// GRSimpleVals.cpp - Transfer functions for tracking simple values -*- C++ -*-- // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines GRSimpleVals, a sub-class of GRTransferFuncs that // provides transfer functions for performing simple value tracking with // limited support for symbolics. // //===----------------------------------------------------------------------===// #include "GRSimpleVals.h" #include "BasicObjCFoundationChecks.h" #include "clang/Basic/SourceManager.h" #include "clang/Analysis/PathDiagnostic.h" #include "clang/Analysis/PathSensitive/ValueState.h" #include "clang/Analysis/PathSensitive/BugReporter.h" #include "clang/Analysis/LocalCheckers.h" #include "clang/Analysis/PathSensitive/GRExprEngine.h" #include "llvm/Support/Compiler.h" #include using namespace clang; //===----------------------------------------------------------------------===// // Transfer Function creation for External clients. //===----------------------------------------------------------------------===// GRTransferFuncs* clang::MakeGRSimpleValsTF() { return new GRSimpleVals(); } //===----------------------------------------------------------------------===// // Transfer function for Casts. //===----------------------------------------------------------------------===// RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, NonLVal X, QualType T) { if (!isa(X)) return UnknownVal(); bool isLValType = LVal::IsLValType(T); // Only handle casts from integers to integers. if (!isLValType && !T->isIntegerType()) return UnknownVal(); BasicValueFactory& BasicVals = Eng.getBasicVals(); llvm::APSInt V = cast(X).getValue(); V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T)); V.extOrTrunc(Eng.getContext().getTypeSize(T)); if (isLValType) return lval::ConcreteInt(BasicVals.getValue(V)); else return nonlval::ConcreteInt(BasicVals.getValue(V)); } // Casts. RVal GRSimpleVals::EvalCast(GRExprEngine& Eng, LVal X, QualType T) { // Casts from pointers -> pointers, just return the lval. // // Casts from pointers -> references, just return the lval. These // can be introduced by the frontend for corner cases, e.g // casting from va_list* to __builtin_va_list&. // if (LVal::IsLValType(T) || T->isReferenceType()) return X; assert (T->isIntegerType()); if (!isa(X)) return UnknownVal(); BasicValueFactory& BasicVals = Eng.getBasicVals(); llvm::APSInt V = cast(X).getValue(); V.setIsUnsigned(T->isUnsignedIntegerType() || LVal::IsLValType(T)); V.extOrTrunc(Eng.getContext().getTypeSize(T)); return nonlval::ConcreteInt(BasicVals.getValue(V)); } // Unary operators. RVal GRSimpleVals::EvalMinus(GRExprEngine& Eng, UnaryOperator* U, NonLVal X){ switch (X.getSubKind()) { case nonlval::ConcreteIntKind: return cast(X).EvalMinus(Eng.getBasicVals(), U); default: return UnknownVal(); } } RVal GRSimpleVals::EvalComplement(GRExprEngine& Eng, NonLVal X) { switch (X.getSubKind()) { case nonlval::ConcreteIntKind: return cast(X).EvalComplement(Eng.getBasicVals()); default: return UnknownVal(); } } // Binary operators. static unsigned char LNotOpMap[] = { (unsigned char) BinaryOperator::GE, /* LT => GE */ (unsigned char) BinaryOperator::LE, /* GT => LE */ (unsigned char) BinaryOperator::GT, /* LE => GT */ (unsigned char) BinaryOperator::LT, /* GE => LT */ (unsigned char) BinaryOperator::NE, /* EQ => NE */ (unsigned char) BinaryOperator::EQ /* NE => EQ */ }; RVal GRSimpleVals::DetermEvalBinOpNN(ValueStateManager& StateMgr, BinaryOperator::Opcode Op, NonLVal L, NonLVal R) { BasicValueFactory& BasicVals = StateMgr.getBasicVals(); while (1) { switch (L.getSubKind()) { default: return UnknownVal(); case nonlval::SymIntConstraintValKind: { // Logical not? if (!(Op == BinaryOperator::EQ && R.isZeroConstant())) return UnknownVal(); const SymIntConstraint& C = cast(L).getConstraint(); BinaryOperator::Opcode Opc = C.getOpcode(); if (Opc < BinaryOperator::LT || Opc > BinaryOperator::NE) return UnknownVal(); // For comparison operators, translate the constraint by // changing the opcode. int idx = (unsigned) Opc - (unsigned) BinaryOperator::LT; assert (idx >= 0 && (unsigned) idx < sizeof(LNotOpMap)/sizeof(unsigned char)); Opc = (BinaryOperator::Opcode) LNotOpMap[idx]; const SymIntConstraint& CNew = BasicVals.getConstraint(C.getSymbol(), Opc, C.getInt()); return nonlval::SymIntConstraintVal(CNew); } case nonlval::ConcreteIntKind: if (isa(R)) { const nonlval::ConcreteInt& L_CI = cast(L); const nonlval::ConcreteInt& R_CI = cast(R); return L_CI.EvalBinOp(BasicVals, Op, R_CI); } else { NonLVal tmp = R; R = L; L = tmp; continue; } case nonlval::SymbolValKind: { if (isa(R)) { const SymIntConstraint& C = BasicVals.getConstraint(cast(L).getSymbol(), Op, cast(R).getValue()); return nonlval::SymIntConstraintVal(C); } else return UnknownVal(); } } } } // Binary Operators (except assignments and comma). RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op, LVal L, LVal R) { switch (Op) { default: return UnknownVal(); case BinaryOperator::EQ: return EvalEQ(Eng, L, R); case BinaryOperator::NE: return EvalNE(Eng, L, R); } } // Pointer arithmetic. RVal GRSimpleVals::EvalBinOp(GRExprEngine& Eng, BinaryOperator::Opcode Op, LVal L, NonLVal R) { return UnknownVal(); } // Equality operators for LVals. RVal GRSimpleVals::EvalEQ(GRExprEngine& Eng, LVal L, LVal R) { BasicValueFactory& BasicVals = Eng.getBasicVals(); switch (L.getSubKind()) { default: assert(false && "EQ not implemented for this LVal."); return UnknownVal(); case lval::ConcreteIntKind: if (isa(R)) { bool b = cast(L).getValue() == cast(R).getValue(); return NonLVal::MakeIntTruthVal(BasicVals, b); } else if (isa(R)) { const SymIntConstraint& C = BasicVals.getConstraint(cast(R).getSymbol(), BinaryOperator::EQ, cast(L).getValue()); return nonlval::SymIntConstraintVal(C); } break; case lval::SymbolValKind: { if (isa(R)) { const SymIntConstraint& C = BasicVals.getConstraint(cast(L).getSymbol(), BinaryOperator::EQ, cast(R).getValue()); return nonlval::SymIntConstraintVal(C); } // FIXME: Implement == for lval Symbols. This is mainly useful // in iterator loops when traversing a buffer, e.g. while(z != zTerm). // Since this is not useful for many checkers we'll punt on this for // now. return UnknownVal(); } // FIXME: Different offsets can map to the same memory cell. case lval::ArrayOffsetKind: case lval::FieldOffsetKind: // Fall-through. case lval::DeclValKind: case lval::FuncValKind: case lval::GotoLabelKind: case lval::StringLiteralValKind: return NonLVal::MakeIntTruthVal(BasicVals, L == R); } return NonLVal::MakeIntTruthVal(BasicVals, false); } RVal GRSimpleVals::EvalNE(GRExprEngine& Eng, LVal L, LVal R) { BasicValueFactory& BasicVals = Eng.getBasicVals(); switch (L.getSubKind()) { default: assert(false && "NE not implemented for this LVal."); return UnknownVal(); case lval::ConcreteIntKind: if (isa(R)) { bool b = cast(L).getValue() != cast(R).getValue(); return NonLVal::MakeIntTruthVal(BasicVals, b); } else if (isa(R)) { const SymIntConstraint& C = BasicVals.getConstraint(cast(R).getSymbol(), BinaryOperator::NE, cast(L).getValue()); return nonlval::SymIntConstraintVal(C); } break; case lval::SymbolValKind: { if (isa(R)) { const SymIntConstraint& C = BasicVals.getConstraint(cast(L).getSymbol(), BinaryOperator::NE, cast(R).getValue()); return nonlval::SymIntConstraintVal(C); } // FIXME: Implement != for lval Symbols. This is mainly useful // in iterator loops when traversing a buffer, e.g. while(z != zTerm). // Since this is not useful for many checkers we'll punt on this for // now. return UnknownVal(); break; } // FIXME: Different offsets can map to the same memory cell. case lval::ArrayOffsetKind: case lval::FieldOffsetKind: // Fall-through. case lval::DeclValKind: case lval::FuncValKind: case lval::GotoLabelKind: case lval::StringLiteralValKind: return NonLVal::MakeIntTruthVal(BasicVals, L != R); } return NonLVal::MakeIntTruthVal(BasicVals, true); } //===----------------------------------------------------------------------===// // Transfer function for function calls. //===----------------------------------------------------------------------===// void GRSimpleVals::EvalCall(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, CallExpr* CE, RVal L, ExplodedNode* Pred) { ValueStateManager& StateMgr = Eng.getStateManager(); const ValueState* St = Builder.GetState(Pred); // Invalidate all arguments passed in by reference (LVals). for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { RVal V = StateMgr.GetRVal(St, *I); if (isa(V)) St = StateMgr.SetRVal(St, cast(V), UnknownVal()); else if (isa(V)) St = StateMgr.SetRVal(St, cast(V).getLVal(), UnknownVal()); } // Make up a symbol for the return value of this function. if (CE->getType() != Eng.getContext().VoidTy) { unsigned Count = Builder.getCurrentBlockCount(); SymbolID Sym = Eng.getSymbolManager().getConjuredSymbol(CE, Count); RVal X = LVal::IsLValType(CE->getType()) ? cast(lval::SymbolVal(Sym)) : cast(nonlval::SymbolVal(Sym)); St = StateMgr.SetRVal(St, CE, X, Eng.getCFG().isBlkExpr(CE), false); } Builder.MakeNode(Dst, CE, Pred, St); } //===----------------------------------------------------------------------===// // Transfer function for Objective-C message expressions. //===----------------------------------------------------------------------===// void GRSimpleVals::EvalObjCMessageExpr(ExplodedNodeSet& Dst, GRExprEngine& Eng, GRStmtNodeBuilder& Builder, ObjCMessageExpr* ME, ExplodedNode* Pred) { // The basic transfer function logic for message expressions does nothing. // We just invalidate all arguments passed in by references. ValueStateManager& StateMgr = Eng.getStateManager(); const ValueState* St = Builder.GetState(Pred); for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end(); I != E; ++I) { RVal V = StateMgr.GetRVal(St, *I); if (isa(V)) St = StateMgr.SetRVal(St, cast(V), UnknownVal()); } Builder.MakeNode(Dst, ME, Pred, St); }