//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ASTContext interface. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/Serialize.h" #include "llvm/Bitcode/Deserialize.h" using namespace clang; enum FloatingRank { FloatRank, DoubleRank, LongDoubleRank }; ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t, IdentifierTable &idents, SelectorTable &sels, unsigned size_reserve) : CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts), Target(t), Idents(idents), Selectors(sels) { if (size_reserve > 0) Types.reserve(size_reserve); InitBuiltinTypes(); BuiltinInfo.InitializeBuiltins(idents, Target); TUDecl = TranslationUnitDecl::Create(*this); } ASTContext::~ASTContext() { // Deallocate all the types. while (!Types.empty()) { Types.back()->Destroy(*this); Types.pop_back(); } TUDecl->Destroy(*this); } void ASTContext::PrintStats() const { fprintf(stderr, "*** AST Context Stats:\n"); fprintf(stderr, " %d types total.\n", (int)Types.size()); unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0; unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0; unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0; unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0; unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0; unsigned NumObjCQualifiedIds = 0; unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0; for (unsigned i = 0, e = Types.size(); i != e; ++i) { Type *T = Types[i]; if (isa(T)) ++NumBuiltin; else if (isa(T)) ++NumPointer; else if (isa(T)) ++NumBlockPointer; else if (isa(T)) ++NumReference; else if (isa(T)) ++NumComplex; else if (isa(T)) ++NumArray; else if (isa(T)) ++NumVector; else if (isa(T)) ++NumFunctionNP; else if (isa(T)) ++NumFunctionP; else if (isa(T)) ++NumTypeName; else if (TagType *TT = dyn_cast(T)) { ++NumTagged; switch (TT->getDecl()->getTagKind()) { default: assert(0 && "Unknown tagged type!"); case TagDecl::TK_struct: ++NumTagStruct; break; case TagDecl::TK_union: ++NumTagUnion; break; case TagDecl::TK_class: ++NumTagClass; break; case TagDecl::TK_enum: ++NumTagEnum; break; } } else if (isa(T)) ++NumObjCInterfaces; else if (isa(T)) ++NumObjCQualifiedInterfaces; else if (isa(T)) ++NumObjCQualifiedIds; else if (isa(T)) ++NumTypeOfTypes; else if (isa(T)) ++NumTypeOfExprs; else { QualType(T, 0).dump(); assert(0 && "Unknown type!"); } } fprintf(stderr, " %d builtin types\n", NumBuiltin); fprintf(stderr, " %d pointer types\n", NumPointer); fprintf(stderr, " %d block pointer types\n", NumBlockPointer); fprintf(stderr, " %d reference types\n", NumReference); fprintf(stderr, " %d complex types\n", NumComplex); fprintf(stderr, " %d array types\n", NumArray); fprintf(stderr, " %d vector types\n", NumVector); fprintf(stderr, " %d function types with proto\n", NumFunctionP); fprintf(stderr, " %d function types with no proto\n", NumFunctionNP); fprintf(stderr, " %d typename (typedef) types\n", NumTypeName); fprintf(stderr, " %d tagged types\n", NumTagged); fprintf(stderr, " %d struct types\n", NumTagStruct); fprintf(stderr, " %d union types\n", NumTagUnion); fprintf(stderr, " %d class types\n", NumTagClass); fprintf(stderr, " %d enum types\n", NumTagEnum); fprintf(stderr, " %d interface types\n", NumObjCInterfaces); fprintf(stderr, " %d protocol qualified interface types\n", NumObjCQualifiedInterfaces); fprintf(stderr, " %d protocol qualified id types\n", NumObjCQualifiedIds); fprintf(stderr, " %d typeof types\n", NumTypeOfTypes); fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprs); fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+ NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+ NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+ NumFunctionP*sizeof(FunctionTypeProto)+ NumFunctionNP*sizeof(FunctionTypeNoProto)+ NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+ NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr))); } void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr()); } void ASTContext::InitBuiltinTypes() { assert(VoidTy.isNull() && "Context reinitialized?"); // C99 6.2.5p19. InitBuiltinType(VoidTy, BuiltinType::Void); // C99 6.2.5p2. InitBuiltinType(BoolTy, BuiltinType::Bool); // C99 6.2.5p3. if (Target.isCharSigned()) InitBuiltinType(CharTy, BuiltinType::Char_S); else InitBuiltinType(CharTy, BuiltinType::Char_U); // C99 6.2.5p4. InitBuiltinType(SignedCharTy, BuiltinType::SChar); InitBuiltinType(ShortTy, BuiltinType::Short); InitBuiltinType(IntTy, BuiltinType::Int); InitBuiltinType(LongTy, BuiltinType::Long); InitBuiltinType(LongLongTy, BuiltinType::LongLong); // C99 6.2.5p6. InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); // C99 6.2.5p10. InitBuiltinType(FloatTy, BuiltinType::Float); InitBuiltinType(DoubleTy, BuiltinType::Double); InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); // C++ 3.9.1p5 InitBuiltinType(WCharTy, BuiltinType::WChar); // Placeholder type for functions. InitBuiltinType(OverloadTy, BuiltinType::Overload); // C99 6.2.5p11. FloatComplexTy = getComplexType(FloatTy); DoubleComplexTy = getComplexType(DoubleTy); LongDoubleComplexTy = getComplexType(LongDoubleTy); BuiltinVaListType = QualType(); ObjCIdType = QualType(); IdStructType = 0; ObjCClassType = QualType(); ClassStructType = 0; ObjCConstantStringType = QualType(); // void * type VoidPtrTy = getPointerType(VoidTy); } //===----------------------------------------------------------------------===// // Type Sizing and Analysis //===----------------------------------------------------------------------===// /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified /// scalar floating point type. const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { const BuiltinType *BT = T->getAsBuiltinType(); assert(BT && "Not a floating point type!"); switch (BT->getKind()) { default: assert(0 && "Not a floating point type!"); case BuiltinType::Float: return Target.getFloatFormat(); case BuiltinType::Double: return Target.getDoubleFormat(); case BuiltinType::LongDouble: return Target.getLongDoubleFormat(); } } /// getTypeSize - Return the size of the specified type, in bits. This method /// does not work on incomplete types. std::pair ASTContext::getTypeInfo(QualType T) { T = getCanonicalType(T); uint64_t Width; unsigned Align; switch (T->getTypeClass()) { case Type::TypeName: assert(0 && "Not a canonical type!"); case Type::FunctionNoProto: case Type::FunctionProto: default: assert(0 && "Incomplete types have no size!"); case Type::VariableArray: assert(0 && "VLAs not implemented yet!"); case Type::ConstantArray: { ConstantArrayType *CAT = cast(T); std::pair EltInfo = getTypeInfo(CAT->getElementType()); Width = EltInfo.first*CAT->getSize().getZExtValue(); Align = EltInfo.second; break; } case Type::ExtVector: case Type::Vector: { std::pair EltInfo = getTypeInfo(cast(T)->getElementType()); Width = EltInfo.first*cast(T)->getNumElements(); // FIXME: This isn't right for unusual vectors Align = Width; break; } case Type::Builtin: switch (cast(T)->getKind()) { default: assert(0 && "Unknown builtin type!"); case BuiltinType::Void: assert(0 && "Incomplete types have no size!"); case BuiltinType::Bool: Width = Target.getBoolWidth(); Align = Target.getBoolAlign(); break; case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::UChar: case BuiltinType::SChar: Width = Target.getCharWidth(); Align = Target.getCharAlign(); break; case BuiltinType::WChar: Width = Target.getWCharWidth(); Align = Target.getWCharAlign(); break; case BuiltinType::UShort: case BuiltinType::Short: Width = Target.getShortWidth(); Align = Target.getShortAlign(); break; case BuiltinType::UInt: case BuiltinType::Int: Width = Target.getIntWidth(); Align = Target.getIntAlign(); break; case BuiltinType::ULong: case BuiltinType::Long: Width = Target.getLongWidth(); Align = Target.getLongAlign(); break; case BuiltinType::ULongLong: case BuiltinType::LongLong: Width = Target.getLongLongWidth(); Align = Target.getLongLongAlign(); break; case BuiltinType::Float: Width = Target.getFloatWidth(); Align = Target.getFloatAlign(); break; case BuiltinType::Double: Width = Target.getDoubleWidth(); Align = Target.getDoubleAlign(); break; case BuiltinType::LongDouble: Width = Target.getLongDoubleWidth(); Align = Target.getLongDoubleAlign(); break; } break; case Type::ASQual: // FIXME: Pointers into different addr spaces could have different sizes and // alignment requirements: getPointerInfo should take an AddrSpace. return getTypeInfo(QualType(cast(T)->getBaseType(), 0)); case Type::ObjCQualifiedId: Width = Target.getPointerWidth(0); Align = Target.getPointerAlign(0); break; case Type::BlockPointer: { unsigned AS = cast(T)->getPointeeType().getAddressSpace(); Width = Target.getPointerWidth(AS); Align = Target.getPointerAlign(AS); break; } case Type::Pointer: { unsigned AS = cast(T)->getPointeeType().getAddressSpace(); Width = Target.getPointerWidth(AS); Align = Target.getPointerAlign(AS); break; } case Type::Reference: // "When applied to a reference or a reference type, the result is the size // of the referenced type." C++98 5.3.3p2: expr.sizeof. // FIXME: This is wrong for struct layout: a reference in a struct has // pointer size. return getTypeInfo(cast(T)->getPointeeType()); case Type::Complex: { // Complex types have the same alignment as their elements, but twice the // size. std::pair EltInfo = getTypeInfo(cast(T)->getElementType()); Width = EltInfo.first*2; Align = EltInfo.second; break; } case Type::ObjCInterface: { ObjCInterfaceType *ObjCI = cast(T); const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); Width = Layout.getSize(); Align = Layout.getAlignment(); break; } case Type::Tagged: { if (cast(T)->getDecl()->isInvalidDecl()) { Width = 1; Align = 1; break; } if (EnumType *ET = dyn_cast(cast(T))) return getTypeInfo(ET->getDecl()->getIntegerType()); RecordType *RT = cast(T); const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); Width = Layout.getSize(); Align = Layout.getAlignment(); break; } } assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2"); return std::make_pair(Width, Align); } /// LayoutField - Field layout. void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo, bool IsUnion, unsigned StructPacking, ASTContext &Context) { unsigned FieldPacking = StructPacking; uint64_t FieldOffset = IsUnion ? 0 : Size; uint64_t FieldSize; unsigned FieldAlign; // FIXME: Should this override struct packing? Probably we want to // take the minimum? if (const PackedAttr *PA = FD->getAttr()) FieldPacking = PA->getAlignment(); if (const Expr *BitWidthExpr = FD->getBitWidth()) { // TODO: Need to check this algorithm on other targets! // (tested on Linux-X86) FieldSize = BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue(); std::pair FieldInfo = Context.getTypeInfo(FD->getType()); uint64_t TypeSize = FieldInfo.first; // Determine the alignment of this bitfield. The packing // attributes define a maximum and the alignment attribute defines // a minimum. // FIXME: What is the right behavior when the specified alignment // is smaller than the specified packing? FieldAlign = FieldInfo.second; if (FieldPacking) FieldAlign = std::min(FieldAlign, FieldPacking); if (const AlignedAttr *AA = FD->getAttr()) FieldAlign = std::max(FieldAlign, AA->getAlignment()); // Check if we need to add padding to give the field the correct // alignment. if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize) FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); // Padding members don't affect overall alignment if (!FD->getIdentifier()) FieldAlign = 1; } else { if (FD->getType()->isIncompleteArrayType()) { // This is a flexible array member; we can't directly // query getTypeInfo about these, so we figure it out here. // Flexible array members don't have any size, but they // have to be aligned appropriately for their element type. FieldSize = 0; const ArrayType* ATy = Context.getAsArrayType(FD->getType()); FieldAlign = Context.getTypeAlign(ATy->getElementType()); } else { std::pair FieldInfo = Context.getTypeInfo(FD->getType()); FieldSize = FieldInfo.first; FieldAlign = FieldInfo.second; } // Determine the alignment of this bitfield. The packing // attributes define a maximum and the alignment attribute defines // a minimum. Additionally, the packing alignment must be at least // a byte for non-bitfields. // // FIXME: What is the right behavior when the specified alignment // is smaller than the specified packing? if (FieldPacking) FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking)); if (const AlignedAttr *AA = FD->getAttr()) FieldAlign = std::max(FieldAlign, AA->getAlignment()); // Round up the current record size to the field's alignment boundary. FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); } // Place this field at the current location. FieldOffsets[FieldNo] = FieldOffset; // Reserve space for this field. if (IsUnion) { Size = std::max(Size, FieldSize); } else { Size = FieldOffset + FieldSize; } // Remember max struct/class alignment. Alignment = std::max(Alignment, FieldAlign); } /// getASTObjcInterfaceLayout - Get or compute information about the layout of /// the specified Objective C, which indicates its size and ivar /// position information. const ASTRecordLayout & ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) { // Look up this layout, if already laid out, return what we have. const ASTRecordLayout *&Entry = ASTObjCInterfaces[D]; if (Entry) return *Entry; // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. ASTRecordLayout *NewEntry = NULL; unsigned FieldCount = D->ivar_size(); if (ObjCInterfaceDecl *SD = D->getSuperClass()) { FieldCount++; const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD); unsigned Alignment = SL.getAlignment(); uint64_t Size = SL.getSize(); NewEntry = new ASTRecordLayout(Size, Alignment); NewEntry->InitializeLayout(FieldCount); // Super class is at the beginning of the layout. NewEntry->SetFieldOffset(0, 0); } else { NewEntry = new ASTRecordLayout(); NewEntry->InitializeLayout(FieldCount); } Entry = NewEntry; unsigned StructPacking = 0; if (const PackedAttr *PA = D->getAttr()) StructPacking = PA->getAlignment(); if (const AlignedAttr *AA = D->getAttr()) NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), AA->getAlignment())); // Layout each ivar sequentially. unsigned i = 0; for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), IVE = D->ivar_end(); IVI != IVE; ++IVI) { const ObjCIvarDecl* Ivar = (*IVI); NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this); } // Finally, round the size of the total struct up to the alignment of the // struct itself. NewEntry->FinalizeLayout(); return *NewEntry; } /// getASTRecordLayout - Get or compute information about the layout of the /// specified record (struct/union/class), which indicates its size and field /// position information. const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) { D = D->getDefinition(*this); assert(D && "Cannot get layout of forward declarations!"); // Look up this layout, if already laid out, return what we have. const ASTRecordLayout *&Entry = ASTRecordLayouts[D]; if (Entry) return *Entry; // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. ASTRecordLayout *NewEntry = new ASTRecordLayout(); Entry = NewEntry; NewEntry->InitializeLayout(D->getNumMembers()); bool IsUnion = D->isUnion(); unsigned StructPacking = 0; if (const PackedAttr *PA = D->getAttr()) StructPacking = PA->getAlignment(); if (const AlignedAttr *AA = D->getAttr()) NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), AA->getAlignment())); // Layout each field, for now, just sequentially, respecting alignment. In // the future, this will need to be tweakable by targets. for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) { const FieldDecl *FD = D->getMember(i); NewEntry->LayoutField(FD, i, IsUnion, StructPacking, *this); } // Finally, round the size of the total struct up to the alignment of the // struct itself. NewEntry->FinalizeLayout(); return *NewEntry; } //===----------------------------------------------------------------------===// // Type creation/memoization methods //===----------------------------------------------------------------------===// QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) { QualType CanT = getCanonicalType(T); if (CanT.getAddressSpace() == AddressSpace) return T; // Type's cannot have multiple ASQuals, therefore we know we only have to deal // with CVR qualifiers from here on out. assert(CanT.getAddressSpace() == 0 && "Type is already address space qualified"); // Check if we've already instantiated an address space qual'd type of this // type. llvm::FoldingSetNodeID ID; ASQualType::Profile(ID, T.getTypePtr(), AddressSpace); void *InsertPos = 0; if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ASQy, 0); // If the base type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getASQualType(CanT, AddressSpace); // Get the new insert position for the node we care about. ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace); ASQualTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, T.getCVRQualifiers()); } /// getComplexType - Return the uniqued reference to the type for a complex /// number with the specified element type. QualType ASTContext::getComplexType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; ComplexType::Profile(ID, T); void *InsertPos = 0; if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(CT, 0); // If the pointee type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getComplexType(getCanonicalType(T)); // Get the new insert position for the node we care about. ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ComplexType *New = new ComplexType(T, Canonical); Types.push_back(New); ComplexTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getPointerType - Return the uniqued reference to the type for a pointer to /// the specified type. QualType ASTContext::getPointerType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; PointerType::Profile(ID, T); void *InsertPos = 0; if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(PT, 0); // If the pointee type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getPointerType(getCanonicalType(T)); // Get the new insert position for the node we care about. PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } PointerType *New = new PointerType(T, Canonical); Types.push_back(New); PointerTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getBlockPointerType - Return the uniqued reference to the type for /// a pointer to the specified block. QualType ASTContext::getBlockPointerType(QualType T) { assert(T->isFunctionType() && "block of function types only"); // Unique pointers, to guarantee there is only one block of a particular // structure. llvm::FoldingSetNodeID ID; BlockPointerType::Profile(ID, T); void *InsertPos = 0; if (BlockPointerType *PT = BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(PT, 0); // If the block pointee type isn't canonical, this won't be a canonical // type either so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getBlockPointerType(getCanonicalType(T)); // Get the new insert position for the node we care about. BlockPointerType *NewIP = BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } BlockPointerType *New = new BlockPointerType(T, Canonical); Types.push_back(New); BlockPointerTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getReferenceType - Return the uniqued reference to the type for a reference /// to the specified type. QualType ASTContext::getReferenceType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; ReferenceType::Profile(ID, T); void *InsertPos = 0; if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(RT, 0); // If the referencee type isn't canonical, this won't be a canonical type // either, so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getReferenceType(getCanonicalType(T)); // Get the new insert position for the node we care about. ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ReferenceType *New = new ReferenceType(T, Canonical); Types.push_back(New); ReferenceTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getConstantArrayType - Return the unique reference to the type for an /// array of the specified element type. QualType ASTContext::getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { llvm::FoldingSetNodeID ID; ConstantArrayType::Profile(ID, EltTy, ArySize); void *InsertPos = 0; if (ConstantArrayType *ATP = ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ATP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!EltTy->isCanonical()) { Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, ASM, EltTypeQuals); // Get the new insert position for the node we care about. ConstantArrayType *NewIP = ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals); ConstantArrayTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getVariableArrayType - Returns a non-unique reference to the type for a /// variable array of the specified element type. QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { // Since we don't unique expressions, it isn't possible to unique VLA's // that have an expression provided for their size. VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals); VariableArrayTypes.push_back(New); Types.push_back(New); return QualType(New, 0); } QualType ASTContext::getIncompleteArrayType(QualType EltTy, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { llvm::FoldingSetNodeID ID; IncompleteArrayType::Profile(ID, EltTy); void *InsertPos = 0; if (IncompleteArrayType *ATP = IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ATP, 0); // If the element type isn't canonical, this won't be a canonical type // either, so fill in the canonical type field. QualType Canonical; if (!EltTy->isCanonical()) { Canonical = getIncompleteArrayType(getCanonicalType(EltTy), ASM, EltTypeQuals); // Get the new insert position for the node we care about. IncompleteArrayType *NewIP = IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals); IncompleteArrayTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getVectorType - Return the unique reference to a vector type of /// the specified element type and size. VectorType must be a built-in type. QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) { BuiltinType *baseType; baseType = dyn_cast(getCanonicalType(vecType).getTypePtr()); assert(baseType != 0 && "getVectorType(): Expecting a built-in type"); // Check if we've already instantiated a vector of this type. llvm::FoldingSetNodeID ID; VectorType::Profile(ID, vecType, NumElts, Type::Vector); void *InsertPos = 0; if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(VTP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!vecType->isCanonical()) { Canonical = getVectorType(getCanonicalType(vecType), NumElts); // Get the new insert position for the node we care about. VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } VectorType *New = new VectorType(vecType, NumElts, Canonical); VectorTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getExtVectorType - Return the unique reference to an extended vector type of /// the specified element type and size. VectorType must be a built-in type. QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) { BuiltinType *baseType; baseType = dyn_cast(getCanonicalType(vecType).getTypePtr()); assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type"); // Check if we've already instantiated a vector of this type. llvm::FoldingSetNodeID ID; VectorType::Profile(ID, vecType, NumElts, Type::ExtVector); void *InsertPos = 0; if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(VTP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!vecType->isCanonical()) { Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); // Get the new insert position for the node we care about. VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical); VectorTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'. /// QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) { // Unique functions, to guarantee there is only one function of a particular // structure. llvm::FoldingSetNodeID ID; FunctionTypeNoProto::Profile(ID, ResultTy); void *InsertPos = 0; if (FunctionTypeNoProto *FT = FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos)) return QualType(FT, 0); QualType Canonical; if (!ResultTy->isCanonical()) { Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy)); // Get the new insert position for the node we care about. FunctionTypeNoProto *NewIP = FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical); Types.push_back(New); FunctionTypeNoProtos.InsertNode(New, InsertPos); return QualType(New, 0); } /// getFunctionType - Return a normal function type with a typed argument /// list. isVariadic indicates whether the argument list includes '...'. QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray, unsigned NumArgs, bool isVariadic) { // Unique functions, to guarantee there is only one function of a particular // structure. llvm::FoldingSetNodeID ID; FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic); void *InsertPos = 0; if (FunctionTypeProto *FTP = FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos)) return QualType(FTP, 0); // Determine whether the type being created is already canonical or not. bool isCanonical = ResultTy->isCanonical(); for (unsigned i = 0; i != NumArgs && isCanonical; ++i) if (!ArgArray[i]->isCanonical()) isCanonical = false; // If this type isn't canonical, get the canonical version of it. QualType Canonical; if (!isCanonical) { llvm::SmallVector CanonicalArgs; CanonicalArgs.reserve(NumArgs); for (unsigned i = 0; i != NumArgs; ++i) CanonicalArgs.push_back(getCanonicalType(ArgArray[i])); Canonical = getFunctionType(getCanonicalType(ResultTy), &CanonicalArgs[0], NumArgs, isVariadic); // Get the new insert position for the node we care about. FunctionTypeProto *NewIP = FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP; } // FunctionTypeProto objects are not allocated with new because they have a // variable size array (for parameter types) at the end of them. FunctionTypeProto *FTP = (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + NumArgs*sizeof(QualType)); new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic, Canonical); Types.push_back(FTP); FunctionTypeProtos.InsertNode(FTP, InsertPos); return QualType(FTP, 0); } /// getTypeDeclType - Return the unique reference to the type for the /// specified type declaration. QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) { assert(Decl && "Passed null for Decl param"); if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); if (TypedefDecl *Typedef = dyn_cast(Decl)) return getTypedefType(Typedef); else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast(Decl)) return getObjCInterfaceType(ObjCInterface); if (CXXRecordDecl *CXXRecord = dyn_cast(Decl)) { Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl : new CXXRecordType(CXXRecord); } else if (RecordDecl *Record = dyn_cast(Decl)) { Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl : new RecordType(Record); } else if (EnumDecl *Enum = dyn_cast(Decl)) Decl->TypeForDecl = new EnumType(Enum); else assert(false && "TypeDecl without a type?"); if (!PrevDecl) Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// setTagDefinition - Used by RecordDecl::defineBody to inform ASTContext /// about which RecordDecl serves as the definition of a particular /// struct/union/class. This will eventually be used by enums as well. void ASTContext::setTagDefinition(TagDecl* D) { assert (D->isDefinition()); cast(D->TypeForDecl)->decl = D; } /// getTypedefType - Return the unique reference to the type for the /// specified typename decl. QualType ASTContext::getTypedefType(TypedefDecl *Decl) { if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// getObjCInterfaceType - Return the unique reference to the type for the /// specified ObjC interface decl. QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) { if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// CmpProtocolNames - Comparison predicate for sorting protocols /// alphabetically. static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, const ObjCProtocolDecl *RHS) { return strcmp(LHS->getName(), RHS->getName()) < 0; } static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols, unsigned &NumProtocols) { ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; // Sort protocols, keyed by name. std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); // Remove duplicates. ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); NumProtocols = ProtocolsEnd-Protocols; } /// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for /// the given interface decl and the conforming protocol list. QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl, ObjCProtocolDecl **Protocols, unsigned NumProtocols) { // Sort the protocol list alphabetically to canonicalize it. SortAndUniqueProtocols(Protocols, NumProtocols); llvm::FoldingSetNodeID ID; ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols); void *InsertPos = 0; if (ObjCQualifiedInterfaceType *QT = ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(QT, 0); // No Match; ObjCQualifiedInterfaceType *QType = new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols); Types.push_back(QType); ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos); return QualType(QType, 0); } /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl /// and the conforming protocol list. QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, unsigned NumProtocols) { // Sort the protocol list alphabetically to canonicalize it. SortAndUniqueProtocols(Protocols, NumProtocols); llvm::FoldingSetNodeID ID; ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols); void *InsertPos = 0; if (ObjCQualifiedIdType *QT = ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(QT, 0); // No Match; ObjCQualifiedIdType *QType = new ObjCQualifiedIdType(Protocols, NumProtocols); Types.push_back(QType); ObjCQualifiedIdTypes.InsertNode(QType, InsertPos); return QualType(QType, 0); } /// getTypeOfExpr - Unlike many "get" functions, we can't unique /// TypeOfExpr AST's (since expression's are never shared). For example, /// multiple declarations that refer to "typeof(x)" all contain different /// DeclRefExpr's. This doesn't effect the type checker, since it operates /// on canonical type's (which are always unique). QualType ASTContext::getTypeOfExpr(Expr *tofExpr) { QualType Canonical = getCanonicalType(tofExpr->getType()); TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical); Types.push_back(toe); return QualType(toe, 0); } /// getTypeOfType - Unlike many "get" functions, we don't unique /// TypeOfType AST's. The only motivation to unique these nodes would be /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be /// an issue. This doesn't effect the type checker, since it operates /// on canonical type's (which are always unique). QualType ASTContext::getTypeOfType(QualType tofType) { QualType Canonical = getCanonicalType(tofType); TypeOfType *tot = new TypeOfType(tofType, Canonical); Types.push_back(tot); return QualType(tot, 0); } /// getTagDeclType - Return the unique reference to the type for the /// specified TagDecl (struct/union/class/enum) decl. QualType ASTContext::getTagDeclType(TagDecl *Decl) { assert (Decl); return getTypeDeclType(Decl); } /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and /// needs to agree with the definition in . QualType ASTContext::getSizeType() const { // On Darwin, size_t is defined as a "long unsigned int". // FIXME: should derive from "Target". return UnsignedLongTy; } /// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the /// width of characters in wide strings, The value is target dependent and /// needs to agree with the definition in . QualType ASTContext::getWCharType() const { if (LangOpts.CPlusPlus) return WCharTy; // On Darwin, wchar_t is defined as a "int". // FIXME: should derive from "Target". return IntTy; } /// getSignedWCharType - Return the type of "signed wchar_t". /// Used when in C++, as a GCC extension. QualType ASTContext::getSignedWCharType() const { // FIXME: derive from "Target" ? return WCharTy; } /// getUnsignedWCharType - Return the type of "unsigned wchar_t". /// Used when in C++, as a GCC extension. QualType ASTContext::getUnsignedWCharType() const { // FIXME: derive from "Target" ? return UnsignedIntTy; } /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) /// defined in . Pointer - pointer requires this (C99 6.5.6p9). QualType ASTContext::getPointerDiffType() const { // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug... // FIXME: should derive from "Target". return IntTy; } //===----------------------------------------------------------------------===// // Type Operators //===----------------------------------------------------------------------===// /// getCanonicalType - Return the canonical (structural) type corresponding to /// the specified potentially non-canonical type. The non-canonical version /// of a type may have many "decorated" versions of types. Decorators can /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed /// to be free of any of these, allowing two canonical types to be compared /// for exact equality with a simple pointer comparison. QualType ASTContext::getCanonicalType(QualType T) { QualType CanType = T.getTypePtr()->getCanonicalTypeInternal(); // If the result has type qualifiers, make sure to canonicalize them as well. unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers(); if (TypeQuals == 0) return CanType; // If the type qualifiers are on an array type, get the canonical type of the // array with the qualifiers applied to the element type. ArrayType *AT = dyn_cast(CanType); if (!AT) return CanType.getQualifiedType(TypeQuals); // Get the canonical version of the element with the extra qualifiers on it. // This can recursively sink qualifiers through multiple levels of arrays. QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals); NewEltTy = getCanonicalType(NewEltTy); if (ConstantArrayType *CAT = dyn_cast(AT)) return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(), CAT->getIndexTypeQualifier()); if (IncompleteArrayType *IAT = dyn_cast(AT)) return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(), IAT->getIndexTypeQualifier()); // FIXME: What is the ownership of size expressions in VLAs? VariableArrayType *VAT = cast(AT); return getVariableArrayType(NewEltTy, VAT->getSizeExpr(), VAT->getSizeModifier(), VAT->getIndexTypeQualifier()); } const ArrayType *ASTContext::getAsArrayType(QualType T) { // Handle the non-qualified case efficiently. if (T.getCVRQualifiers() == 0) { // Handle the common positive case fast. if (const ArrayType *AT = dyn_cast(T)) return AT; } // Handle the common negative case fast, ignoring CVR qualifiers. QualType CType = T->getCanonicalTypeInternal(); // Make sure to look through type qualifiers (like ASQuals) for the negative // test. if (!isa(CType) && !isa(CType.getUnqualifiedType())) return 0; // Apply any CVR qualifiers from the array type to the element type. This // implements C99 6.7.3p8: "If the specification of an array type includes // any type qualifiers, the element type is so qualified, not the array type." // If we get here, we either have type qualifiers on the type, or we have // sugar such as a typedef in the way. If we have type qualifiers on the type // we must propagate them down into the elemeng type. unsigned CVRQuals = T.getCVRQualifiers(); unsigned AddrSpace = 0; Type *Ty = T.getTypePtr(); // Rip through ASQualType's and typedefs to get to a concrete type. while (1) { if (const ASQualType *ASQT = dyn_cast(Ty)) { AddrSpace = ASQT->getAddressSpace(); Ty = ASQT->getBaseType(); } else { T = Ty->getDesugaredType(); if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0) break; CVRQuals |= T.getCVRQualifiers(); Ty = T.getTypePtr(); } } // If we have a simple case, just return now. const ArrayType *ATy = dyn_cast(Ty); if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0)) return ATy; // Otherwise, we have an array and we have qualifiers on it. Push the // qualifiers into the array element type and return a new array type. // Get the canonical version of the element with the extra qualifiers on it. // This can recursively sink qualifiers through multiple levels of arrays. QualType NewEltTy = ATy->getElementType(); if (AddrSpace) NewEltTy = getASQualType(NewEltTy, AddrSpace); NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals); if (const ConstantArrayType *CAT = dyn_cast(ATy)) return cast(getConstantArrayType(NewEltTy, CAT->getSize(), CAT->getSizeModifier(), CAT->getIndexTypeQualifier())); if (const IncompleteArrayType *IAT = dyn_cast(ATy)) return cast(getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(), IAT->getIndexTypeQualifier())); // FIXME: What is the ownership of size expressions in VLAs? const VariableArrayType *VAT = cast(ATy); return cast(getVariableArrayType(NewEltTy, VAT->getSizeExpr(), VAT->getSizeModifier(), VAT->getIndexTypeQualifier())); } /// getArrayDecayedType - Return the properly qualified result of decaying the /// specified array type to a pointer. This operation is non-trivial when /// handling typedefs etc. The canonical type of "T" must be an array type, /// this returns a pointer to a properly qualified element of the array. /// /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. QualType ASTContext::getArrayDecayedType(QualType Ty) { // Get the element type with 'getAsArrayType' so that we don't lose any // typedefs in the element type of the array. This also handles propagation // of type qualifiers from the array type into the element type if present // (C99 6.7.3p8). const ArrayType *PrettyArrayType = getAsArrayType(Ty); assert(PrettyArrayType && "Not an array type!"); QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); // int x[restrict 4] -> int *restrict return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier()); } /// getFloatingRank - Return a relative rank for floating point types. /// This routine will assert if passed a built-in type that isn't a float. static FloatingRank getFloatingRank(QualType T) { if (const ComplexType *CT = T->getAsComplexType()) return getFloatingRank(CT->getElementType()); switch (T->getAsBuiltinType()->getKind()) { default: assert(0 && "getFloatingRank(): not a floating type"); case BuiltinType::Float: return FloatRank; case BuiltinType::Double: return DoubleRank; case BuiltinType::LongDouble: return LongDoubleRank; } } /// getFloatingTypeOfSizeWithinDomain - Returns a real floating /// point or a complex type (based on typeDomain/typeSize). /// 'typeDomain' is a real floating point or complex type. /// 'typeSize' is a real floating point or complex type. QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, QualType Domain) const { FloatingRank EltRank = getFloatingRank(Size); if (Domain->isComplexType()) { switch (EltRank) { default: assert(0 && "getFloatingRank(): illegal value for rank"); case FloatRank: return FloatComplexTy; case DoubleRank: return DoubleComplexTy; case LongDoubleRank: return LongDoubleComplexTy; } } assert(Domain->isRealFloatingType() && "Unknown domain!"); switch (EltRank) { default: assert(0 && "getFloatingRank(): illegal value for rank"); case FloatRank: return FloatTy; case DoubleRank: return DoubleTy; case LongDoubleRank: return LongDoubleTy; } } /// getFloatingTypeOrder - Compare the rank of the two specified floating /// point types, ignoring the domain of the type (i.e. 'double' == /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If /// LHS < RHS, return -1. int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) { FloatingRank LHSR = getFloatingRank(LHS); FloatingRank RHSR = getFloatingRank(RHS); if (LHSR == RHSR) return 0; if (LHSR > RHSR) return 1; return -1; } /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This /// routine will assert if passed a built-in type that isn't an integer or enum, /// or if it is not canonicalized. static unsigned getIntegerRank(Type *T) { assert(T->isCanonical() && "T should be canonicalized"); if (isa(T)) return 4; switch (cast(T)->getKind()) { default: assert(0 && "getIntegerRank(): not a built-in integer"); case BuiltinType::Bool: return 1; case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: return 2; case BuiltinType::Short: case BuiltinType::UShort: return 3; case BuiltinType::Int: case BuiltinType::UInt: return 4; case BuiltinType::Long: case BuiltinType::ULong: return 5; case BuiltinType::LongLong: case BuiltinType::ULongLong: return 6; } } /// getIntegerTypeOrder - Returns the highest ranked integer type: /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If /// LHS < RHS, return -1. int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) { Type *LHSC = getCanonicalType(LHS).getTypePtr(); Type *RHSC = getCanonicalType(RHS).getTypePtr(); if (LHSC == RHSC) return 0; bool LHSUnsigned = LHSC->isUnsignedIntegerType(); bool RHSUnsigned = RHSC->isUnsignedIntegerType(); unsigned LHSRank = getIntegerRank(LHSC); unsigned RHSRank = getIntegerRank(RHSC); if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. if (LHSRank == RHSRank) return 0; return LHSRank > RHSRank ? 1 : -1; } // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. if (LHSUnsigned) { // If the unsigned [LHS] type is larger, return it. if (LHSRank >= RHSRank) return 1; // If the signed type can represent all values of the unsigned type, it // wins. Because we are dealing with 2's complement and types that are // powers of two larger than each other, this is always safe. return -1; } // If the unsigned [RHS] type is larger, return it. if (RHSRank >= LHSRank) return -1; // If the signed type can represent all values of the unsigned type, it // wins. Because we are dealing with 2's complement and types that are // powers of two larger than each other, this is always safe. return 1; } // getCFConstantStringType - Return the type used for constant CFStrings. QualType ASTContext::getCFConstantStringType() { if (!CFConstantStringTypeDecl) { CFConstantStringTypeDecl = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), &Idents.get("NSConstantString")); QualType FieldTypes[4]; // const int *isa; FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const)); // int flags; FieldTypes[1] = IntTy; // const char *str; FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const)); // long length; FieldTypes[3] = LongTy; // Create fields FieldDecl *FieldDecls[4]; for (unsigned i = 0; i < 4; ++i) FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0, FieldTypes[i]); CFConstantStringTypeDecl->defineBody(*this, FieldDecls, 4); } return getTagDeclType(CFConstantStringTypeDecl); } QualType ASTContext::getObjCFastEnumerationStateType() { if (!ObjCFastEnumerationStateTypeDecl) { QualType FieldTypes[] = { UnsignedLongTy, getPointerType(ObjCIdType), getPointerType(UnsignedLongTy), getConstantArrayType(UnsignedLongTy, llvm::APInt(32, 5), ArrayType::Normal, 0) }; FieldDecl *FieldDecls[4]; for (size_t i = 0; i < 4; ++i) FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0, FieldTypes[i]); ObjCFastEnumerationStateTypeDecl = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), &Idents.get("__objcFastEnumerationState")); ObjCFastEnumerationStateTypeDecl->defineBody(*this, FieldDecls, 4); } return getTagDeclType(ObjCFastEnumerationStateTypeDecl); } // This returns true if a type has been typedefed to BOOL: // typedef BOOL; static bool isTypeTypedefedAsBOOL(QualType T) { if (const TypedefType *TT = dyn_cast(T)) return !strcmp(TT->getDecl()->getName(), "BOOL"); return false; } /// getObjCEncodingTypeSize returns size of type for objective-c encoding /// purpose. int ASTContext::getObjCEncodingTypeSize(QualType type) { uint64_t sz = getTypeSize(type); // Make all integer and enum types at least as large as an int if (sz > 0 && type->isIntegralType()) sz = std::max(sz, getTypeSize(IntTy)); // Treat arrays as pointers, since that's how they're passed in. else if (type->isArrayType()) sz = getTypeSize(VoidPtrTy); return sz / getTypeSize(CharTy); } /// getObjCEncodingForMethodDecl - Return the encoded type for this method /// declaration. void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string& S) { // FIXME: This is not very efficient. // Encode type qualifer, 'in', 'inout', etc. for the return type. getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S); // Encode result type. getObjCEncodingForType(Decl->getResultType(), S); // Compute size of all parameters. // Start with computing size of a pointer in number of bytes. // FIXME: There might(should) be a better way of doing this computation! SourceLocation Loc; int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy); // The first two arguments (self and _cmd) are pointers; account for // their size. int ParmOffset = 2 * PtrSize; int NumOfParams = Decl->getNumParams(); for (int i = 0; i < NumOfParams; i++) { QualType PType = Decl->getParamDecl(i)->getType(); int sz = getObjCEncodingTypeSize (PType); assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type"); ParmOffset += sz; } S += llvm::utostr(ParmOffset); S += "@0:"; S += llvm::utostr(PtrSize); // Argument types. ParmOffset = 2 * PtrSize; for (int i = 0; i < NumOfParams; i++) { QualType PType = Decl->getParamDecl(i)->getType(); // Process argument qualifiers for user supplied arguments; such as, // 'in', 'inout', etc. getObjCEncodingForTypeQualifier( Decl->getParamDecl(i)->getObjCDeclQualifier(), S); getObjCEncodingForType(PType, S); S += llvm::utostr(ParmOffset); ParmOffset += getObjCEncodingTypeSize(PType); } } /// getObjCEncodingForPropertyDecl - Return the encoded type for this /// method declaration. If non-NULL, Container must be either an /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be /// NULL when getting encodings for protocol properties. void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container, std::string& S) { // Collect information from the property implementation decl(s). bool Dynamic = false; ObjCPropertyImplDecl *SynthesizePID = 0; // FIXME: Duplicated code due to poor abstraction. if (Container) { if (const ObjCCategoryImplDecl *CID = dyn_cast(Container)) { for (ObjCCategoryImplDecl::propimpl_iterator i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) { ObjCPropertyImplDecl *PID = *i; if (PID->getPropertyDecl() == PD) { if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { Dynamic = true; } else { SynthesizePID = PID; } } } } else { const ObjCImplementationDecl *OID=cast(Container); for (ObjCCategoryImplDecl::propimpl_iterator i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) { ObjCPropertyImplDecl *PID = *i; if (PID->getPropertyDecl() == PD) { if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { Dynamic = true; } else { SynthesizePID = PID; } } } } } // FIXME: This is not very efficient. S = "T"; // Encode result type. // FIXME: GCC uses a generating_property_type_encoding mode during // this part. Investigate. getObjCEncodingForType(PD->getType(), S); if (PD->isReadOnly()) { S += ",R"; } else { switch (PD->getSetterKind()) { case ObjCPropertyDecl::Assign: break; case ObjCPropertyDecl::Copy: S += ",C"; break; case ObjCPropertyDecl::Retain: S += ",&"; break; } } // It really isn't clear at all what this means, since properties // are "dynamic by default". if (Dynamic) S += ",D"; if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { S += ",G"; S += PD->getGetterName().getName(); } if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { S += ",S"; S += PD->getSetterName().getName(); } if (SynthesizePID) { const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); S += ",V"; S += OID->getName(); } // FIXME: OBJCGC: weak & strong } void ASTContext::getObjCEncodingForType(QualType T, std::string& S, bool NameFields) const { // We follow the behavior of gcc, expanding structures which are // directly pointed to, and expanding embedded structures. Note that // these rules are sufficient to prevent recursive encoding of the // same type. getObjCEncodingForTypeImpl(T, S, true, true, NameFields); } void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, bool ExpandPointedToStructures, bool ExpandStructures, bool NameFields) const { if (const BuiltinType *BT = T->getAsBuiltinType()) { char encoding; switch (BT->getKind()) { default: assert(0 && "Unhandled builtin type kind"); case BuiltinType::Void: encoding = 'v'; break; case BuiltinType::Bool: encoding = 'B'; break; case BuiltinType::Char_U: case BuiltinType::UChar: encoding = 'C'; break; case BuiltinType::UShort: encoding = 'S'; break; case BuiltinType::UInt: encoding = 'I'; break; case BuiltinType::ULong: encoding = 'L'; break; case BuiltinType::ULongLong: encoding = 'Q'; break; case BuiltinType::Char_S: case BuiltinType::SChar: encoding = 'c'; break; case BuiltinType::Short: encoding = 's'; break; case BuiltinType::Int: encoding = 'i'; break; case BuiltinType::Long: encoding = 'l'; break; case BuiltinType::LongLong: encoding = 'q'; break; case BuiltinType::Float: encoding = 'f'; break; case BuiltinType::Double: encoding = 'd'; break; case BuiltinType::LongDouble: encoding = 'd'; break; } S += encoding; } else if (T->isObjCQualifiedIdType()) { // Treat id same as 'id' for encoding purposes. return getObjCEncodingForTypeImpl(getObjCIdType(), S, ExpandPointedToStructures, ExpandStructures, NameFields); } else if (const PointerType *PT = T->getAsPointerType()) { QualType PointeeTy = PT->getPointeeType(); if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) { S += '@'; return; } else if (isObjCClassType(PointeeTy)) { S += '#'; return; } else if (isObjCSelType(PointeeTy)) { S += ':'; return; } if (PointeeTy->isCharType()) { // char pointer types should be encoded as '*' unless it is a // type that has been typedef'd to 'BOOL'. if (!isTypeTypedefedAsBOOL(PointeeTy)) { S += '*'; return; } } S += '^'; getObjCEncodingForTypeImpl(PT->getPointeeType(), S, false, ExpandPointedToStructures, NameFields); } else if (const ArrayType *AT = // Ignore type qualifiers etc. dyn_cast(T->getCanonicalTypeInternal())) { S += '['; if (const ConstantArrayType *CAT = dyn_cast(AT)) S += llvm::utostr(CAT->getSize().getZExtValue()); else assert(0 && "Unhandled array type!"); getObjCEncodingForTypeImpl(AT->getElementType(), S, false, ExpandStructures, NameFields); S += ']'; } else if (T->getAsFunctionType()) { S += '?'; } else if (const RecordType *RTy = T->getAsRecordType()) { RecordDecl *RDecl = RTy->getDecl(); S += RDecl->isUnion() ? '(' : '{'; // Anonymous structures print as '?' if (const IdentifierInfo *II = RDecl->getIdentifier()) { S += II->getName(); } else { S += '?'; } if (ExpandStructures) { S += '='; for (int i = 0; i < RDecl->getNumMembers(); i++) { FieldDecl *FD = RDecl->getMember(i); if (NameFields) { S += '"'; S += FD->getName(); S += '"'; } // Special case bit-fields. if (const Expr *E = FD->getBitWidth()) { // FIXME: Fix constness. ASTContext *Ctx = const_cast(this); unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue(); // FIXME: Obj-C is losing information about the type size // here. Investigate if this is a problem. S += 'b'; S += llvm::utostr(N); } else { getObjCEncodingForTypeImpl(FD->getType(), S, false, true, NameFields); } } } S += RDecl->isUnion() ? ')' : '}'; } else if (T->isEnumeralType()) { S += 'i'; } else if (T->isBlockPointerType()) { S += '^'; // This type string is the same as general pointers. } else assert(0 && "@encode for type not implemented!"); } void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, std::string& S) const { if (QT & Decl::OBJC_TQ_In) S += 'n'; if (QT & Decl::OBJC_TQ_Inout) S += 'N'; if (QT & Decl::OBJC_TQ_Out) S += 'o'; if (QT & Decl::OBJC_TQ_Bycopy) S += 'O'; if (QT & Decl::OBJC_TQ_Byref) S += 'R'; if (QT & Decl::OBJC_TQ_Oneway) S += 'V'; } void ASTContext::setBuiltinVaListType(QualType T) { assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!"); BuiltinVaListType = T; } void ASTContext::setObjCIdType(TypedefDecl *TD) { ObjCIdType = getTypedefType(TD); // typedef struct objc_object *id; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); assert(ptr && "'id' incorrectly typed"); const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); assert(rec && "'id' incorrectly typed"); IdStructType = rec; } void ASTContext::setObjCSelType(TypedefDecl *TD) { ObjCSelType = getTypedefType(TD); // typedef struct objc_selector *SEL; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); assert(ptr && "'SEL' incorrectly typed"); const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); assert(rec && "'SEL' incorrectly typed"); SelStructType = rec; } void ASTContext::setObjCProtoType(QualType QT) { ObjCProtoType = QT; } void ASTContext::setObjCClassType(TypedefDecl *TD) { ObjCClassType = getTypedefType(TD); // typedef struct objc_class *Class; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); assert(ptr && "'Class' incorrectly typed"); const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); assert(rec && "'Class' incorrectly typed"); ClassStructType = rec; } void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { assert(ObjCConstantStringType.isNull() && "'NSConstantString' type already set!"); ObjCConstantStringType = getObjCInterfaceType(Decl); } //===----------------------------------------------------------------------===// // Type Predicates. //===----------------------------------------------------------------------===// /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer /// to an object type. This includes "id" and "Class" (two 'special' pointers /// to struct), Interface* (pointer to ObjCInterfaceType) and id

(qualified /// ID type). bool ASTContext::isObjCObjectPointerType(QualType Ty) const { if (Ty->isObjCQualifiedIdType()) return true; // Blocks are objects. if (Ty->isBlockPointerType()) return true; // All other object types are pointers. if (!Ty->isPointerType()) return false; // Check to see if this is 'id' or 'Class', both of which are typedefs for // pointer types. This looks for the typedef specifically, not for the // underlying type. if (Ty == getObjCIdType() || Ty == getObjCClassType()) return true; // If this a pointer to an interface (e.g. NSString*), it is ok. return Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType(); } //===----------------------------------------------------------------------===// // Type Compatibility Testing //===----------------------------------------------------------------------===// /// typesAreBlockCompatible - This routine is called when comparing two /// block types. Types must be strictly compatible here. For example, /// C unfortunately doesn't produce an error for the following: /// /// int (*emptyArgFunc)(); /// int (*intArgList)(int) = emptyArgFunc; /// /// For blocks, we will produce an error for the following (similar to C++): /// /// int (^emptyArgBlock)(); /// int (^intArgBlock)(int) = emptyArgBlock; /// /// FIXME: When the dust settles on this integration, fold this into mergeTypes. /// bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) { return getCanonicalType(lhs) == getCanonicalType(rhs); } /// areCompatVectorTypes - Return true if the two specified vector types are /// compatible. static bool areCompatVectorTypes(const VectorType *LHS, const VectorType *RHS) { assert(LHS->isCanonical() && RHS->isCanonical()); return LHS->getElementType() == RHS->getElementType() && LHS->getNumElements() == RHS->getNumElements(); } /// canAssignObjCInterfaces - Return true if the two interface types are /// compatible for assignment from RHS to LHS. This handles validation of any /// protocol qualifiers on the LHS or RHS. /// bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS, const ObjCInterfaceType *RHS) { // Verify that the base decls are compatible: the RHS must be a subclass of // the LHS. if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl())) return false; // RHS must have a superset of the protocols in the LHS. If the LHS is not // protocol qualified at all, then we are good. if (!isa(LHS)) return true; // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it // isn't a superset. if (!isa(RHS)) return true; // FIXME: should return false! // Finally, we must have two protocol-qualified interfaces. const ObjCQualifiedInterfaceType *LHSP =cast(LHS); const ObjCQualifiedInterfaceType *RHSP =cast(RHS); ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(); ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end(); ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(); ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end(); // All protocols in LHS must have a presence in RHS. Since the protocol lists // are both sorted alphabetically and have no duplicates, we can scan RHS and // LHS in a single parallel scan until we run out of elements in LHS. assert(LHSPI != LHSPE && "Empty LHS protocol list?"); ObjCProtocolDecl *LHSProto = *LHSPI; while (RHSPI != RHSPE) { ObjCProtocolDecl *RHSProto = *RHSPI++; // If the RHS has a protocol that the LHS doesn't, ignore it. if (RHSProto != LHSProto) continue; // Otherwise, the RHS does have this element. ++LHSPI; if (LHSPI == LHSPE) return true; // All protocols in LHS exist in RHS. LHSProto = *LHSPI; } // If we got here, we didn't find one of the LHS's protocols in the RHS list. return false; } /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, /// both shall have the identically qualified version of a compatible type. /// C99 6.2.7p1: Two types have compatible types if their types are the /// same. See 6.7.[2,3,5] for additional rules. bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) { return !mergeTypes(LHS, RHS).isNull(); } QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) { const FunctionType *lbase = lhs->getAsFunctionType(); const FunctionType *rbase = rhs->getAsFunctionType(); const FunctionTypeProto *lproto = dyn_cast(lbase); const FunctionTypeProto *rproto = dyn_cast(rbase); bool allLTypes = true; bool allRTypes = true; // Check return type QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType()); if (retType.isNull()) return QualType(); if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType())) allLTypes = false; if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType())) allRTypes = false; if (lproto && rproto) { // two C99 style function prototypes unsigned lproto_nargs = lproto->getNumArgs(); unsigned rproto_nargs = rproto->getNumArgs(); // Compatible functions must have the same number of arguments if (lproto_nargs != rproto_nargs) return QualType(); // Variadic and non-variadic functions aren't compatible if (lproto->isVariadic() != rproto->isVariadic()) return QualType(); // Check argument compatibility llvm::SmallVector types; for (unsigned i = 0; i < lproto_nargs; i++) { QualType largtype = lproto->getArgType(i).getUnqualifiedType(); QualType rargtype = rproto->getArgType(i).getUnqualifiedType(); QualType argtype = mergeTypes(largtype, rargtype); if (argtype.isNull()) return QualType(); types.push_back(argtype); if (getCanonicalType(argtype) != getCanonicalType(largtype)) allLTypes = false; if (getCanonicalType(argtype) != getCanonicalType(rargtype)) allRTypes = false; } if (allLTypes) return lhs; if (allRTypes) return rhs; return getFunctionType(retType, types.begin(), types.size(), lproto->isVariadic()); } if (lproto) allRTypes = false; if (rproto) allLTypes = false; const FunctionTypeProto *proto = lproto ? lproto : rproto; if (proto) { if (proto->isVariadic()) return QualType(); // Check that the types are compatible with the types that // would result from default argument promotions (C99 6.7.5.3p15). // The only types actually affected are promotable integer // types and floats, which would be passed as a different // type depending on whether the prototype is visible. unsigned proto_nargs = proto->getNumArgs(); for (unsigned i = 0; i < proto_nargs; ++i) { QualType argTy = proto->getArgType(i); if (argTy->isPromotableIntegerType() || getCanonicalType(argTy).getUnqualifiedType() == FloatTy) return QualType(); } if (allLTypes) return lhs; if (allRTypes) return rhs; return getFunctionType(retType, proto->arg_type_begin(), proto->getNumArgs(), lproto->isVariadic()); } if (allLTypes) return lhs; if (allRTypes) return rhs; return getFunctionTypeNoProto(retType); } QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) { // C++ [expr]: If an expression initially has the type "reference to T", the // type is adjusted to "T" prior to any further analysis, the expression // designates the object or function denoted by the reference, and the // expression is an lvalue. // FIXME: C++ shouldn't be going through here! The rules are different // enough that they should be handled separately. if (const ReferenceType *RT = LHS->getAsReferenceType()) LHS = RT->getPointeeType(); if (const ReferenceType *RT = RHS->getAsReferenceType()) RHS = RT->getPointeeType(); QualType LHSCan = getCanonicalType(LHS), RHSCan = getCanonicalType(RHS); // If two types are identical, they are compatible. if (LHSCan == RHSCan) return LHS; // If the qualifiers are different, the types aren't compatible if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers() || LHSCan.getAddressSpace() != RHSCan.getAddressSpace()) return QualType(); Type::TypeClass LHSClass = LHSCan->getTypeClass(); Type::TypeClass RHSClass = RHSCan->getTypeClass(); // We want to consider the two function types to be the same for these // comparisons, just force one to the other. if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; // Same as above for arrays if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray; if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray; // Canonicalize ExtVector -> Vector. if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; // Consider qualified interfaces and interfaces the same. if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface; if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface; // If the canonical type classes don't match. if (LHSClass != RHSClass) { // ID is compatible with all qualified id types. if (LHS->isObjCQualifiedIdType()) { if (const PointerType *PT = RHS->getAsPointerType()) { QualType pType = PT->getPointeeType(); if (isObjCIdType(pType)) return LHS; // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true). // Unfortunately, this API is part of Sema (which we don't have access // to. Need to refactor. The following check is insufficient, since we // need to make sure the class implements the protocol. if (pType->isObjCInterfaceType()) return LHS; } } if (RHS->isObjCQualifiedIdType()) { if (const PointerType *PT = LHS->getAsPointerType()) { QualType pType = PT->getPointeeType(); if (isObjCIdType(pType)) return RHS; // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true). // Unfortunately, this API is part of Sema (which we don't have access // to. Need to refactor. The following check is insufficient, since we // need to make sure the class implements the protocol. if (pType->isObjCInterfaceType()) return RHS; } } // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, // a signed integer type, or an unsigned integer type. if (const EnumType* ETy = LHS->getAsEnumType()) { if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType()) return RHS; } if (const EnumType* ETy = RHS->getAsEnumType()) { if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType()) return LHS; } return QualType(); } // The canonical type classes match. switch (LHSClass) { case Type::Pointer: { // Merge two pointer types, while trying to preserve typedef info QualType LHSPointee = LHS->getAsPointerType()->getPointeeType(); QualType RHSPointee = RHS->getAsPointerType()->getPointeeType(); QualType ResultType = mergeTypes(LHSPointee, RHSPointee); if (ResultType.isNull()) return QualType(); if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) return LHS; if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) return RHS; return getPointerType(ResultType); } case Type::ConstantArray: { const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) return QualType(); QualType LHSElem = getAsArrayType(LHS)->getElementType(); QualType RHSElem = getAsArrayType(RHS)->getElementType(); QualType ResultType = mergeTypes(LHSElem, RHSElem); if (ResultType.isNull()) return QualType(); if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), ArrayType::ArraySizeModifier(), 0); if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), ArrayType::ArraySizeModifier(), 0); const VariableArrayType* LVAT = getAsVariableArrayType(LHS); const VariableArrayType* RVAT = getAsVariableArrayType(RHS); if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; if (LVAT) { // FIXME: This isn't correct! But tricky to implement because // the array's size has to be the size of LHS, but the type // has to be different. return LHS; } if (RVAT) { // FIXME: This isn't correct! But tricky to implement because // the array's size has to be the size of RHS, but the type // has to be different. return RHS; } if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0); } case Type::FunctionNoProto: return mergeFunctionTypes(LHS, RHS); case Type::Tagged: // FIXME: Why are these compatible? if (isObjCIdType(LHS) && isObjCClassType(RHS)) return LHS; if (isObjCClassType(LHS) && isObjCIdType(RHS)) return LHS; return QualType(); case Type::Builtin: // Only exactly equal builtin types are compatible, which is tested above. return QualType(); case Type::Vector: if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType())) return LHS; return QualType(); case Type::ObjCInterface: // Distinct ObjC interfaces are not compatible; see canAssignObjCInterfaces // for checking assignment/comparison safety return QualType(); default: assert(0 && "unexpected type"); return QualType(); } } //===----------------------------------------------------------------------===// // Integer Predicates //===----------------------------------------------------------------------===// unsigned ASTContext::getIntWidth(QualType T) { if (T == BoolTy) return 1; // At the moment, only bool has padding bits return (unsigned)getTypeSize(T); } QualType ASTContext::getCorrespondingUnsignedType(QualType T) { assert(T->isSignedIntegerType() && "Unexpected type"); if (const EnumType* ETy = T->getAsEnumType()) T = ETy->getDecl()->getIntegerType(); const BuiltinType* BTy = T->getAsBuiltinType(); assert (BTy && "Unexpected signed integer type"); switch (BTy->getKind()) { case BuiltinType::Char_S: case BuiltinType::SChar: return UnsignedCharTy; case BuiltinType::Short: return UnsignedShortTy; case BuiltinType::Int: return UnsignedIntTy; case BuiltinType::Long: return UnsignedLongTy; case BuiltinType::LongLong: return UnsignedLongLongTy; default: assert(0 && "Unexpected signed integer type"); return QualType(); } } //===----------------------------------------------------------------------===// // Serialization Support //===----------------------------------------------------------------------===// /// Emit - Serialize an ASTContext object to Bitcode. void ASTContext::Emit(llvm::Serializer& S) const { S.Emit(LangOpts); S.EmitRef(SourceMgr); S.EmitRef(Target); S.EmitRef(Idents); S.EmitRef(Selectors); // Emit the size of the type vector so that we can reserve that size // when we reconstitute the ASTContext object. S.EmitInt(Types.size()); for (std::vector::const_iterator I=Types.begin(), E=Types.end(); I!=E;++I) (*I)->Emit(S); S.EmitOwnedPtr(TUDecl); // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl); } ASTContext* ASTContext::Create(llvm::Deserializer& D) { // Read the language options. LangOptions LOpts; LOpts.Read(D); SourceManager &SM = D.ReadRef(); TargetInfo &t = D.ReadRef(); IdentifierTable &idents = D.ReadRef(); SelectorTable &sels = D.ReadRef(); unsigned size_reserve = D.ReadInt(); ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels, size_reserve); for (unsigned i = 0; i < size_reserve; ++i) Type::Create(*A,i,D); A->TUDecl = cast(D.ReadOwnedPtr(*A)); // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr(); return A; }