec_must_be_int) << LastParam->getType() << (Op == OO_MinusMinus); } return false; } /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ /// linkage specification, including the language and (if present) /// the '{'. ExternLoc is the location of the 'extern', LangLoc is /// the location of the language string literal, which is provided /// by Lang/StrSize. LBraceLoc, if valid, provides the location of /// the '{' brace. Otherwise, this linkage specification does not /// have any braces. Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, SourceLocation LangLoc, const char *Lang, unsigned StrSize, SourceLocation LBraceLoc) { LinkageSpecDecl::LanguageIDs Language; if (strncmp(Lang, "\"C\"", StrSize) == 0) Language = LinkageSpecDecl::lang_c; else if (strncmp(Lang, "\"C++\"", StrSize) == 0) Language = LinkageSpecDecl::lang_cxx; else { Diag(LangLoc, diag::err_bad_language); return 0; } // FIXME: Add all the various semantics of linkage specifications LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, LangLoc, Language, LBraceLoc.isValid()); CurContext->addDecl(Context, D); PushDeclContext(S, D); return D; } /// ActOnFinishLinkageSpecification - Completely the definition of /// the C++ linkage specification LinkageSpec. If RBraceLoc is /// valid, it's the position of the closing '}' brace in a linkage /// specification that uses braces. Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S, DeclTy *LinkageSpec, SourceLocation RBraceLoc) { if (LinkageSpec) PopDeclContext(); return LinkageSpec; } /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch /// handler. Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { QualType ExDeclType = GetTypeForDeclarator(D, S); SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin(); bool Invalid = false; // Arrays and functions decay. if (ExDeclType->isArrayType()) ExDeclType = Context.getArrayDecayedType(ExDeclType); else if (ExDeclType->isFunctionType()) ExDeclType = Context.getPointerType(ExDeclType); // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. // The exception-declaration shall not denote a pointer or reference to an // incomplete type, other than [cv] void*. QualType BaseType = ExDeclType; int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference if (const PointerType *Ptr = BaseType->getAsPointerType()) { BaseType = Ptr->getPointeeType(); Mode = 1; } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) { BaseType = Ref->getPointeeType(); Mode = 2; } if ((Mode == 0 || !BaseType->isVoidType()) && BaseType->isIncompleteType()) { Invalid = true; Diag(Begin, diag::err_catch_incomplete) << BaseType << Mode; } // FIXME: Need to test for ability to copy-construct and destroy the // exception variable. // FIXME: Need to check for abstract classes. IdentifierInfo *II = D.getIdentifier(); if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) { // The scope should be freshly made just for us. There is just no way // it contains any previous declaration. assert(!S->isDeclScope(PrevDecl)); if (PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); } } VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II, ExDeclType, VarDecl::None, 0, Begin); if (D.getInvalidType() || Invalid) ExDecl->setInvalidDecl(); if (D.getCXXScopeSpec().isSet()) { Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) << D.getCXXScopeSpec().getRange(); ExDecl->setInvalidDecl(); } // Add the exception declaration into this scope. S->AddDecl(ExDecl); if (II) IdResolver.AddDecl(ExDecl); ProcessDeclAttributes(ExDecl, D); return ExDecl; }