//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This coordinates the per-module state used while generating code. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "CGObjCRuntime.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/CallingConv.h" #include "llvm/Module.h" #include "llvm/Intrinsics.h" #include "llvm/Target/TargetData.h" #include "llvm/Analysis/Verifier.h" using namespace clang; using namespace CodeGen; CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO, llvm::Module &M, const llvm::TargetData &TD, Diagnostic &diags, bool GenerateDebugInfo) : Context(C), Features(LO), TheModule(M), TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { if (Features.ObjC1) { if (Features.NeXTRuntime) { Runtime = CreateMacObjCRuntime(*this); } else { Runtime = CreateGNUObjCRuntime(*this); } } // If debug info generation is enabled, create the CGDebugInfo object. DebugInfo = GenerateDebugInfo ? new CGDebugInfo(this) : 0; } CodeGenModule::~CodeGenModule() { delete Runtime; delete DebugInfo; } void CodeGenModule::Release() { EmitStatics(); if (Runtime) if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) AddGlobalCtor(ObjCInitFunction); EmitCtorList(GlobalCtors, "llvm.global_ctors"); EmitCtorList(GlobalDtors, "llvm.global_dtors"); EmitAnnotations(); // Run the verifier to check that the generated code is consistent. assert(!verifyModule(TheModule)); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, "cannot codegen this %0 yet"); SourceRange Range = S->getSourceRange(); std::string Msg = Type; getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID, &Msg, 1, &Range, 1); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified decl yet. void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, "cannot codegen this %0 yet"); std::string Msg = Type; getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID, &Msg, 1); } /// setGlobalVisibility - Set the visibility for the given LLVM /// GlobalValue according to the given clang AST visibility value. static void setGlobalVisibility(llvm::GlobalValue *GV, VisibilityAttr::VisibilityTypes Vis) { switch (Vis) { default: assert(0 && "Unknown visibility!"); case VisibilityAttr::DefaultVisibility: GV->setVisibility(llvm::GlobalValue::DefaultVisibility); break; case VisibilityAttr::HiddenVisibility: GV->setVisibility(llvm::GlobalValue::HiddenVisibility); break; case VisibilityAttr::ProtectedVisibility: GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); break; } } /// AddGlobalCtor - Add a function to the list that will be called before /// main() runs. void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { // TODO: Type coercion of void()* types. GlobalCtors.push_back(std::make_pair(Ctor, Priority)); } /// AddGlobalDtor - Add a function to the list that will be called /// when the module is unloaded. void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { // TODO: Type coercion of void()* types. GlobalDtors.push_back(std::make_pair(Dtor, Priority)); } void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { // Ctor function type is void()*. llvm::FunctionType* CtorFTy = llvm::FunctionType::get(llvm::Type::VoidTy, std::vector(), false); llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); // Get the type of a ctor entry, { i32, void ()* }. llvm::StructType* CtorStructTy = llvm::StructType::get(llvm::Type::Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); // Construct the constructor and destructor arrays. std::vector Ctors; for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { std::vector S; S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); } if (!Ctors.empty()) { llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); new llvm::GlobalVariable(AT, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(AT, Ctors), GlobalName, &TheModule); } } void CodeGenModule::EmitAnnotations() { if (Annotations.empty()) return; // Create a new global variable for the ConstantStruct in the Module. llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), Annotations.size()), Annotations); llvm::GlobalValue *gv = new llvm::GlobalVariable(Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, "llvm.global.annotations", &TheModule); gv->setSection("llvm.metadata"); } void CodeGenModule::SetGlobalValueAttributes(const FunctionDecl *FD, llvm::GlobalValue *GV) { // TODO: Set up linkage and many other things. Note, this is a simple // approximation of what we really want. if (FD->getStorageClass() == FunctionDecl::Static) GV->setLinkage(llvm::Function::InternalLinkage); else if (FD->getAttr()) GV->setLinkage(llvm::Function::DLLImportLinkage); else if (FD->getAttr()) GV->setLinkage(llvm::Function::DLLExportLinkage); else if (FD->getAttr() || FD->isInline()) GV->setLinkage(llvm::Function::WeakLinkage); if (const VisibilityAttr *attr = FD->getAttr()) setGlobalVisibility(GV, attr->getVisibility()); // FIXME: else handle -fvisibility if (const AsmLabelAttr *ALA = FD->getAttr()) { // Prefaced with special LLVM marker to indicate that the name // should not be munged. GV->setName("\01" + ALA->getLabel()); } } void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, llvm::Function *F, const llvm::FunctionType *FTy) { unsigned FuncAttrs = 0; if (FD->getAttr()) FuncAttrs |= llvm::ParamAttr::NoUnwind; if (FD->getAttr()) FuncAttrs |= llvm::ParamAttr::NoReturn; llvm::SmallVector ParamAttrList; if (FuncAttrs) ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs)); // Note that there is parallel code in CodeGenFunction::EmitCallExpr bool AggregateReturn = CodeGenFunction::hasAggregateLLVMType(FD->getResultType()); if (AggregateReturn) ParamAttrList.push_back( llvm::ParamAttrsWithIndex::get(1, llvm::ParamAttr::StructRet)); unsigned increment = AggregateReturn ? 2 : 1; const FunctionTypeProto* FTP = dyn_cast(FD->getType()); if (FTP) { for (unsigned i = 0; i < FTP->getNumArgs(); i++) { QualType ParamType = FTP->getArgType(i); unsigned ParamAttrs = 0; if (ParamType->isRecordType()) ParamAttrs |= llvm::ParamAttr::ByVal; if (ParamType->isSignedIntegerType() && ParamType->isPromotableIntegerType()) ParamAttrs |= llvm::ParamAttr::SExt; if (ParamType->isUnsignedIntegerType() && ParamType->isPromotableIntegerType()) ParamAttrs |= llvm::ParamAttr::ZExt; if (ParamAttrs) ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(i + increment, ParamAttrs)); } } F->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(), ParamAttrList.size())); // Set the appropriate calling convention for the Function. if (FD->getAttr()) F->setCallingConv(llvm::CallingConv::Fast); SetGlobalValueAttributes(FD, F); } void CodeGenModule::EmitStatics() { // Emit code for each used static decl encountered. Since a previously unused // static decl may become used during the generation of code for a static // function, iterate until no changes are made. bool Changed; do { Changed = false; for (unsigned i = 0, e = StaticDecls.size(); i != e; ++i) { const ValueDecl *D = StaticDecls[i]; // Check if we have used a decl with the same name // FIXME: The AST should have some sort of aggregate decls or // global symbol map. if (!GlobalDeclMap.count(D->getIdentifier())) continue; // Emit the definition. EmitGlobalDefinition(D); // Erase the used decl from the list. StaticDecls[i] = StaticDecls.back(); StaticDecls.pop_back(); --i; --e; // Remember that we made a change. Changed = true; } } while (Changed); } /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the /// annotation information for a given GlobalValue. The annotation struct is /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the /// GlobalValue being annotated. The second field is the constant string /// created from the AnnotateAttr's annotation. The third field is a constant /// string containing the name of the translation unit. The fourth field is /// the line number in the file of the annotated value declaration. /// /// FIXME: this does not unique the annotation string constants, as llvm-gcc /// appears to. /// llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, const AnnotateAttr *AA, unsigned LineNo) { llvm::Module *M = &getModule(); // get [N x i8] constants for the annotation string, and the filename string // which are the 2nd and 3rd elements of the global annotation structure. const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), true); // Get the two global values corresponding to the ConstantArrays we just // created to hold the bytes of the strings. llvm::GlobalValue *annoGV = new llvm::GlobalVariable(anno->getType(), false, llvm::GlobalValue::InternalLinkage, anno, GV->getName() + ".str", M); // translation unit name string, emitted into the llvm.metadata section. llvm::GlobalValue *unitGV = new llvm::GlobalVariable(unit->getType(), false, llvm::GlobalValue::InternalLinkage, unit, ".str", M); // Create the ConstantStruct that is the global annotion. llvm::Constant *Fields[4] = { llvm::ConstantExpr::getBitCast(GV, SBP), llvm::ConstantExpr::getBitCast(annoGV, SBP), llvm::ConstantExpr::getBitCast(unitGV, SBP), llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) }; return llvm::ConstantStruct::get(Fields, 4, false); } void CodeGenModule::EmitGlobal(const ValueDecl *Global) { bool isDef, isStatic; if (const FunctionDecl *FD = dyn_cast(Global)) { isDef = (FD->isThisDeclarationADefinition() || FD->getAttr()); isStatic = FD->getStorageClass() == FunctionDecl::Static; } else if (const VarDecl *VD = cast(Global)) { assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); isDef = !(VD->getStorageClass() == VarDecl::Extern && VD->getInit() == 0); isStatic = VD->getStorageClass() == VarDecl::Static; } else { assert(0 && "Invalid argument to EmitGlobal"); return; } // Forward declarations are emitted lazily on first use. if (!isDef) return; // If the global is a static, defer code generation until later so // we can easily omit unused statics. if (isStatic) { StaticDecls.push_back(Global); return; } // Otherwise emit the definition. EmitGlobalDefinition(Global); } void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { if (const FunctionDecl *FD = dyn_cast(D)) { EmitGlobalFunctionDefinition(FD); } else if (const VarDecl *VD = dyn_cast(D)) { EmitGlobalVarDefinition(VD); } else { assert(0 && "Invalid argument to EmitGlobalDefinition()"); } } llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D) { assert(D->hasGlobalStorage() && "Not a global variable"); QualType ASTTy = D->getType(); const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()]; if (!Entry) Entry = new llvm::GlobalVariable(Ty, false, llvm::GlobalValue::ExternalLinkage, 0, D->getName(), &getModule(), 0, ASTTy.getAddressSpace()); // Make sure the result is of the correct type. return llvm::ConstantExpr::getBitCast(Entry, PTy); } void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { llvm::Constant *Init = 0; QualType ASTTy = D->getType(); const llvm::Type *VarTy = getTypes().ConvertTypeForMem(ASTTy); if (D->getInit() == 0) { // This is a tentative definition; tentative definitions are // implicitly initialized with { 0 } const llvm::Type* InitTy; if (ASTTy->isIncompleteArrayType()) { // An incomplete array is normally [ TYPE x 0 ], but we need // to fix it to [ TYPE x 1 ]. const llvm::ArrayType* ATy = cast(VarTy); InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); } else { InitTy = VarTy; } Init = llvm::Constant::getNullValue(InitTy); } else { Init = EmitConstantExpr(D->getInit()); } const llvm::Type* InitType = Init->getType(); llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()]; llvm::GlobalVariable *GV = cast_or_null(Entry); if (!GV) { GV = new llvm::GlobalVariable(InitType, false, llvm::GlobalValue::ExternalLinkage, 0, D->getName(), &getModule(), 0, ASTTy.getAddressSpace()); } else if (GV->getType() != llvm::PointerType::get(InitType, ASTTy.getAddressSpace())) { // We have a definition after a prototype with the wrong type. // We must make a new GlobalVariable* and update everything that used OldGV // (a declaration or tentative definition) with the new GlobalVariable* // (which will be a definition). // // This happens if there is a prototype for a global (e.g. "extern int x[];") // and then a definition of a different type (e.g. "int x[10];"). This also // happens when an initializer has a different type from the type of the // global (this happens with unions). // // FIXME: This also ends up happening if there's a definition followed by // a tentative definition! (Although Sema rejects that construct // at the moment.) // Save the old global llvm::GlobalVariable *OldGV = GV; // Make a new global with the correct type GV = new llvm::GlobalVariable(InitType, false, llvm::GlobalValue::ExternalLinkage, 0, D->getName(), &getModule(), 0, ASTTy.getAddressSpace()); // Steal the name of the old global GV->takeName(OldGV); // Replace all uses of the old global with the new global llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); OldGV->replaceAllUsesWith(NewPtrForOldDecl); // Erase the old global, since it is no longer used. OldGV->eraseFromParent(); } Entry = GV; if (const AnnotateAttr *AA = D->getAttr()) { SourceManager &SM = Context.getSourceManager(); AddAnnotation(EmitAnnotateAttr(GV, AA, SM.getLogicalLineNumber(D->getLocation()))); } GV->setInitializer(Init); // FIXME: This is silly; getTypeAlign should just work for incomplete arrays unsigned Align; if (const IncompleteArrayType* IAT = Context.getAsIncompleteArrayType(D->getType())) Align = Context.getTypeAlign(IAT->getElementType()); else Align = Context.getTypeAlign(D->getType()); if (const AlignedAttr* AA = D->getAttr()) { Align = std::max(Align, AA->getAlignment()); } GV->setAlignment(Align / 8); if (const VisibilityAttr *attr = D->getAttr()) setGlobalVisibility(GV, attr->getVisibility()); // FIXME: else handle -fvisibility if (const AsmLabelAttr *ALA = D->getAttr()) { // Prefaced with special LLVM marker to indicate that the name // should not be munged. GV->setName("\01" + ALA->getLabel()); } // Set the llvm linkage type as appropriate. if (D->getStorageClass() == VarDecl::Static) GV->setLinkage(llvm::Function::InternalLinkage); else if (D->getAttr()) GV->setLinkage(llvm::Function::DLLImportLinkage); else if (D->getAttr()) GV->setLinkage(llvm::Function::DLLExportLinkage); else if (D->getAttr()) GV->setLinkage(llvm::GlobalVariable::WeakLinkage); else { // FIXME: This isn't right. This should handle common linkage and other // stuff. switch (D->getStorageClass()) { case VarDecl::Static: assert(0 && "This case handled above"); case VarDecl::Auto: case VarDecl::Register: assert(0 && "Can't have auto or register globals"); case VarDecl::None: if (!D->getInit()) GV->setLinkage(llvm::GlobalVariable::CommonLinkage); break; case VarDecl::Extern: case VarDecl::PrivateExtern: // todo: common break; } } // Emit global variable debug information. CGDebugInfo *DI = getDebugInfo(); if(DI) { if(D->getLocation().isValid()) DI->setLocation(D->getLocation()); DI->EmitGlobalVariable(GV, D); } } llvm::GlobalValue * CodeGenModule::EmitForwardFunctionDefinition(const FunctionDecl *D) { // FIXME: param attributes for sext/zext etc. if (const AliasAttr *AA = D->getAttr()) { assert(!D->getBody() && "Unexpected alias attr on function with body."); const std::string& aliaseeName = AA->getAliasee(); llvm::Function *aliasee = getModule().getFunction(aliaseeName); llvm::GlobalValue *alias = new llvm::GlobalAlias(aliasee->getType(), llvm::Function::ExternalLinkage, D->getName(), aliasee, &getModule()); SetGlobalValueAttributes(D, alias); return alias; } else { const llvm::Type *Ty = getTypes().ConvertType(D->getType()); const llvm::FunctionType *FTy = cast(Ty); llvm::Function *F = llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, D->getName(), &getModule()); SetFunctionAttributes(D, F, FTy); return F; } } llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D) { QualType ASTTy = D->getType(); const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()]; if (!Entry) Entry = EmitForwardFunctionDefinition(D); return llvm::ConstantExpr::getBitCast(Entry, PTy); } void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { llvm::GlobalValue *&Entry = GlobalDeclMap[D->getIdentifier()]; if (!Entry) { Entry = EmitForwardFunctionDefinition(D); } else { // If the types mismatch then we have to rewrite the definition. const llvm::Type *Ty = getTypes().ConvertType(D->getType()); if (Entry->getType() != llvm::PointerType::getUnqual(Ty)) { // Otherwise, we have a definition after a prototype with the wrong type. // F is the Function* for the one with the wrong type, we must make a new // Function* and update everything that used F (a declaration) with the new // Function* (which will be a definition). // // This happens if there is a prototype for a function (e.g. "int f()") and // then a definition of a different type (e.g. "int f(int x)"). Start by // making a new function of the correct type, RAUW, then steal the name. llvm::GlobalValue *NewFn = EmitForwardFunctionDefinition(D); NewFn->takeName(Entry); // Replace uses of F with the Function we will endow with a body. llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); Entry->replaceAllUsesWith(NewPtrForOldDecl); // Ok, delete the old function now, which is dead. // FIXME: Add GlobalValue->eraseFromParent(). assert(Entry->isDeclaration() && "Shouldn't replace non-declaration"); if (llvm::Function *F = dyn_cast(Entry)) { F->eraseFromParent(); } else if (llvm::GlobalAlias *GA = dyn_cast(Entry)) { GA->eraseFromParent(); } else { assert(0 && "Invalid global variable type."); } Entry = NewFn; } } if (D->getAttr()) { ; } else { llvm::Function *Fn = cast(Entry); CodeGenFunction(*this).GenerateCode(D, Fn); // Set attributes specific to definition. // FIXME: This needs to be cleaned up by clearly emitting the // declaration / definition at separate times. if (!Features.Exceptions) Fn->addParamAttr(0, llvm::ParamAttr::NoUnwind); if (const ConstructorAttr *CA = D->getAttr()) { AddGlobalCtor(Fn, CA->getPriority()); } else if (const DestructorAttr *DA = D->getAttr()) { AddGlobalDtor(Fn, DA->getPriority()); } } } void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { // Make sure that this type is translated. Types.UpdateCompletedType(TD); } /// getBuiltinLibFunction llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { if (BuiltinID > BuiltinFunctions.size()) BuiltinFunctions.resize(BuiltinID); // Cache looked up functions. Since builtin id #0 is invalid we don't reserve // a slot for it. assert(BuiltinID && "Invalid Builtin ID"); llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID-1]; if (FunctionSlot) return FunctionSlot; assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn"); // Get the name, skip over the __builtin_ prefix. const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10; // Get the type for the builtin. QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context); const llvm::FunctionType *Ty = cast(getTypes().ConvertType(Type)); // FIXME: This has a serious problem with code like this: // void abs() {} // ... __builtin_abs(x); // The two versions of abs will collide. The fix is for the builtin to win, // and for the existing one to be turned into a constantexpr cast of the // builtin. In the case where the existing one is a static function, it // should just be renamed. if (llvm::Function *Existing = getModule().getFunction(Name)) { if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage()) return FunctionSlot = Existing; assert(Existing == 0 && "FIXME: Name collision"); } // FIXME: param attributes for sext/zext etc. return FunctionSlot = llvm::Function::Create(Ty, llvm::Function::ExternalLinkage, Name, &getModule()); } llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, unsigned NumTys) { return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, Tys, NumTys); } llvm::Function *CodeGenModule::getMemCpyFn() { if (MemCpyFn) return MemCpyFn; llvm::Intrinsic::ID IID; switch (Context.Target.getPointerWidth(0)) { default: assert(0 && "Unknown ptr width"); case 32: IID = llvm::Intrinsic::memcpy_i32; break; case 64: IID = llvm::Intrinsic::memcpy_i64; break; } return MemCpyFn = getIntrinsic(IID); } llvm::Function *CodeGenModule::getMemMoveFn() { if (MemMoveFn) return MemMoveFn; llvm::Intrinsic::ID IID; switch (Context.Target.getPointerWidth(0)) { default: assert(0 && "Unknown ptr width"); case 32: IID = llvm::Intrinsic::memmove_i32; break; case 64: IID = llvm::Intrinsic::memmove_i64; break; } return MemMoveFn = getIntrinsic(IID); } llvm::Function *CodeGenModule::getMemSetFn() { if (MemSetFn) return MemSetFn; llvm::Intrinsic::ID IID; switch (Context.Target.getPointerWidth(0)) { default: assert(0 && "Unknown ptr width"); case 32: IID = llvm::Intrinsic::memset_i32; break; case 64: IID = llvm::Intrinsic::memset_i64; break; } return MemSetFn = getIntrinsic(IID); } // We still need to work out the details of handling UTF-16. // See: llvm::Constant *CodeGenModule:: GetAddrOfConstantCFString(const std::string &str) { llvm::StringMapEntry &Entry = CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); if (Entry.getValue()) return Entry.getValue(); llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); llvm::Constant *Zeros[] = { Zero, Zero }; if (!CFConstantStringClassRef) { const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); Ty = llvm::ArrayType::get(Ty, 0); // FIXME: This is fairly broken if // __CFConstantStringClassReference is already defined, in that it // will get renamed and the user will most likely see an opaque // error message. This is a general issue with relying on // particular names. llvm::GlobalVariable *GV = new llvm::GlobalVariable(Ty, false, llvm::GlobalVariable::ExternalLinkage, 0, "__CFConstantStringClassReference", &getModule()); // Decay array -> ptr CFConstantStringClassRef = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); } std::vector Fields(4); // Class pointer. Fields[0] = CFConstantStringClassRef; // Flags. const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); Fields[1] = llvm::ConstantInt::get(Ty, 0x07C8); // String pointer. llvm::Constant *C = llvm::ConstantArray::get(str); C = new llvm::GlobalVariable(C->getType(), true, llvm::GlobalValue::InternalLinkage, C, ".str", &getModule()); Fields[2] = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); // String length. Ty = getTypes().ConvertType(getContext().LongTy); Fields[3] = llvm::ConstantInt::get(Ty, str.length()); // The struct. Ty = getTypes().ConvertType(getContext().getCFConstantStringType()); C = llvm::ConstantStruct::get(cast(Ty), Fields); llvm::GlobalVariable *GV = new llvm::GlobalVariable(C->getType(), true, llvm::GlobalVariable::InternalLinkage, C, "", &getModule()); GV->setSection("__DATA,__cfstring"); Entry.setValue(GV); return GV; } /// GetStringForStringLiteral - Return the appropriate bytes for a /// string literal, properly padded to match the literal type. std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { assert(!E->isWide() && "FIXME: Wide strings not supported yet!"); const char *StrData = E->getStrData(); unsigned Len = E->getByteLength(); const ConstantArrayType *CAT = getContext().getAsConstantArrayType(E->getType()); assert(CAT && "String isn't pointer or array!"); // Resize the string to the right size // FIXME: What about wchar_t strings? std::string Str(StrData, StrData+Len); uint64_t RealLen = CAT->getSize().getZExtValue(); Str.resize(RealLen, '\0'); return Str; } /// GetAddrOfConstantStringFromLiteral - Return a pointer to a /// constant array for the given string literal. llvm::Constant * CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { // FIXME: This can be more efficient. return GetAddrOfConstantString(GetStringForStringLiteral(S)); } /// GenerateWritableString -- Creates storage for a string literal. static llvm::Constant *GenerateStringLiteral(const std::string &str, bool constant, CodeGenModule &CGM) { // Create Constant for this string literal. Don't add a '\0'. llvm::Constant *C = llvm::ConstantArray::get(str, false); // Create a global variable for this string C = new llvm::GlobalVariable(C->getType(), constant, llvm::GlobalValue::InternalLinkage, C, ".str", &CGM.getModule()); return C; } /// GetAddrOfConstantString - Returns a pointer to a character array /// containing the literal. This contents are exactly that of the /// given string, i.e. it will not be null terminated automatically; /// see GetAddrOfConstantCString. Note that whether the result is /// actually a pointer to an LLVM constant depends on /// Feature.WriteableStrings. /// /// The result has pointer to array type. llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str) { // Don't share any string literals if writable-strings is turned on. if (Features.WritableStrings) return GenerateStringLiteral(str, false, *this); llvm::StringMapEntry &Entry = ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); if (Entry.getValue()) return Entry.getValue(); // Create a global variable for this. llvm::Constant *C = GenerateStringLiteral(str, true, *this); Entry.setValue(C); return C; } /// GetAddrOfConstantCString - Returns a pointer to a character /// array containing the literal and a terminating '\-' /// character. The result has pointer to array type. llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str) { return GetAddrOfConstantString(str + "\0"); } /// EmitTopLevelDecl - Emit code for a single top level declaration. void CodeGenModule::EmitTopLevelDecl(Decl *D) { // If an error has occurred, stop code generation, but continue // parsing and semantic analysis (to ensure all warnings and errors // are emitted). if (Diags.hasErrorOccurred()) return; switch (D->getKind()) { case Decl::Function: case Decl::Var: EmitGlobal(cast(D)); break; case Decl::Namespace: assert(0 && "FIXME: Namespace unsupported"); break; // Objective-C Decls // Forward declarations, no (immediate) code generation. case Decl::ObjCClass: case Decl::ObjCCategory: case Decl::ObjCForwardProtocol: case Decl::ObjCInterface: break; case Decl::ObjCProtocol: Runtime->GenerateProtocol(cast(D)); break; case Decl::ObjCCategoryImpl: Runtime->GenerateCategory(cast(D)); break; case Decl::ObjCImplementation: Runtime->GenerateClass(cast(D)); break; case Decl::ObjCMethod: { ObjCMethodDecl *OMD = cast(D); // If this is not a prototype, emit the body. if (OMD->getBody()) CodeGenFunction(*this).GenerateObjCMethod(OMD); break; } case Decl::ObjCPropertyImpl: assert(0 && "FIXME: ObjCPropertyImpl unsupported"); break; case Decl::ObjCCompatibleAlias: assert(0 && "FIXME: ObjCCompatibleAlias unsupported"); break; case Decl::LinkageSpec: { LinkageSpecDecl *LSD = cast(D); if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx) ErrorUnsupported(LSD, "linkage spec"); // FIXME: implement C++ linkage, C linkage works mostly by C // language reuse already. break; } case Decl::FileScopeAsm: { FileScopeAsmDecl *AD = cast(D); std::string AsmString(AD->getAsmString()->getStrData(), AD->getAsmString()->getByteLength()); const std::string &S = getModule().getModuleInlineAsm(); if (S.empty()) getModule().setModuleInlineAsm(AsmString); else getModule().setModuleInlineAsm(S + '\n' + AsmString); break; } default: // Make sure we handled everything we should, every other kind is // a non-top-level decl. FIXME: Would be nice to have an // isTopLevelDeclKind function. Need to recode Decl::Kind to do // that easily. assert(isa(D) && "Unsupported decl kind"); } }