//= ValueState*cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SymbolID, ExprBindKey, and ValueState* // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/ValueState.h" #include "llvm/ADT/SmallSet.h" #include "clang/Analysis/PathSensitive/GRTransferFuncs.h" using namespace clang; bool ValueState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const { // Retrieve the NE-set associated with the given symbol. const ConstNotEqTy::data_type* T = ConstNotEq.lookup(sym); // See if V is present in the NE-set. return T ? T->contains(&V) : false; } bool ValueState::isEqual(SymbolID sym, const llvm::APSInt& V) const { // Retrieve the EQ-set associated with the given symbol. const ConstEqTy::data_type* T = ConstEq.lookup(sym); // See if V is present in the EQ-set. return T ? **T == V : false; } const llvm::APSInt* ValueState::getSymVal(SymbolID sym) const { ConstEqTy::data_type* T = ConstEq.lookup(sym); return T ? *T : NULL; } const ValueState* ValueStateManager::RemoveDeadBindings(const ValueState* St, Stmt* Loc, const LiveVariables& Liveness, DeadSymbolsTy& DSymbols) { // This code essentially performs a "mark-and-sweep" of the VariableBindings. // The roots are any Block-level exprs and Decls that our liveness algorithm // tells us are live. We then see what Decls they may reference, and keep // those around. This code more than likely can be made faster, and the // frequency of which this method is called should be experimented with // for optimum performance. DRoots.clear(); StoreManager::LiveSymbolsTy LSymbols; ValueState NewSt = *St; // FIXME: Put this in environment. // Clean up the environment. // Drop bindings for subexpressions. NewSt.Env = EnvMgr.RemoveSubExprBindings(NewSt.Env); // Iterate over the block-expr bindings. for (ValueState::beb_iterator I = St->beb_begin(), E = St->beb_end(); I!=E ; ++I) { Expr* BlkExpr = I.getKey(); if (Liveness.isLive(Loc, BlkExpr)) { RVal X = I.getData(); if (isa(X)) { lval::DeclVal LV = cast(X); DRoots.push_back(LV.getDecl()); } for (RVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); SI != SE; ++SI) { LSymbols.insert(*SI); } } else { RVal X = I.getData(); if (X.isUndef() && cast(X).getData()) continue; NewSt.Env = EnvMgr.RemoveBlkExpr(NewSt.Env, BlkExpr); } } // Clean up the store. DSymbols.clear(); NewSt.St = StMgr->RemoveDeadBindings(St->getStore(), Loc, Liveness, DRoots, LSymbols, DSymbols); // Remove the dead symbols from the symbol tracker. for (ValueState::ce_iterator I = St->ce_begin(), E=St->ce_end(); I!=E; ++I) { SymbolID sym = I.getKey(); if (!LSymbols.count(sym)) { DSymbols.insert(sym); NewSt.ConstEq = CEFactory.Remove(NewSt.ConstEq, sym); } } for (ValueState::cne_iterator I = St->cne_begin(), E=St->cne_end(); I!=E;++I){ SymbolID sym = I.getKey(); if (!LSymbols.count(sym)) { DSymbols.insert(sym); NewSt.ConstNotEq = CNEFactory.Remove(NewSt.ConstNotEq, sym); } } return getPersistentState(NewSt); } const ValueState* ValueStateManager::SetRVal(const ValueState* St, LVal LV, RVal V) { Store OldStore = St->getStore(); Store NewStore = StMgr->SetRVal(OldStore, LV, V); if (NewStore == OldStore) return St; ValueState NewSt = *St; NewSt.St = NewStore; return getPersistentState(NewSt); } const ValueState* ValueStateManager::Unbind(const ValueState* St, LVal LV) { Store OldStore = St->getStore(); Store NewStore = StMgr->Remove(OldStore, LV); if (NewStore == OldStore) return St; ValueState NewSt = *St; NewSt.St = NewStore; return getPersistentState(NewSt); } const ValueState* ValueStateManager::AddNE(const ValueState* St, SymbolID sym, const llvm::APSInt& V) { // First, retrieve the NE-set associated with the given symbol. ValueState::ConstNotEqTy::data_type* T = St->ConstNotEq.lookup(sym); ValueState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet(); // Now add V to the NE set. S = ISetFactory.Add(S, &V); // Create a new state with the old binding replaced. ValueState NewSt = *St; NewSt.ConstNotEq = CNEFactory.Add(NewSt.ConstNotEq, sym, S); // Get the persistent copy. return getPersistentState(NewSt); } const ValueState* ValueStateManager::AddEQ(const ValueState* St, SymbolID sym, const llvm::APSInt& V) { // Create a new state with the old binding replaced. ValueState NewSt = *St; NewSt.ConstEq = CEFactory.Add(NewSt.ConstEq, sym, &V); // Get the persistent copy. return getPersistentState(NewSt); } const ValueState* ValueStateManager::getInitialState() { ValueState StateImpl(EnvMgr.getInitialEnvironment(), StMgr->getInitialStore(), GDMFactory.GetEmptyMap(), CNEFactory.GetEmptyMap(), CEFactory.GetEmptyMap()); return getPersistentState(StateImpl); } const ValueState* ValueStateManager::getPersistentState(ValueState& State) { llvm::FoldingSetNodeID ID; State.Profile(ID); void* InsertPos; if (ValueState* I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) return I; ValueState* I = (ValueState*) Alloc.Allocate(); new (I) ValueState(State); StateSet.InsertNode(I, InsertPos); return I; } void ValueState::printDOT(std::ostream& Out, CheckerStatePrinter* P) const { print(Out, P, "\\l", "\\|"); } void ValueState::printStdErr(CheckerStatePrinter* P) const { print(*llvm::cerr, P); } void ValueState::print(std::ostream& Out, CheckerStatePrinter* P, const char* nl, const char* sep) const { // Print Variable Bindings Out << "Variables:" << nl; bool isFirst = true; for (vb_iterator I = vb_begin(), E = vb_end(); I != E; ++I) { if (isFirst) isFirst = false; else Out << nl; Out << ' ' << I.getKey()->getName() << " : "; I.getData().print(Out); } // Print Subexpression bindings. isFirst = true; for (seb_iterator I = seb_begin(), E = seb_end(); I != E; ++I) { if (isFirst) { Out << nl << nl << "Sub-Expressions:" << nl; isFirst = false; } else { Out << nl; } Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } // Print block-expression bindings. isFirst = true; for (beb_iterator I = beb_begin(), E = beb_end(); I != E; ++I) { if (isFirst) { Out << nl << nl << "Block-level Expressions:" << nl; isFirst = false; } else { Out << nl; } Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } // Print equality constraints. if (!ConstEq.isEmpty()) { Out << nl << sep << "'==' constraints:"; for (ConstEqTy::iterator I = ConstEq.begin(), E = ConstEq.end(); I!=E; ++I) { Out << nl << " $" << I.getKey() << " : " << I.getData()->toString(); } } // Print != constraints. if (!ConstNotEq.isEmpty()) { Out << nl << sep << "'!=' constraints:"; for (ConstNotEqTy::iterator I = ConstNotEq.begin(), EI = ConstNotEq.end(); I != EI; ++I) { Out << nl << " $" << I.getKey() << " : "; isFirst = true; IntSetTy::iterator J = I.getData().begin(), EJ = I.getData().end(); for ( ; J != EJ; ++J) { if (isFirst) isFirst = false; else Out << ", "; Out << (*J)->toString(); } } } // Print checker-specific data. if (P && CheckerState) P->PrintCheckerState(Out, CheckerState, nl, sep); } //===----------------------------------------------------------------------===// // Queries. //===----------------------------------------------------------------------===// bool ValueStateManager::isEqual(const ValueState* state, Expr* Ex, const llvm::APSInt& Y) { RVal V = GetRVal(state, Ex); if (lval::ConcreteInt* X = dyn_cast(&V)) return X->getValue() == Y; if (nonlval::ConcreteInt* X = dyn_cast(&V)) return X->getValue() == Y; if (nonlval::SymbolVal* X = dyn_cast(&V)) return state->isEqual(X->getSymbol(), Y); if (lval::SymbolVal* X = dyn_cast(&V)) return state->isEqual(X->getSymbol(), Y); return false; } bool ValueStateManager::isEqual(const ValueState* state, Expr* Ex, uint64_t x) { return isEqual(state, Ex, BasicVals.getValue(x, Ex->getType())); } //===----------------------------------------------------------------------===// // "Assume" logic. //===----------------------------------------------------------------------===// const ValueState* ValueStateManager::Assume(const ValueState* St, LVal Cond, bool Assumption, bool& isFeasible) { St = AssumeAux(St, Cond, Assumption, isFeasible); return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible) : St; } const ValueState* ValueStateManager::AssumeAux(const ValueState* St, LVal Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this LVal."); return St; case lval::SymbolValKind: if (Assumption) return AssumeSymNE(St, cast(Cond).getSymbol(), BasicVals.getZeroWithPtrWidth(), isFeasible); else return AssumeSymEQ(St, cast(Cond).getSymbol(), BasicVals.getZeroWithPtrWidth(), isFeasible); case lval::DeclValKind: case lval::FuncValKind: case lval::GotoLabelKind: case lval::StringLiteralValKind: isFeasible = Assumption; return St; case lval::FieldOffsetKind: return AssumeAux(St, cast(Cond).getBase(), Assumption, isFeasible); case lval::ArrayOffsetKind: return AssumeAux(St, cast(Cond).getBase(), Assumption, isFeasible); case lval::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } } } const ValueState* ValueStateManager::Assume(const ValueState* St, NonLVal Cond, bool Assumption, bool& isFeasible) { St = AssumeAux(St, Cond, Assumption, isFeasible); return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible) : St; } const ValueState* ValueStateManager::AssumeAux(const ValueState* St, NonLVal Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this NonLVal."); return St; case nonlval::SymbolValKind: { nonlval::SymbolVal& SV = cast(Cond); SymbolID sym = SV.getSymbol(); if (Assumption) return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)), isFeasible); else return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)), isFeasible); } case nonlval::SymIntConstraintValKind: return AssumeSymInt(St, Assumption, cast(Cond).getConstraint(), isFeasible); case nonlval::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } case nonlval::LValAsIntegerKind: { return AssumeAux(St, cast(Cond).getLVal(), Assumption, isFeasible); } } } const ValueState* ValueStateManager::AssumeSymInt(const ValueState* St, bool Assumption, const SymIntConstraint& C, bool& isFeasible) { switch (C.getOpcode()) { default: // No logic yet for other operators. isFeasible = true; return St; case BinaryOperator::EQ: if (Assumption) return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); case BinaryOperator::NE: if (Assumption) return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); case BinaryOperator::GE: if (Assumption) return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible); case BinaryOperator::LE: if (Assumption) return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible); } } //===----------------------------------------------------------------------===// // FIXME: This should go into a plug-in constraint engine. //===----------------------------------------------------------------------===// const ValueState* ValueStateManager::AssumeSymNE(const ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // First, determine if sym == X, where X != V. if (const llvm::APSInt* X = St->getSymVal(sym)) { isFeasible = *X != V; return St; } // Second, determine if sym != V. if (St->isNotEqual(sym, V)) { isFeasible = true; return St; } // If we reach here, sym is not a constant and we don't know if it is != V. // Make that assumption. isFeasible = true; return AddNE(St, sym, V); } const ValueState* ValueStateManager::AssumeSymEQ(const ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // First, determine if sym == X, where X != V. if (const llvm::APSInt* X = St->getSymVal(sym)) { isFeasible = *X == V; return St; } // Second, determine if sym != V. if (St->isNotEqual(sym, V)) { isFeasible = false; return St; } // If we reach here, sym is not a constant and we don't know if it is == V. // Make that assumption. isFeasible = true; return AddEQ(St, sym, V); } const ValueState* ValueStateManager::AssumeSymLT(const ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // FIXME: For now have assuming x < y be the same as assuming sym != V; return AssumeSymNE(St, sym, V, isFeasible); } const ValueState* ValueStateManager::AssumeSymGT(const ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // FIXME: For now have assuming x > y be the same as assuming sym != V; return AssumeSymNE(St, sym, V, isFeasible); } const ValueState* ValueStateManager::AssumeSymGE(const ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // FIXME: Primitive logic for now. Only reject a path if the value of // sym is a constant X and !(X >= V). if (const llvm::APSInt* X = St->getSymVal(sym)) { isFeasible = *X >= V; return St; } isFeasible = true; return St; } const ValueState* ValueStateManager::AssumeSymLE(const ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // FIXME: Primitive logic for now. Only reject a path if the value of // sym is a constant X and !(X <= V). if (const llvm::APSInt* X = St->getSymVal(sym)) { isFeasible = *X <= V; return St; } isFeasible = true; return St; }