//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Builtin calls as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/Basic/TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Builtins.h" #include "clang/AST/Expr.h" #include "clang/AST/TargetBuiltins.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" using namespace clang; using namespace CodeGen; using namespace llvm; RValue CodeGenFunction::EmitBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { default: { if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) return EmitCallExpr(CGM.getBuiltinLibFunction(BuiltinID), E->getCallee()->getType(), E->arg_begin(), E->getNumArgs()); // See if we have a target specific intrinsic. Intrinsic::ID IntrinsicID; const char *TargetPrefix = Target.getTargetPrefix(); const char *BuiltinName = getContext().BuiltinInfo.GetName(BuiltinID); #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN #include "llvm/Intrinsics.gen" #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN if (IntrinsicID != Intrinsic::not_intrinsic) { SmallVector Args; Function *F = CGM.getIntrinsic(IntrinsicID); const llvm::FunctionType *FTy = F->getFunctionType(); for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { Value *ArgValue = EmitScalarExpr(E->getArg(i)); // If the intrinsic arg type is different from the builtin arg type // we need to do a bit cast. const llvm::Type *PTy = FTy->getParamType(i); if (PTy != ArgValue->getType()) { assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && "Must be able to losslessly bit cast to param"); ArgValue = Builder.CreateBitCast(ArgValue, PTy); } Args.push_back(ArgValue); } Value *V = Builder.CreateCall(F, &Args[0], &Args[0] + Args.size()); QualType BuiltinRetType = E->getType(); const llvm::Type *RetTy = llvm::Type::VoidTy; if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType); if (RetTy != V->getType()) { assert(V->getType()->canLosslesslyBitCastTo(RetTy) && "Must be able to losslessly bit cast result type"); V = Builder.CreateBitCast(V, RetTy); } return RValue::get(V); } // See if we have a target specific builtin that needs to be lowered. Value *V = 0; if (strcmp(TargetPrefix, "x86") == 0) V = EmitX86BuiltinExpr(BuiltinID, E); else if (strcmp(TargetPrefix, "ppc") == 0) V = EmitPPCBuiltinExpr(BuiltinID, E); if (V) return RValue::get(V); WarnUnsupported(E, "builtin function"); // Unknown builtin, for now just dump it out and return undef. if (hasAggregateLLVMType(E->getType())) return RValue::getAggregate(CreateTempAlloca(ConvertType(E->getType()))); return RValue::get(UndefValue::get(ConvertType(E->getType()))); } case Builtin::BI__builtin___CFStringMakeConstantString: { const Expr *Arg = E->getArg(0); while (1) { if (const ParenExpr *PE = dyn_cast(Arg)) Arg = PE->getSubExpr(); else if (const ImplicitCastExpr *CE = dyn_cast(Arg)) Arg = CE->getSubExpr(); else break; } const StringLiteral *Literal = cast(Arg); std::string S(Literal->getStrData(), Literal->getByteLength()); return RValue::get(CGM.GetAddrOfConstantCFString(S)); } case Builtin::BI__builtin_va_start: case Builtin::BI__builtin_va_end: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *DestType = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); if (ArgValue->getType() != DestType) ArgValue = Builder.CreateBitCast(ArgValue, DestType, ArgValue->getNameStart()); Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_start) ? Intrinsic::vastart : Intrinsic::vaend; return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue)); } case Builtin::BI__builtin_classify_type: { APSInt Result(32); if (!E->isBuiltinClassifyType(Result)) assert(0 && "Expr not __builtin_classify_type!"); return RValue::get(ConstantInt::get(Result)); } case Builtin::BI__builtin_constant_p: { APSInt Result(32); // FIXME: Analyze the parameter and check if it is a constant. Result = 0; return RValue::get(ConstantInt::get(Result)); } case Builtin::BI__builtin_abs: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::BinaryOperator *NegOp = Builder.CreateNeg(ArgValue, (ArgValue->getName() + "neg").c_str()); Value *CmpResult = Builder.CreateICmpSGE(ArgValue, NegOp->getOperand(0), "abscond"); Value *Result = Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs"); return RValue::get(Result); } case Builtin::BI__builtin_expect: return RValue::get(EmitScalarExpr(E->getArg(0))); case Builtin::BI__builtin_bswap32: case Builtin::BI__builtin_bswap64: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); const llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1); return RValue::get(Builder.CreateCall(F, ArgValue, "tmp")); } case Builtin::BI__builtin_inff: { APFloat f(APFloat::IEEEsingle, APFloat::fcInfinity, false); return RValue::get(ConstantFP::get(llvm::Type::FloatTy, f)); } case Builtin::BI__builtin_huge_val: case Builtin::BI__builtin_inf: // FIXME: mapping long double onto double. case Builtin::BI__builtin_infl: { APFloat f(APFloat::IEEEdouble, APFloat::fcInfinity, false); return RValue::get(ConstantFP::get(llvm::Type::DoubleTy, f)); } case Builtin::BI__builtin_isgreater: case Builtin::BI__builtin_isgreaterequal: case Builtin::BI__builtin_isless: case Builtin::BI__builtin_islessequal: case Builtin::BI__builtin_islessgreater: case Builtin::BI__builtin_isunordered: { // Ordered comparisons: we know the arguments to these are matching scalar // floating point values. Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); switch (BuiltinID) { default: assert(0 && "Unknown ordered comparison"); case Builtin::BI__builtin_isgreater: LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isgreaterequal: LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isless: LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessequal: LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessgreater: LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isunordered: LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); break; } // ZExt bool to int type. return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()), "tmp")); } case Builtin::BI__builtin_alloca: return RValue::get(Builder.CreateAlloca(llvm::Type::Int8Ty, EmitScalarExpr(E->getArg(0)), "tmp")); } return RValue::get(0); } Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E) { llvm::SmallVector Ops; for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) Ops.push_back(EmitScalarExpr(E->getArg(i))); switch (BuiltinID) { default: return 0; case X86::BI__builtin_ia32_mulps: return Builder.CreateMul(Ops[0], Ops[1], "mulps"); case X86::BI__builtin_ia32_pand: return Builder.CreateAnd(Ops[0], Ops[1], "pand"); case X86::BI__builtin_ia32_por: return Builder.CreateAnd(Ops[0], Ops[1], "por"); case X86::BI__builtin_ia32_pxor: return Builder.CreateAnd(Ops[0], Ops[1], "pxor"); case X86::BI__builtin_ia32_pandn: { Ops[0] = Builder.CreateNot(Ops[0], "tmp"); return Builder.CreateAnd(Ops[0], Ops[1], "pandn"); } case X86::BI__builtin_ia32_paddb: case X86::BI__builtin_ia32_paddd: case X86::BI__builtin_ia32_paddq: case X86::BI__builtin_ia32_paddw: case X86::BI__builtin_ia32_addps: return Builder.CreateAdd(Ops[0], Ops[1], "add"); case X86::BI__builtin_ia32_psubb: case X86::BI__builtin_ia32_psubd: case X86::BI__builtin_ia32_psubq: case X86::BI__builtin_ia32_psubw: case X86::BI__builtin_ia32_subps: return Builder.CreateSub(Ops[0], Ops[1], "sub"); case X86::BI__builtin_ia32_divps: return Builder.CreateFDiv(Ops[0], Ops[1], "divps"); case X86::BI__builtin_ia32_pmullw: return Builder.CreateMul(Ops[0], Ops[1], "pmul"); case X86::BI__builtin_ia32_punpckhbw: return EmitShuffleVector(Ops[0], Ops[1], 4, 12, 5, 13, 6, 14, 7, 15, "punpckhbw"); case X86::BI__builtin_ia32_punpckhwd: return EmitShuffleVector(Ops[0], Ops[1], 2, 6, 3, 7, "punpckhwd"); case X86::BI__builtin_ia32_punpckhdq: return EmitShuffleVector(Ops[0], Ops[1], 1, 3, "punpckhdq"); case X86::BI__builtin_ia32_punpcklbw: return EmitShuffleVector(Ops[0], Ops[1], 0, 8, 1, 9, 2, 10, 3, 11, "punpcklbw"); case X86::BI__builtin_ia32_punpcklwd: return EmitShuffleVector(Ops[0], Ops[1], 0, 4, 1, 5, "punpcklwd"); case X86::BI__builtin_ia32_punpckldq: return EmitShuffleVector(Ops[0], Ops[1], 0, 2, "punpckldq"); case X86::BI__builtin_ia32_pslldi: case X86::BI__builtin_ia32_psllqi: case X86::BI__builtin_ia32_psllwi: case X86::BI__builtin_ia32_psradi: case X86::BI__builtin_ia32_psrawi: case X86::BI__builtin_ia32_psrldi: case X86::BI__builtin_ia32_psrlqi: case X86::BI__builtin_ia32_psrlwi: { Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::Int64Ty, "zext"); const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::Int64Ty, 1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast"); const char *name = 0; Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (BuiltinID) { default: assert(0 && "Unsupported shift intrinsic!"); case X86::BI__builtin_ia32_pslldi: name = "pslldi"; ID = Intrinsic::x86_mmx_psll_d; break; case X86::BI__builtin_ia32_psllqi: name = "psllqi"; ID = Intrinsic::x86_mmx_psll_q; break; case X86::BI__builtin_ia32_psllwi: name = "psllwi"; ID = Intrinsic::x86_mmx_psll_w; break; case X86::BI__builtin_ia32_psradi: name = "psradi"; ID = Intrinsic::x86_mmx_psra_d; break; case X86::BI__builtin_ia32_psrawi: name = "psrawi"; ID = Intrinsic::x86_mmx_psra_w; break; case X86::BI__builtin_ia32_psrldi: name = "psrldi"; ID = Intrinsic::x86_mmx_psrl_d; break; case X86::BI__builtin_ia32_psrlqi: name = "psrlqi"; ID = Intrinsic::x86_mmx_psrl_q; break; case X86::BI__builtin_ia32_psrlwi: name = "psrlwi"; ID = Intrinsic::x86_mmx_psrl_w; break; } llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name); } case X86::BI__builtin_ia32_pshufd: { unsigned i = cast(Ops[1])->getZExtValue(); return EmitShuffleVector(Ops[0], Ops[0], i & 0x3, (i & 0xc) >> 2, (i & 0x30) >> 4, (i & 0xc0) >> 6, "pshufd"); } case X86::BI__builtin_ia32_vec_init_v4hi: case X86::BI__builtin_ia32_vec_init_v8qi: case X86::BI__builtin_ia32_vec_init_v2si: return EmitVector(&Ops[0], Ops.size()); case X86::BI__builtin_ia32_vec_ext_v2si: return Builder.CreateExtractElement(Ops[0], Ops[1], "result"); case X86::BI__builtin_ia32_cmpordss: case X86::BI__builtin_ia32_cmpunordss: case X86::BI__builtin_ia32_cmpeqss: case X86::BI__builtin_ia32_cmpltss: case X86::BI__builtin_ia32_cmpless: case X86::BI__builtin_ia32_cmpneqss: case X86::BI__builtin_ia32_cmpnltss: case X86::BI__builtin_ia32_cmpnless: { unsigned i = 0; const char *name = 0; switch (BuiltinID) { default: assert(0 && "Unknown compare builtin!"); case X86::BI__builtin_ia32_cmpeqss: i = 0; name = "cmpeqss"; break; case X86::BI__builtin_ia32_cmpltss: i = 1; name = "cmpltss"; break; case X86::BI__builtin_ia32_cmpless: i = 2; name = "cmpless"; break; case X86::BI__builtin_ia32_cmpunordss: i = 3; name = "cmpunordss"; break; case X86::BI__builtin_ia32_cmpneqss: i = 4; name = "cmpneqss"; break; case X86::BI__builtin_ia32_cmpnltss: i = 5; name = "cmpntlss"; break; case X86::BI__builtin_ia32_cmpnless: i = 6; name = "cmpnless"; break; case X86::BI__builtin_ia32_cmpordss: i = 7; name = "cmpordss"; break; } Ops.push_back(llvm::ConstantInt::get(llvm::Type::Int8Ty, i)); llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name); } case X86::BI__builtin_ia32_cmpordps: case X86::BI__builtin_ia32_cmpunordps: case X86::BI__builtin_ia32_cmpeqps: case X86::BI__builtin_ia32_cmpltps: case X86::BI__builtin_ia32_cmpleps: case X86::BI__builtin_ia32_cmpneqps: case X86::BI__builtin_ia32_cmpngtps: case X86::BI__builtin_ia32_cmpnltps: case X86::BI__builtin_ia32_cmpgtps: case X86::BI__builtin_ia32_cmpgeps: case X86::BI__builtin_ia32_cmpngeps: case X86::BI__builtin_ia32_cmpnleps: { unsigned i = 0; const char *name = 0; bool ShouldSwap = false; switch (BuiltinID) { default: assert(0 && "Unknown compare builtin!"); case X86::BI__builtin_ia32_cmpeqps: i = 0; name = "cmpeqps"; break; case X86::BI__builtin_ia32_cmpltps: i = 1; name = "cmpltps"; break; case X86::BI__builtin_ia32_cmpleps: i = 2; name = "cmpleps"; break; case X86::BI__builtin_ia32_cmpunordps: i = 3; name = "cmpunordps"; break; case X86::BI__builtin_ia32_cmpneqps: i = 4; name = "cmpneqps"; break; case X86::BI__builtin_ia32_cmpnltps: i = 5; name = "cmpntlps"; break; case X86::BI__builtin_ia32_cmpnleps: i = 6; name = "cmpnleps"; break; case X86::BI__builtin_ia32_cmpordps: i = 7; name = "cmpordps"; break; case X86::BI__builtin_ia32_cmpgtps: ShouldSwap = true; i = 1; name = "cmpgtps"; break; case X86::BI__builtin_ia32_cmpgeps: i = 2; name = "cmpgeps"; ShouldSwap = true; break; case X86::BI__builtin_ia32_cmpngtps: i = 5; name = "cmpngtps"; ShouldSwap = true; break; case X86::BI__builtin_ia32_cmpngeps: i = 6; name = "cmpngeps"; ShouldSwap = true; break; } if (ShouldSwap) std::swap(Ops[0], Ops[1]); Ops.push_back(llvm::ConstantInt::get(llvm::Type::Int8Ty, i)); llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps); return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name); } case X86::BI__builtin_ia32_movss: return EmitShuffleVector(Ops[0], Ops[1], 4, 1, 2, 3, "movss"); case X86::BI__builtin_ia32_shufps: unsigned i = cast(Ops[2])->getZExtValue(); return EmitShuffleVector(Ops[0], Ops[1], i & 0x3, (i & 0xc) >> 2, ((i & 0x30) >> 4) + 4, ((i & 0x60) >> 6) + 4, "shufps"); } } Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { default: return 0; } }