//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for statements. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/DiagnosticSema.h" using namespace clang; Sema::OwningStmtResult Sema::ActOnExprStmt(ExprArg expr) { Expr *E = static_cast(expr.release()); assert(E && "ActOnExprStmt(): missing expression"); // C99 6.8.3p2: The expression in an expression statement is evaluated as a // void expression for its side effects. Conversion to void allows any // operand, even incomplete types. // Same thing in for stmt first clause (when expr) and third clause. return Owned(static_cast(E)); } Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) { return Owned(new NullStmt(SemiLoc)); } Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc, SourceLocation EndLoc) { if (decl == 0) return StmtError(); Decl *D = static_cast(decl); // This is a temporary hack until we are always passing around // DeclGroupRefs. llvm::SmallVector decls; while (D) { Decl* d = D; D = D->getNextDeclarator(); d->setNextDeclarator(0); decls.push_back(d); } assert (!decls.empty()); if (decls.size() == 1) { DeclGroupOwningRef DG(*decls.begin()); return Owned(new DeclStmt(DG, StartLoc, EndLoc)); } else { DeclGroupOwningRef DG(DeclGroup::Create(Context, decls.size(), &decls[0])); return Owned(new DeclStmt(DG, StartLoc, EndLoc)); } } Action::OwningStmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, MultiStmtArg elts, bool isStmtExpr) { unsigned NumElts = elts.size(); Stmt **Elts = reinterpret_cast(elts.release()); // If we're in C89 mode, check that we don't have any decls after stmts. If // so, emit an extension diagnostic. if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) { // Note that __extension__ can be around a decl. unsigned i = 0; // Skip over all declarations. for (; i != NumElts && isa(Elts[i]); ++i) /*empty*/; // We found the end of the list or a statement. Scan for another declstmt. for (; i != NumElts && !isa(Elts[i]); ++i) /*empty*/; if (i != NumElts) { Decl *D = *cast(Elts[i])->decl_begin(); Diag(D->getLocation(), diag::ext_mixed_decls_code); } } // Warn about unused expressions in statements. for (unsigned i = 0; i != NumElts; ++i) { Expr *E = dyn_cast(Elts[i]); if (!E) continue; // Warn about expressions with unused results. if (E->hasLocalSideEffect() || E->getType()->isVoidType()) continue; // The last expr in a stmt expr really is used. if (isStmtExpr && i == NumElts-1) continue; /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in /// a context where the result is unused. Emit a diagnostic to warn about /// this. if (const BinaryOperator *BO = dyn_cast(E)) Diag(BO->getOperatorLoc(), diag::warn_unused_expr) << BO->getLHS()->getSourceRange() << BO->getRHS()->getSourceRange(); else if (const UnaryOperator *UO = dyn_cast(E)) Diag(UO->getOperatorLoc(), diag::warn_unused_expr) << UO->getSubExpr()->getSourceRange(); else Diag(E->getExprLoc(), diag::warn_unused_expr) << E->getSourceRange(); } return Owned(new CompoundStmt(Elts, NumElts, L, R)); } Action::OwningStmtResult Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval, SourceLocation DotDotDotLoc, ExprArg rhsval, SourceLocation ColonLoc, StmtArg subStmt) { Stmt *SubStmt = static_cast(subStmt.release()); assert((lhsval.get() != 0) && "missing expression in case statement"); // C99 6.8.4.2p3: The expression shall be an integer constant. // However, GCC allows any evaluatable integer expression. Expr *LHSVal = static_cast(lhsval.get()); if (VerifyIntegerConstantExpression(LHSVal)) return Owned(SubStmt); // GCC extension: The expression shall be an integer constant. Expr *RHSVal = static_cast(rhsval.get()); if (RHSVal && VerifyIntegerConstantExpression(RHSVal)) { RHSVal = 0; // Recover by just forgetting about it. rhsval = 0; } if (SwitchStack.empty()) { Diag(CaseLoc, diag::err_case_not_in_switch); return Owned(SubStmt); } // Only now release the smart pointers. lhsval.release(); rhsval.release(); CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc); SwitchStack.back()->addSwitchCase(CS); return Owned(CS); } Action::OwningStmtResult Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, StmtArg subStmt, Scope *CurScope) { Stmt *SubStmt = static_cast(subStmt.release()); if (SwitchStack.empty()) { Diag(DefaultLoc, diag::err_default_not_in_switch); return Owned(SubStmt); } DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt); SwitchStack.back()->addSwitchCase(DS); return Owned(DS); } Action::OwningStmtResult Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation ColonLoc, StmtArg subStmt) { Stmt *SubStmt = static_cast(subStmt.release()); // Look up the record for this label identifier. LabelStmt *&LabelDecl = LabelMap[II]; // If not forward referenced or defined already, just create a new LabelStmt. if (LabelDecl == 0) return Owned(LabelDecl = new LabelStmt(IdentLoc, II, SubStmt)); assert(LabelDecl->getID() == II && "Label mismatch!"); // Otherwise, this label was either forward reference or multiply defined. If // multiply defined, reject it now. if (LabelDecl->getSubStmt()) { Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID(); Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition); return Owned(SubStmt); } // Otherwise, this label was forward declared, and we just found its real // definition. Fill in the forward definition and return it. LabelDecl->setIdentLoc(IdentLoc); LabelDecl->setSubStmt(SubStmt); return Owned(LabelDecl); } Action::OwningStmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal, StmtArg ThenVal, SourceLocation ElseLoc, StmtArg ElseVal) { Expr *condExpr = (Expr *)CondVal.release(); assert(condExpr && "ActOnIfStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); // Take ownership again until we're past the error checking. CondVal = condExpr; QualType condType = condExpr->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 return StmtError(); } else if (!condType->isScalarType()) // C99 6.8.4.1p1 return StmtError(Diag(IfLoc, diag::err_typecheck_statement_requires_scalar) << condType << condExpr->getSourceRange()); Stmt *thenStmt = (Stmt *)ThenVal.release(); // Warn if the if block has a null body without an else value. // this helps prevent bugs due to typos, such as // if (condition); // do_stuff(); if (!ElseVal.get()) { if (NullStmt* stmt = dyn_cast(thenStmt)) Diag(stmt->getSemiLoc(), diag::warn_empty_if_body); } CondVal.release(); return Owned(new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal.release())); } Action::OwningStmtResult Sema::ActOnStartOfSwitchStmt(ExprArg cond) { Expr *Cond = static_cast(cond.release()); if (getLangOptions().CPlusPlus) { // C++ 6.4.2.p2: // The condition shall be of integral type, enumeration type, or of a class // type for which a single conversion function to integral or enumeration // type exists (12.3). If the condition is of class type, the condition is // converted by calling that conversion function, and the result of the // conversion is used in place of the original condition for the remainder // of this section. Integral promotions are performed. QualType Ty = Cond->getType(); // FIXME: Handle class types. // If the type is wrong a diagnostic will be emitted later at // ActOnFinishSwitchStmt. if (Ty->isIntegralType() || Ty->isEnumeralType()) { // Integral promotions are performed. // FIXME: Integral promotions for C++ are not complete. UsualUnaryConversions(Cond); } } else { // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. UsualUnaryConversions(Cond); } SwitchStmt *SS = new SwitchStmt(Cond); SwitchStack.push_back(SS); return Owned(SS); } /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID) { // Perform a conversion to the promoted condition type if needed. if (NewWidth > Val.getBitWidth()) { // If this is an extension, just do it. llvm::APSInt OldVal(Val); Val.extend(NewWidth); // If the input was signed and negative and the output is unsigned, // warn. if (!NewSign && OldVal.isSigned() && OldVal.isNegative()) Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); Val.setIsSigned(NewSign); } else if (NewWidth < Val.getBitWidth()) { // If this is a truncation, check for overflow. llvm::APSInt ConvVal(Val); ConvVal.trunc(NewWidth); ConvVal.setIsSigned(NewSign); ConvVal.extend(Val.getBitWidth()); ConvVal.setIsSigned(Val.isSigned()); if (ConvVal != Val) Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10); // Regardless of whether a diagnostic was emitted, really do the // truncation. Val.trunc(NewWidth); Val.setIsSigned(NewSign); } else if (NewSign != Val.isSigned()) { // Convert the sign to match the sign of the condition. This can cause // overflow as well: unsigned(INTMIN) llvm::APSInt OldVal(Val); Val.setIsSigned(NewSign); if (Val.isNegative()) // Sign bit changes meaning. Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10); } } namespace { struct CaseCompareFunctor { bool operator()(const std::pair &LHS, const llvm::APSInt &RHS) { return LHS.first < RHS; } bool operator()(const std::pair &LHS, const std::pair &RHS) { return LHS.first < RHS.first; } bool operator()(const llvm::APSInt &LHS, const std::pair &RHS) { return LHS < RHS.first; } }; } /// CmpCaseVals - Comparison predicate for sorting case values. /// static bool CmpCaseVals(const std::pair& lhs, const std::pair& rhs) { if (lhs.first < rhs.first) return true; if (lhs.first == rhs.first && lhs.second->getCaseLoc().getRawEncoding() < rhs.second->getCaseLoc().getRawEncoding()) return true; return false; } Action::OwningStmtResult Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch, StmtArg Body) { Stmt *BodyStmt = (Stmt*)Body.release(); SwitchStmt *SS = SwitchStack.back(); assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!"); SS->setBody(BodyStmt, SwitchLoc); SwitchStack.pop_back(); Expr *CondExpr = SS->getCond(); QualType CondType = CondExpr->getType(); if (!CondType->isIntegerType()) { // C99 6.8.4.2p1 Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer) << CondType << CondExpr->getSourceRange(); return StmtError(); } // Get the bitwidth of the switched-on value before promotions. We must // convert the integer case values to this width before comparison. unsigned CondWidth = static_cast(Context.getTypeSize(CondType)); bool CondIsSigned = CondType->isSignedIntegerType(); // Accumulate all of the case values in a vector so that we can sort them // and detect duplicates. This vector contains the APInt for the case after // it has been converted to the condition type. typedef llvm::SmallVector, 64> CaseValsTy; CaseValsTy CaseVals; // Keep track of any GNU case ranges we see. The APSInt is the low value. std::vector > CaseRanges; DefaultStmt *TheDefaultStmt = 0; bool CaseListIsErroneous = false; for (SwitchCase *SC = SS->getSwitchCaseList(); SC; SC = SC->getNextSwitchCase()) { if (DefaultStmt *DS = dyn_cast(SC)) { if (TheDefaultStmt) { Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); // FIXME: Remove the default statement from the switch block so that // we'll return a valid AST. This requires recursing down the // AST and finding it, not something we are set up to do right now. For // now, just lop the entire switch stmt out of the AST. CaseListIsErroneous = true; } TheDefaultStmt = DS; } else { CaseStmt *CS = cast(SC); // We already verified that the expression has a i-c-e value (C99 // 6.8.4.2p3) - get that value now. Expr *Lo = CS->getLHS(); llvm::APSInt LoVal = Lo->EvaluateAsInt(Context); // Convert the value to the same width/sign as the condition. ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned, CS->getLHS()->getLocStart(), diag::warn_case_value_overflow); // If the LHS is not the same type as the condition, insert an implicit // cast. ImpCastExprToType(Lo, CondType); CS->setLHS(Lo); // If this is a case range, remember it in CaseRanges, otherwise CaseVals. if (CS->getRHS()) CaseRanges.push_back(std::make_pair(LoVal, CS)); else CaseVals.push_back(std::make_pair(LoVal, CS)); } } // Sort all the scalar case values so we can easily detect duplicates. std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals); if (!CaseVals.empty()) { for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) { if (CaseVals[i].first == CaseVals[i+1].first) { // If we have a duplicate, report it. Diag(CaseVals[i+1].second->getLHS()->getLocStart(), diag::err_duplicate_case) << CaseVals[i].first.toString(10); Diag(CaseVals[i].second->getLHS()->getLocStart(), diag::note_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the substmt, // but we have no way to do this right now. CaseListIsErroneous = true; } } } // Detect duplicate case ranges, which usually don't exist at all in the first // place. if (!CaseRanges.empty()) { // Sort all the case ranges by their low value so we can easily detect // overlaps between ranges. std::stable_sort(CaseRanges.begin(), CaseRanges.end()); // Scan the ranges, computing the high values and removing empty ranges. std::vector HiVals; for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { CaseStmt *CR = CaseRanges[i].second; Expr *Hi = CR->getRHS(); llvm::APSInt HiVal = Hi->EvaluateAsInt(Context); // Convert the value to the same width/sign as the condition. ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned, CR->getRHS()->getLocStart(), diag::warn_case_value_overflow); // If the LHS is not the same type as the condition, insert an implicit // cast. ImpCastExprToType(Hi, CondType); CR->setRHS(Hi); // If the low value is bigger than the high value, the case is empty. if (CaseRanges[i].first > HiVal) { Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range) << SourceRange(CR->getLHS()->getLocStart(), CR->getRHS()->getLocEnd()); CaseRanges.erase(CaseRanges.begin()+i); --i, --e; continue; } HiVals.push_back(HiVal); } // Rescan the ranges, looking for overlap with singleton values and other // ranges. Since the range list is sorted, we only need to compare case // ranges with their neighbors. for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { llvm::APSInt &CRLo = CaseRanges[i].first; llvm::APSInt &CRHi = HiVals[i]; CaseStmt *CR = CaseRanges[i].second; // Check to see whether the case range overlaps with any singleton cases. CaseStmt *OverlapStmt = 0; llvm::APSInt OverlapVal(32); // Find the smallest value >= the lower bound. If I is in the case range, // then we have overlap. CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(), CaseVals.end(), CRLo, CaseCompareFunctor()); if (I != CaseVals.end() && I->first < CRHi) { OverlapVal = I->first; // Found overlap with scalar. OverlapStmt = I->second; } // Find the smallest value bigger than the upper bound. I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); if (I != CaseVals.begin() && (I-1)->first >= CRLo) { OverlapVal = (I-1)->first; // Found overlap with scalar. OverlapStmt = (I-1)->second; } // Check to see if this case stmt overlaps with the subsequent case range. if (i && CRLo <= HiVals[i-1]) { OverlapVal = HiVals[i-1]; // Found overlap with range. OverlapStmt = CaseRanges[i-1].second; } if (OverlapStmt) { // If we have a duplicate, report it. Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case) << OverlapVal.toString(10); Diag(OverlapStmt->getLHS()->getLocStart(), diag::note_duplicate_case_prev); // FIXME: We really want to remove the bogus case stmt from the substmt, // but we have no way to do this right now. CaseListIsErroneous = true; } } } // FIXME: If the case list was broken is some way, we don't have a good system // to patch it up. Instead, just return the whole substmt as broken. if (CaseListIsErroneous) return StmtError(); Switch.release(); return Owned(SS); } Action::OwningStmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond, StmtArg Body) { Expr *condExpr = (Expr *)Cond.release(); assert(condExpr && "ActOnWhileStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); Cond = condExpr; QualType condType = condExpr->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 return StmtError(); } else if (!condType->isScalarType()) // C99 6.8.5p2 return StmtError(Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar) << condType << condExpr->getSourceRange()); Cond.release(); return Owned(new WhileStmt(condExpr, (Stmt*)Body.release(), WhileLoc)); } Action::OwningStmtResult Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body, SourceLocation WhileLoc, ExprArg Cond) { Expr *condExpr = (Expr *)Cond.release(); assert(condExpr && "ActOnDoStmt(): missing expression"); DefaultFunctionArrayConversion(condExpr); Cond = condExpr; QualType condType = condExpr->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4 return StmtError(); } else if (!condType->isScalarType()) // C99 6.8.5p2 return StmtError(Diag(DoLoc, diag::err_typecheck_statement_requires_scalar) << condType << condExpr->getSourceRange()); Cond.release(); return Owned(new DoStmt((Stmt*)Body.release(), condExpr, DoLoc)); } Action::OwningStmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtArg first, ExprArg second, ExprArg third, SourceLocation RParenLoc, StmtArg body) { Stmt *First = static_cast(first.get()); Expr *Second = static_cast(second.get()); Expr *Third = static_cast(third.get()); Stmt *Body = static_cast(body.get()); if (!getLangOptions().CPlusPlus) { if (DeclStmt *DS = dyn_cast_or_null(First)) { // C99 6.8.5p3: The declaration part of a 'for' statement shall only // declare identifiers for objects having storage class 'auto' or // 'register'. for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end(); DI!=DE; ++DI) { VarDecl *VD = dyn_cast(*DI); if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage()) VD = 0; if (VD == 0) Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for); // FIXME: mark decl erroneous! } } } if (Second) { DefaultFunctionArrayConversion(Second); QualType SecondType = Second->getType(); if (getLangOptions().CPlusPlus) { if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4 return StmtError(); } else if (!SecondType->isScalarType()) // C99 6.8.5p2 return StmtError(Diag(ForLoc, diag::err_typecheck_statement_requires_scalar) << SecondType << Second->getSourceRange()); } first.release(); second.release(); third.release(); body.release(); return Owned(new ForStmt(First, Second, Third, Body, ForLoc)); } Action::OwningStmtResult Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, SourceLocation LParenLoc, StmtArg first, ExprArg second, SourceLocation RParenLoc, StmtArg body) { Stmt *First = static_cast(first.get()); Expr *Second = static_cast(second.get()); Stmt *Body = static_cast(body.get()); if (First) { QualType FirstType; if (DeclStmt *DS = dyn_cast(First)) { if (!DS->hasSolitaryDecl()) return StmtError(Diag((*DS->decl_begin())->getLocation(), diag::err_toomany_element_decls)); Decl *D = DS->getSolitaryDecl(); FirstType = cast(D)->getType(); // C99 6.8.5p3: The declaration part of a 'for' statement shall only // declare identifiers for objects having storage class 'auto' or // 'register'. VarDecl *VD = cast(D); if (VD->isBlockVarDecl() && !VD->hasLocalStorage()) return StmtError(Diag(VD->getLocation(), diag::err_non_variable_decl_in_for)); } else { Expr::isLvalueResult lval = cast(First)->isLvalue(Context); if (lval != Expr::LV_Valid) return StmtError(Diag(First->getLocStart(), diag::err_selector_element_not_lvalue) << First->getSourceRange()); FirstType = static_cast(First)->getType(); } if (!Context.isObjCObjectPointerType(FirstType)) Diag(ForLoc, diag::err_selector_element_type) << FirstType << First->getSourceRange(); } if (Second) { DefaultFunctionArrayConversion(Second); QualType SecondType = Second->getType(); if (!Context.isObjCObjectPointerType(SecondType)) Diag(ForLoc, diag::err_collection_expr_type) << SecondType << Second->getSourceRange(); } first.release(); second.release(); body.release(); return Owned(new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc)); } Action::OwningStmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, IdentifierInfo *LabelII) { // If we are in a block, reject all gotos for now. if (CurBlock) return StmtError(Diag(GotoLoc, diag::err_goto_in_block)); // Look up the record for this label identifier. LabelStmt *&LabelDecl = LabelMap[LabelII]; // If we haven't seen this label yet, create a forward reference. if (LabelDecl == 0) LabelDecl = new LabelStmt(LabelLoc, LabelII, 0); return Owned(new GotoStmt(LabelDecl, GotoLoc, LabelLoc)); } Action::OwningStmtResult Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc, ExprArg DestExp) { // FIXME: Verify that the operand is convertible to void*. return Owned(new IndirectGotoStmt((Expr*)DestExp.release())); } Action::OwningStmtResult Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { Scope *S = CurScope->getContinueParent(); if (!S) { // C99 6.8.6.2p1: A break shall appear only in or as a loop body. return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); } return Owned(new ContinueStmt(ContinueLoc)); } Action::OwningStmtResult Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { Scope *S = CurScope->getBreakParent(); if (!S) { // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); } return Owned(new BreakStmt(BreakLoc)); } /// ActOnBlockReturnStmt - Utility routine to figure out block's return type. /// Action::OwningStmtResult Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { // If this is the first return we've seen in the block, infer the type of // the block from it. if (CurBlock->ReturnType == 0) { if (RetValExp) { // Don't call UsualUnaryConversions(), since we don't want to do // integer promotions here. DefaultFunctionArrayConversion(RetValExp); CurBlock->ReturnType = RetValExp->getType().getTypePtr(); } else CurBlock->ReturnType = Context.VoidTy.getTypePtr(); return Owned(new ReturnStmt(ReturnLoc, RetValExp)); } // Otherwise, verify that this result type matches the previous one. We are // pickier with blocks than for normal functions because we don't have GCC // compatibility to worry about here. if (CurBlock->ReturnType->isVoidType()) { if (RetValExp) { Diag(ReturnLoc, diag::err_return_block_has_expr); delete RetValExp; RetValExp = 0; } return Owned(new ReturnStmt(ReturnLoc, RetValExp)); } if (!RetValExp) return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); // we have a non-void block with an expression, continue checking QualType RetValType = RetValExp->getType(); // For now, restrict multiple return statements in a block to have // strict compatible types only. QualType BlockQT = QualType(CurBlock->ReturnType, 0); if (Context.getCanonicalType(BlockQT).getTypePtr() != Context.getCanonicalType(RetValType).getTypePtr()) { // FIXME: non-localizable string in diagnostic DiagnoseAssignmentResult(Incompatible, ReturnLoc, BlockQT, RetValType, RetValExp, "returning"); return StmtError(); } if (RetValExp) CheckReturnStackAddr(RetValExp, BlockQT, ReturnLoc); return Owned(new ReturnStmt(ReturnLoc, RetValExp)); } Action::OwningStmtResult Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) { Expr *RetValExp = static_cast(rex.release()); if (CurBlock) return ActOnBlockReturnStmt(ReturnLoc, RetValExp); QualType FnRetType; if (FunctionDecl *FD = getCurFunctionDecl()) FnRetType = FD->getResultType(); else FnRetType = getCurMethodDecl()->getResultType(); if (FnRetType->isVoidType()) { if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns) unsigned D = diag::ext_return_has_expr; if (RetValExp->getType()->isVoidType()) D = diag::ext_return_has_void_expr; // return (some void expression); is legal in C++. if (D != diag::ext_return_has_void_expr || !getLangOptions().CPlusPlus) { NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); Diag(ReturnLoc, D) << CurDecl->getDeclName() << isa(CurDecl) << RetValExp->getSourceRange(); } } return Owned(new ReturnStmt(ReturnLoc, RetValExp)); } if (!RetValExp) { unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4 // C99 6.8.6.4p1 (ext_ since GCC warns) if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr; if (FunctionDecl *FD = getCurFunctionDecl()) Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/; else Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/; return Owned(new ReturnStmt(ReturnLoc, (Expr*)0)); } if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) { // we have a non-void function with an expression, continue checking QualType RetValType = RetValExp->getType(); // C99 6.8.6.4p3(136): The return statement is not an assignment. The // overlap restriction of subclause 6.5.16.1 does not apply to the case of // function return. // In C++ the return statement is handled via a copy initialization. // the C version of which boils down to CheckSingleAssignmentConstraints. // FIXME: Leaks RetValExp. if (PerformCopyInitialization(RetValExp, FnRetType, "returning")) return StmtError(); if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc); } return Owned(new ReturnStmt(ReturnLoc, RetValExp)); } Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, std::string *Names, MultiExprArg constraints, MultiExprArg exprs, ExprArg asmString, MultiExprArg clobbers, SourceLocation RParenLoc) { unsigned NumClobbers = clobbers.size(); StringLiteral **Constraints = reinterpret_cast(constraints.get()); Expr **Exprs = reinterpret_cast(exprs.get()); StringLiteral *AsmString = cast((Expr *)asmString.get()); StringLiteral **Clobbers = reinterpret_cast(clobbers.get()); // The parser verifies that there is a string literal here. if (AsmString->isWide()) return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) << AsmString->getSourceRange()); for (unsigned i = 0; i != NumOutputs; i++) { StringLiteral *Literal = Constraints[i]; if (Literal->isWide()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); std::string OutputConstraint(Literal->getStrData(), Literal->getByteLength()); TargetInfo::ConstraintInfo info; if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_output_constraint) << OutputConstraint); // Check that the output exprs are valid lvalues. ParenExpr *OutputExpr = cast(Exprs[i]); Expr::isLvalueResult Result = OutputExpr->isLvalue(Context); if (Result != Expr::LV_Valid) { return StmtError(Diag(OutputExpr->getSubExpr()->getLocStart(), diag::err_asm_invalid_lvalue_in_output) << OutputExpr->getSubExpr()->getSourceRange()); } } for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { StringLiteral *Literal = Constraints[i]; if (Literal->isWide()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); std::string InputConstraint(Literal->getStrData(), Literal->getByteLength()); TargetInfo::ConstraintInfo info; if (!Context.Target.validateInputConstraint(InputConstraint.c_str(), &Names[0], &Names[0] + NumOutputs, info)) { return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_input_constraint) << InputConstraint); } ParenExpr *InputExpr = cast(Exprs[i]); // Only allow void types for memory constraints. if ((info & TargetInfo::CI_AllowsMemory) && !(info & TargetInfo::CI_AllowsRegister)) { if (InputExpr->isLvalue(Context) != Expr::LV_Valid) return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(), diag::err_asm_invalid_lvalue_in_input) << InputConstraint << InputExpr->getSubExpr()->getSourceRange()); } if (info & TargetInfo::CI_AllowsRegister) { if (InputExpr->getType()->isVoidType()) { return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(), diag::err_asm_invalid_type_in_input) << InputExpr->getType() << InputConstraint << InputExpr->getSubExpr()->getSourceRange()); } DefaultFunctionArrayConversion(Exprs[i]); } } // Check that the clobbers are valid. for (unsigned i = 0; i != NumClobbers; i++) { StringLiteral *Literal = Clobbers[i]; if (Literal->isWide()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); llvm::SmallString<16> Clobber(Literal->getStrData(), Literal->getStrData() + Literal->getByteLength()); if (!Context.Target.isValidGCCRegisterName(Clobber.c_str())) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_unknown_register_name) << Clobber.c_str()); } constraints.release(); exprs.release(); asmString.release(); clobbers.release(); return Owned(new AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, NumClobbers, Clobbers, RParenLoc)); } Action::OwningStmtResult Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, StmtArg Parm, StmtArg Body, StmtArg catchList) { Stmt *CatchList = static_cast(catchList.release()); ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen, static_cast(Parm.release()), static_cast(Body.release()), CatchList); return Owned(CatchList ? CatchList : CS); } Action::OwningStmtResult Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) { return Owned(new ObjCAtFinallyStmt(AtLoc, static_cast(Body.release()))); } Action::OwningStmtResult Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtArg Try, StmtArg Catch, StmtArg Finally) { return Owned(new ObjCAtTryStmt(AtLoc, static_cast(Try.release()), static_cast(Catch.release()), static_cast(Finally.release()))); } Action::OwningStmtResult Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw) { return Owned(new ObjCAtThrowStmt(AtLoc, static_cast(Throw.release()))); } Action::OwningStmtResult Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr, StmtArg SynchBody) { return Owned(new ObjCAtSynchronizedStmt(AtLoc, static_cast(SynchExpr.release()), static_cast(SynchBody.release()))); } /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block /// and creates a proper catch handler from them. Action::OwningStmtResult Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclTy *ExDecl, StmtArg HandlerBlock) { // There's nothing to test that ActOnExceptionDecl didn't already test. return Owned(new CXXCatchStmt(CatchLoc, static_cast(ExDecl), static_cast(HandlerBlock.release()))); } /// ActOnCXXTryBlock - Takes a try compound-statement and a number of /// handlers and creates a try statement from them. Action::OwningStmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock, MultiStmtArg RawHandlers) { unsigned NumHandlers = RawHandlers.size(); assert(NumHandlers > 0 && "The parser shouldn't call this if there are no handlers."); Stmt **Handlers = reinterpret_cast(RawHandlers.get()); for(unsigned i = 0; i < NumHandlers - 1; ++i) { CXXCatchStmt *Handler = llvm::cast(Handlers[i]); if (!Handler->getExceptionDecl()) return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all)); } // FIXME: We should detect handlers for the same type as an earlier one. // This one is rather easy. // FIXME: We should detect handlers that cannot catch anything because an // earlier handler catches a superclass. Need to find a method that is not // quadratic for this. // Neither of these are explicitly forbidden, but every compiler detects them // and warns. RawHandlers.release(); return Owned(new CXXTryStmt(TryLoc, static_cast(TryBlock.release()), Handlers, NumHandlers)); }