//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ASTContext interface. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/Serialize.h" #include "llvm/Bitcode/Deserialize.h" using namespace clang; enum FloatingRank { FloatRank, DoubleRank, LongDoubleRank }; ASTContext::~ASTContext() { // Deallocate all the types. while (!Types.empty()) { Types.back()->Destroy(*this); Types.pop_back(); } TUDecl->Destroy(*this); } void ASTContext::PrintStats() const { fprintf(stderr, "*** AST Context Stats:\n"); fprintf(stderr, " %d types total.\n", (int)Types.size()); unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0; unsigned NumVector = 0, NumComplex = 0; unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0; unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0; unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0; unsigned NumObjCQualifiedIds = 0; unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0; for (unsigned i = 0, e = Types.size(); i != e; ++i) { Type *T = Types[i]; if (isa(T)) ++NumBuiltin; else if (isa(T)) ++NumPointer; else if (isa(T)) ++NumReference; else if (isa(T)) ++NumComplex; else if (isa(T)) ++NumArray; else if (isa(T)) ++NumVector; else if (isa(T)) ++NumFunctionNP; else if (isa(T)) ++NumFunctionP; else if (isa(T)) ++NumTypeName; else if (TagType *TT = dyn_cast(T)) { ++NumTagged; switch (TT->getDecl()->getTagKind()) { default: assert(0 && "Unknown tagged type!"); case TagDecl::TK_struct: ++NumTagStruct; break; case TagDecl::TK_union: ++NumTagUnion; break; case TagDecl::TK_class: ++NumTagClass; break; case TagDecl::TK_enum: ++NumTagEnum; break; } } else if (isa(T)) ++NumObjCInterfaces; else if (isa(T)) ++NumObjCQualifiedInterfaces; else if (isa(T)) ++NumObjCQualifiedIds; else if (isa(T)) ++NumTypeOfTypes; else if (isa(T)) ++NumTypeOfExprs; else { QualType(T, 0).dump(); assert(0 && "Unknown type!"); } } fprintf(stderr, " %d builtin types\n", NumBuiltin); fprintf(stderr, " %d pointer types\n", NumPointer); fprintf(stderr, " %d reference types\n", NumReference); fprintf(stderr, " %d complex types\n", NumComplex); fprintf(stderr, " %d array types\n", NumArray); fprintf(stderr, " %d vector types\n", NumVector); fprintf(stderr, " %d function types with proto\n", NumFunctionP); fprintf(stderr, " %d function types with no proto\n", NumFunctionNP); fprintf(stderr, " %d typename (typedef) types\n", NumTypeName); fprintf(stderr, " %d tagged types\n", NumTagged); fprintf(stderr, " %d struct types\n", NumTagStruct); fprintf(stderr, " %d union types\n", NumTagUnion); fprintf(stderr, " %d class types\n", NumTagClass); fprintf(stderr, " %d enum types\n", NumTagEnum); fprintf(stderr, " %d interface types\n", NumObjCInterfaces); fprintf(stderr, " %d protocol qualified interface types\n", NumObjCQualifiedInterfaces); fprintf(stderr, " %d protocol qualified id types\n", NumObjCQualifiedIds); fprintf(stderr, " %d typeof types\n", NumTypeOfTypes); fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprs); fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+ NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+ NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+ NumFunctionP*sizeof(FunctionTypeProto)+ NumFunctionNP*sizeof(FunctionTypeNoProto)+ NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+ NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr))); } void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr()); } void ASTContext::InitBuiltinTypes() { assert(VoidTy.isNull() && "Context reinitialized?"); // C99 6.2.5p19. InitBuiltinType(VoidTy, BuiltinType::Void); // C99 6.2.5p2. InitBuiltinType(BoolTy, BuiltinType::Bool); // C99 6.2.5p3. if (Target.isCharSigned()) InitBuiltinType(CharTy, BuiltinType::Char_S); else InitBuiltinType(CharTy, BuiltinType::Char_U); // C99 6.2.5p4. InitBuiltinType(SignedCharTy, BuiltinType::SChar); InitBuiltinType(ShortTy, BuiltinType::Short); InitBuiltinType(IntTy, BuiltinType::Int); InitBuiltinType(LongTy, BuiltinType::Long); InitBuiltinType(LongLongTy, BuiltinType::LongLong); // C99 6.2.5p6. InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); // C99 6.2.5p10. InitBuiltinType(FloatTy, BuiltinType::Float); InitBuiltinType(DoubleTy, BuiltinType::Double); InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); // C99 6.2.5p11. FloatComplexTy = getComplexType(FloatTy); DoubleComplexTy = getComplexType(DoubleTy); LongDoubleComplexTy = getComplexType(LongDoubleTy); BuiltinVaListType = QualType(); ObjCIdType = QualType(); IdStructType = 0; ObjCClassType = QualType(); ClassStructType = 0; ObjCConstantStringType = QualType(); // void * type VoidPtrTy = getPointerType(VoidTy); } //===----------------------------------------------------------------------===// // Type Sizing and Analysis //===----------------------------------------------------------------------===// /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified /// scalar floating point type. const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { const BuiltinType *BT = T->getAsBuiltinType(); assert(BT && "Not a floating point type!"); switch (BT->getKind()) { default: assert(0 && "Not a floating point type!"); case BuiltinType::Float: return Target.getFloatFormat(); case BuiltinType::Double: return Target.getDoubleFormat(); case BuiltinType::LongDouble: return Target.getLongDoubleFormat(); } } /// getTypeSize - Return the size of the specified type, in bits. This method /// does not work on incomplete types. std::pair ASTContext::getTypeInfo(QualType T) { T = getCanonicalType(T); uint64_t Width; unsigned Align; switch (T->getTypeClass()) { case Type::TypeName: assert(0 && "Not a canonical type!"); case Type::FunctionNoProto: case Type::FunctionProto: default: assert(0 && "Incomplete types have no size!"); case Type::VariableArray: assert(0 && "VLAs not implemented yet!"); case Type::ConstantArray: { ConstantArrayType *CAT = cast(T); std::pair EltInfo = getTypeInfo(CAT->getElementType()); Width = EltInfo.first*CAT->getSize().getZExtValue(); Align = EltInfo.second; break; } case Type::ExtVector: case Type::Vector: { std::pair EltInfo = getTypeInfo(cast(T)->getElementType()); Width = EltInfo.first*cast(T)->getNumElements(); // FIXME: This isn't right for unusual vectors Align = Width; break; } case Type::Builtin: switch (cast(T)->getKind()) { default: assert(0 && "Unknown builtin type!"); case BuiltinType::Void: assert(0 && "Incomplete types have no size!"); case BuiltinType::Bool: Width = Target.getBoolWidth(); Align = Target.getBoolAlign(); break; case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::UChar: case BuiltinType::SChar: Width = Target.getCharWidth(); Align = Target.getCharAlign(); break; case BuiltinType::UShort: case BuiltinType::Short: Width = Target.getShortWidth(); Align = Target.getShortAlign(); break; case BuiltinType::UInt: case BuiltinType::Int: Width = Target.getIntWidth(); Align = Target.getIntAlign(); break; case BuiltinType::ULong: case BuiltinType::Long: Width = Target.getLongWidth(); Align = Target.getLongAlign(); break; case BuiltinType::ULongLong: case BuiltinType::LongLong: Width = Target.getLongLongWidth(); Align = Target.getLongLongAlign(); break; case BuiltinType::Float: Width = Target.getFloatWidth(); Align = Target.getFloatAlign(); break; case BuiltinType::Double: Width = Target.getDoubleWidth(); Align = Target.getDoubleAlign(); break; case BuiltinType::LongDouble: Width = Target.getLongDoubleWidth(); Align = Target.getLongDoubleAlign(); break; } break; case Type::ASQual: // FIXME: Pointers into different addr spaces could have different sizes and // alignment requirements: getPointerInfo should take an AddrSpace. return getTypeInfo(QualType(cast(T)->getBaseType(), 0)); case Type::ObjCQualifiedId: Width = Target.getPointerWidth(0); Align = Target.getPointerAlign(0); break; case Type::Pointer: { unsigned AS = cast(T)->getPointeeType().getAddressSpace(); Width = Target.getPointerWidth(AS); Align = Target.getPointerAlign(AS); break; } case Type::Reference: // "When applied to a reference or a reference type, the result is the size // of the referenced type." C++98 5.3.3p2: expr.sizeof. // FIXME: This is wrong for struct layout: a reference in a struct has // pointer size. return getTypeInfo(cast(T)->getPointeeType()); case Type::Complex: { // Complex types have the same alignment as their elements, but twice the // size. std::pair EltInfo = getTypeInfo(cast(T)->getElementType()); Width = EltInfo.first*2; Align = EltInfo.second; break; } case Type::ObjCInterface: { ObjCInterfaceType *ObjCI = cast(T); const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); Width = Layout.getSize(); Align = Layout.getAlignment(); break; } case Type::Tagged: { if (EnumType *ET = dyn_cast(cast(T))) return getTypeInfo(ET->getDecl()->getIntegerType()); RecordType *RT = cast(T); const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); Width = Layout.getSize(); Align = Layout.getAlignment(); break; } } assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2"); return std::make_pair(Width, Align); } /// LayoutField - Field layout. void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo, bool IsUnion, bool StructIsPacked, ASTContext &Context) { bool FieldIsPacked = StructIsPacked || FD->getAttr(); uint64_t FieldOffset = IsUnion ? 0 : Size; uint64_t FieldSize; unsigned FieldAlign; if (const Expr *BitWidthExpr = FD->getBitWidth()) { // TODO: Need to check this algorithm on other targets! // (tested on Linux-X86) llvm::APSInt I(32); bool BitWidthIsICE = BitWidthExpr->isIntegerConstantExpr(I, Context); assert (BitWidthIsICE && "Invalid BitField size expression"); FieldSize = I.getZExtValue(); std::pair FieldInfo = Context.getTypeInfo(FD->getType()); uint64_t TypeSize = FieldInfo.first; FieldAlign = FieldInfo.second; if (FieldIsPacked) FieldAlign = 1; if (const AlignedAttr *AA = FD->getAttr()) FieldAlign = std::max(FieldAlign, AA->getAlignment()); // Check if we need to add padding to give the field the correct // alignment. if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize) FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); // Padding members don't affect overall alignment if (!FD->getIdentifier()) FieldAlign = 1; } else { if (FD->getType()->isIncompleteType()) { // This must be a flexible array member; we can't directly // query getTypeInfo about these, so we figure it out here. // Flexible array members don't have any size, but they // have to be aligned appropriately for their element type. FieldSize = 0; const ArrayType* ATy = FD->getType()->getAsArrayType(); FieldAlign = Context.getTypeAlign(ATy->getElementType()); } else { std::pair FieldInfo = Context.getTypeInfo(FD->getType()); FieldSize = FieldInfo.first; FieldAlign = FieldInfo.second; } if (FieldIsPacked) FieldAlign = 8; if (const AlignedAttr *AA = FD->getAttr()) FieldAlign = std::max(FieldAlign, AA->getAlignment()); // Round up the current record size to the field's alignment boundary. FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1); } // Place this field at the current location. FieldOffsets[FieldNo] = FieldOffset; // Reserve space for this field. if (IsUnion) { Size = std::max(Size, FieldSize); } else { Size = FieldOffset + FieldSize; } // Remember max struct/class alignment. Alignment = std::max(Alignment, FieldAlign); } /// getASTObjcInterfaceLayout - Get or compute information about the layout of the /// specified Objective C, which indicates its size and ivar /// position information. const ASTRecordLayout & ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) { // Look up this layout, if already laid out, return what we have. const ASTRecordLayout *&Entry = ASTObjCInterfaces[D]; if (Entry) return *Entry; // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. ASTRecordLayout *NewEntry = NULL; unsigned FieldCount = D->ivar_size(); if (ObjCInterfaceDecl *SD = D->getSuperClass()) { FieldCount++; const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD); unsigned Alignment = SL.getAlignment(); uint64_t Size = SL.getSize(); NewEntry = new ASTRecordLayout(Size, Alignment); NewEntry->InitializeLayout(FieldCount); NewEntry->SetFieldOffset(0, 0); // Super class is at the beginning of the layout. } else { NewEntry = new ASTRecordLayout(); NewEntry->InitializeLayout(FieldCount); } Entry = NewEntry; bool IsPacked = D->getAttr(); if (const AlignedAttr *AA = D->getAttr()) NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), AA->getAlignment())); // Layout each ivar sequentially. unsigned i = 0; for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), IVE = D->ivar_end(); IVI != IVE; ++IVI) { const ObjCIvarDecl* Ivar = (*IVI); NewEntry->LayoutField(Ivar, i++, false, IsPacked, *this); } // Finally, round the size of the total struct up to the alignment of the // struct itself. NewEntry->FinalizeLayout(); return *NewEntry; } /// getASTRecordLayout - Get or compute information about the layout of the /// specified record (struct/union/class), which indicates its size and field /// position information. const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) { assert(D->isDefinition() && "Cannot get layout of forward declarations!"); // Look up this layout, if already laid out, return what we have. const ASTRecordLayout *&Entry = ASTRecordLayouts[D]; if (Entry) return *Entry; // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. ASTRecordLayout *NewEntry = new ASTRecordLayout(); Entry = NewEntry; NewEntry->InitializeLayout(D->getNumMembers()); bool StructIsPacked = D->getAttr(); bool IsUnion = D->isUnion(); if (const AlignedAttr *AA = D->getAttr()) NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), AA->getAlignment())); // Layout each field, for now, just sequentially, respecting alignment. In // the future, this will need to be tweakable by targets. for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) { const FieldDecl *FD = D->getMember(i); NewEntry->LayoutField(FD, i, IsUnion, StructIsPacked, *this); } // Finally, round the size of the total struct up to the alignment of the // struct itself. NewEntry->FinalizeLayout(); return *NewEntry; } //===----------------------------------------------------------------------===// // Type creation/memoization methods //===----------------------------------------------------------------------===// QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) { QualType CanT = getCanonicalType(T); if (CanT.getAddressSpace() == AddressSpace) return T; // Type's cannot have multiple ASQuals, therefore we know we only have to deal // with CVR qualifiers from here on out. assert(CanT.getAddressSpace() == 0 && "Type is already address space qualified"); // Check if we've already instantiated an address space qual'd type of this // type. llvm::FoldingSetNodeID ID; ASQualType::Profile(ID, T.getTypePtr(), AddressSpace); void *InsertPos = 0; if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ASQy, 0); // If the base type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getASQualType(CanT, AddressSpace); // Get the new insert position for the node we care about. ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace); ASQualTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, T.getCVRQualifiers()); } /// getComplexType - Return the uniqued reference to the type for a complex /// number with the specified element type. QualType ASTContext::getComplexType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; ComplexType::Profile(ID, T); void *InsertPos = 0; if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(CT, 0); // If the pointee type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getComplexType(getCanonicalType(T)); // Get the new insert position for the node we care about. ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } ComplexType *New = new ComplexType(T, Canonical); Types.push_back(New); ComplexTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getPointerType - Return the uniqued reference to the type for a pointer to /// the specified type. QualType ASTContext::getPointerType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; PointerType::Profile(ID, T); void *InsertPos = 0; if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(PT, 0); // If the pointee type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getPointerType(getCanonicalType(T)); // Get the new insert position for the node we care about. PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } PointerType *New = new PointerType(T, Canonical); Types.push_back(New); PointerTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getReferenceType - Return the uniqued reference to the type for a reference /// to the specified type. QualType ASTContext::getReferenceType(QualType T) { // Unique pointers, to guarantee there is only one pointer of a particular // structure. llvm::FoldingSetNodeID ID; ReferenceType::Profile(ID, T); void *InsertPos = 0; if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(RT, 0); // If the referencee type isn't canonical, this won't be a canonical type // either, so fill in the canonical type field. QualType Canonical; if (!T->isCanonical()) { Canonical = getReferenceType(getCanonicalType(T)); // Get the new insert position for the node we care about. ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } ReferenceType *New = new ReferenceType(T, Canonical); Types.push_back(New); ReferenceTypes.InsertNode(New, InsertPos); return QualType(New, 0); } /// getConstantArrayType - Return the unique reference to the type for an /// array of the specified element type. QualType ASTContext::getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { llvm::FoldingSetNodeID ID; ConstantArrayType::Profile(ID, EltTy, ArySize); void *InsertPos = 0; if (ConstantArrayType *ATP = ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ATP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!EltTy->isCanonical()) { Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, ASM, EltTypeQuals); // Get the new insert position for the node we care about. ConstantArrayType *NewIP = ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals); ConstantArrayTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getVariableArrayType - Returns a non-unique reference to the type for a /// variable array of the specified element type. QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { // Since we don't unique expressions, it isn't possible to unique VLA's // that have an expression provided for their size. VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals); VariableArrayTypes.push_back(New); Types.push_back(New); return QualType(New, 0); } QualType ASTContext::getIncompleteArrayType(QualType EltTy, ArrayType::ArraySizeModifier ASM, unsigned EltTypeQuals) { llvm::FoldingSetNodeID ID; IncompleteArrayType::Profile(ID, EltTy); void *InsertPos = 0; if (IncompleteArrayType *ATP = IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(ATP, 0); // If the element type isn't canonical, this won't be a canonical type // either, so fill in the canonical type field. QualType Canonical; if (!EltTy->isCanonical()) { Canonical = getIncompleteArrayType(getCanonicalType(EltTy), ASM, EltTypeQuals); // Get the new insert position for the node we care about. IncompleteArrayType *NewIP = IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals); IncompleteArrayTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getVectorType - Return the unique reference to a vector type of /// the specified element type and size. VectorType must be a built-in type. QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) { BuiltinType *baseType; baseType = dyn_cast(getCanonicalType(vecType).getTypePtr()); assert(baseType != 0 && "getVectorType(): Expecting a built-in type"); // Check if we've already instantiated a vector of this type. llvm::FoldingSetNodeID ID; VectorType::Profile(ID, vecType, NumElts, Type::Vector); void *InsertPos = 0; if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(VTP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!vecType->isCanonical()) { Canonical = getVectorType(getCanonicalType(vecType), NumElts); // Get the new insert position for the node we care about. VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } VectorType *New = new VectorType(vecType, NumElts, Canonical); VectorTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getExtVectorType - Return the unique reference to an extended vector type of /// the specified element type and size. VectorType must be a built-in type. QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) { BuiltinType *baseType; baseType = dyn_cast(getCanonicalType(vecType).getTypePtr()); assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type"); // Check if we've already instantiated a vector of this type. llvm::FoldingSetNodeID ID; VectorType::Profile(ID, vecType, NumElts, Type::ExtVector); void *InsertPos = 0; if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(VTP, 0); // If the element type isn't canonical, this won't be a canonical type either, // so fill in the canonical type field. QualType Canonical; if (!vecType->isCanonical()) { Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); // Get the new insert position for the node we care about. VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical); VectorTypes.InsertNode(New, InsertPos); Types.push_back(New); return QualType(New, 0); } /// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'. /// QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) { // Unique functions, to guarantee there is only one function of a particular // structure. llvm::FoldingSetNodeID ID; FunctionTypeNoProto::Profile(ID, ResultTy); void *InsertPos = 0; if (FunctionTypeNoProto *FT = FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos)) return QualType(FT, 0); QualType Canonical; if (!ResultTy->isCanonical()) { Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy)); // Get the new insert position for the node we care about. FunctionTypeNoProto *NewIP = FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical); Types.push_back(New); FunctionTypeNoProtos.InsertNode(New, InsertPos); return QualType(New, 0); } /// getFunctionType - Return a normal function type with a typed argument /// list. isVariadic indicates whether the argument list includes '...'. QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray, unsigned NumArgs, bool isVariadic) { // Unique functions, to guarantee there is only one function of a particular // structure. llvm::FoldingSetNodeID ID; FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic); void *InsertPos = 0; if (FunctionTypeProto *FTP = FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos)) return QualType(FTP, 0); // Determine whether the type being created is already canonical or not. bool isCanonical = ResultTy->isCanonical(); for (unsigned i = 0; i != NumArgs && isCanonical; ++i) if (!ArgArray[i]->isCanonical()) isCanonical = false; // If this type isn't canonical, get the canonical version of it. QualType Canonical; if (!isCanonical) { llvm::SmallVector CanonicalArgs; CanonicalArgs.reserve(NumArgs); for (unsigned i = 0; i != NumArgs; ++i) CanonicalArgs.push_back(getCanonicalType(ArgArray[i])); Canonical = getFunctionType(getCanonicalType(ResultTy), &CanonicalArgs[0], NumArgs, isVariadic); // Get the new insert position for the node we care about. FunctionTypeProto *NewIP = FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos); assert(NewIP == 0 && "Shouldn't be in the map!"); } // FunctionTypeProto objects are not allocated with new because they have a // variable size array (for parameter types) at the end of them. FunctionTypeProto *FTP = (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + NumArgs*sizeof(QualType)); new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic, Canonical); Types.push_back(FTP); FunctionTypeProtos.InsertNode(FTP, InsertPos); return QualType(FTP, 0); } /// getTypeDeclType - Return the unique reference to the type for the /// specified type declaration. QualType ASTContext::getTypeDeclType(TypeDecl *Decl) { if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); if (TypedefDecl *Typedef = dyn_cast_or_null(Decl)) return getTypedefType(Typedef); else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast_or_null(Decl)) return getObjCInterfaceType(ObjCInterface); else if (RecordDecl *Record = dyn_cast_or_null(Decl)) { Decl->TypeForDecl = new RecordType(Record); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } else if (EnumDecl *Enum = dyn_cast_or_null(Decl)) { Decl->TypeForDecl = new EnumType(Enum); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } else assert(false && "TypeDecl without a type?"); } /// getTypedefType - Return the unique reference to the type for the /// specified typename decl. QualType ASTContext::getTypedefType(TypedefDecl *Decl) { if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// getObjCInterfaceType - Return the unique reference to the type for the /// specified ObjC interface decl. QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) { if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl); Types.push_back(Decl->TypeForDecl); return QualType(Decl->TypeForDecl, 0); } /// CmpProtocolNames - Comparison predicate for sorting protocols /// alphabetically. static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, const ObjCProtocolDecl *RHS) { return strcmp(LHS->getName(), RHS->getName()) < 0; } static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols, unsigned &NumProtocols) { ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; // Sort protocols, keyed by name. std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); // Remove duplicates. ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); NumProtocols = ProtocolsEnd-Protocols; } /// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for /// the given interface decl and the conforming protocol list. QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl, ObjCProtocolDecl **Protocols, unsigned NumProtocols) { // Sort the protocol list alphabetically to canonicalize it. SortAndUniqueProtocols(Protocols, NumProtocols); llvm::FoldingSetNodeID ID; ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols); void *InsertPos = 0; if (ObjCQualifiedInterfaceType *QT = ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(QT, 0); // No Match; ObjCQualifiedInterfaceType *QType = new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols); Types.push_back(QType); ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos); return QualType(QType, 0); } /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl /// and the conforming protocol list. QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, unsigned NumProtocols) { // Sort the protocol list alphabetically to canonicalize it. SortAndUniqueProtocols(Protocols, NumProtocols); llvm::FoldingSetNodeID ID; ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols); void *InsertPos = 0; if (ObjCQualifiedIdType *QT = ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos)) return QualType(QT, 0); // No Match; ObjCQualifiedIdType *QType = new ObjCQualifiedIdType(Protocols, NumProtocols); Types.push_back(QType); ObjCQualifiedIdTypes.InsertNode(QType, InsertPos); return QualType(QType, 0); } /// getTypeOfExpr - Unlike many "get" functions, we can't unique /// TypeOfExpr AST's (since expression's are never shared). For example, /// multiple declarations that refer to "typeof(x)" all contain different /// DeclRefExpr's. This doesn't effect the type checker, since it operates /// on canonical type's (which are always unique). QualType ASTContext::getTypeOfExpr(Expr *tofExpr) { QualType Canonical = getCanonicalType(tofExpr->getType()); TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical); Types.push_back(toe); return QualType(toe, 0); } /// getTypeOfType - Unlike many "get" functions, we don't unique /// TypeOfType AST's. The only motivation to unique these nodes would be /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be /// an issue. This doesn't effect the type checker, since it operates /// on canonical type's (which are always unique). QualType ASTContext::getTypeOfType(QualType tofType) { QualType Canonical = getCanonicalType(tofType); TypeOfType *tot = new TypeOfType(tofType, Canonical); Types.push_back(tot); return QualType(tot, 0); } /// getTagDeclType - Return the unique reference to the type for the /// specified TagDecl (struct/union/class/enum) decl. QualType ASTContext::getTagDeclType(TagDecl *Decl) { assert (Decl); return getTypeDeclType(Decl); } /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and /// needs to agree with the definition in . QualType ASTContext::getSizeType() const { // On Darwin, size_t is defined as a "long unsigned int". // FIXME: should derive from "Target". return UnsignedLongTy; } /// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the /// width of characters in wide strings, The value is target dependent and /// needs to agree with the definition in . QualType ASTContext::getWcharType() const { // On Darwin, wchar_t is defined as a "int". // FIXME: should derive from "Target". return IntTy; } /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) /// defined in . Pointer - pointer requires this (C99 6.5.6p9). QualType ASTContext::getPointerDiffType() const { // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug... // FIXME: should derive from "Target". return IntTy; } //===----------------------------------------------------------------------===// // Type Operators //===----------------------------------------------------------------------===// /// getCanonicalType - Return the canonical (structural) type corresponding to /// the specified potentially non-canonical type. The non-canonical version /// of a type may have many "decorated" versions of types. Decorators can /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed /// to be free of any of these, allowing two canonical types to be compared /// for exact equality with a simple pointer comparison. QualType ASTContext::getCanonicalType(QualType T) { QualType CanType = T.getTypePtr()->getCanonicalTypeInternal(); return QualType(CanType.getTypePtr(), T.getCVRQualifiers() | CanType.getCVRQualifiers()); } /// getArrayDecayedType - Return the properly qualified result of decaying the /// specified array type to a pointer. This operation is non-trivial when /// handling typedefs etc. The canonical type of "T" must be an array type, /// this returns a pointer to a properly qualified element of the array. /// /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. QualType ASTContext::getArrayDecayedType(QualType Ty) { // Handle the common case where typedefs are not involved directly. QualType EltTy; unsigned ArrayQuals = 0; unsigned PointerQuals = 0; if (ArrayType *AT = dyn_cast(Ty)) { // Since T "isa" an array type, it could not have had an address space // qualifier, just CVR qualifiers. The properly qualified element pointer // gets the union of the CVR qualifiers from the element and the array, and // keeps any address space qualifier on the element type if present. EltTy = AT->getElementType(); ArrayQuals = Ty.getCVRQualifiers(); PointerQuals = AT->getIndexTypeQualifier(); } else { // Otherwise, we have an ASQualType or a typedef, etc. Make sure we don't // lose qualifiers when dealing with typedefs. Example: // typedef int arr[10]; // void test2() { // const arr b; // b[4] = 1; // } // // The decayed type of b is "const int*" even though the element type of the // array is "int". QualType CanTy = getCanonicalType(Ty); const ArrayType *PrettyArrayType = Ty->getAsArrayType(); assert(PrettyArrayType && "Not an array type!"); // Get the element type with 'getAsArrayType' so that we don't lose any // typedefs in the element type of the array. EltTy = PrettyArrayType->getElementType(); // If the array was address-space qualifier, make sure to ASQual the element // type. We can just grab the address space from the canonical type. if (unsigned AS = CanTy.getAddressSpace()) EltTy = getASQualType(EltTy, AS); // To properly handle [multiple levels of] typedefs, typeof's etc, we take // the CVR qualifiers directly from the canonical type, which is guaranteed // to have the full set unioned together. ArrayQuals = CanTy.getCVRQualifiers(); PointerQuals = PrettyArrayType->getIndexTypeQualifier(); } // Apply any CVR qualifiers from the array type to the element type. This // implements C99 6.7.3p8: "If the specification of an array type includes // any type qualifiers, the element type is so qualified, not the array type." EltTy = EltTy.getQualifiedType(ArrayQuals | EltTy.getCVRQualifiers()); QualType PtrTy = getPointerType(EltTy); // int x[restrict 4] -> int *restrict PtrTy = PtrTy.getQualifiedType(PointerQuals); return PtrTy; } /// getFloatingRank - Return a relative rank for floating point types. /// This routine will assert if passed a built-in type that isn't a float. static FloatingRank getFloatingRank(QualType T) { if (const ComplexType *CT = T->getAsComplexType()) return getFloatingRank(CT->getElementType()); switch (T->getAsBuiltinType()->getKind()) { default: assert(0 && "getFloatingRank(): not a floating type"); case BuiltinType::Float: return FloatRank; case BuiltinType::Double: return DoubleRank; case BuiltinType::LongDouble: return LongDoubleRank; } } /// getFloatingTypeOfSizeWithinDomain - Returns a real floating /// point or a complex type (based on typeDomain/typeSize). /// 'typeDomain' is a real floating point or complex type. /// 'typeSize' is a real floating point or complex type. QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, QualType Domain) const { FloatingRank EltRank = getFloatingRank(Size); if (Domain->isComplexType()) { switch (EltRank) { default: assert(0 && "getFloatingRank(): illegal value for rank"); case FloatRank: return FloatComplexTy; case DoubleRank: return DoubleComplexTy; case LongDoubleRank: return LongDoubleComplexTy; } } assert(Domain->isRealFloatingType() && "Unknown domain!"); switch (EltRank) { default: assert(0 && "getFloatingRank(): illegal value for rank"); case FloatRank: return FloatTy; case DoubleRank: return DoubleTy; case LongDoubleRank: return LongDoubleTy; } } /// getFloatingTypeOrder - Compare the rank of the two specified floating /// point types, ignoring the domain of the type (i.e. 'double' == /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If /// LHS < RHS, return -1. int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) { FloatingRank LHSR = getFloatingRank(LHS); FloatingRank RHSR = getFloatingRank(RHS); if (LHSR == RHSR) return 0; if (LHSR > RHSR) return 1; return -1; } /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This /// routine will assert if passed a built-in type that isn't an integer or enum, /// or if it is not canonicalized. static unsigned getIntegerRank(Type *T) { assert(T->isCanonical() && "T should be canonicalized"); if (isa(T)) return 4; switch (cast(T)->getKind()) { default: assert(0 && "getIntegerRank(): not a built-in integer"); case BuiltinType::Bool: return 1; case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: return 2; case BuiltinType::Short: case BuiltinType::UShort: return 3; case BuiltinType::Int: case BuiltinType::UInt: return 4; case BuiltinType::Long: case BuiltinType::ULong: return 5; case BuiltinType::LongLong: case BuiltinType::ULongLong: return 6; } } /// getIntegerTypeOrder - Returns the highest ranked integer type: /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If /// LHS < RHS, return -1. int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) { Type *LHSC = getCanonicalType(LHS).getTypePtr(); Type *RHSC = getCanonicalType(RHS).getTypePtr(); if (LHSC == RHSC) return 0; bool LHSUnsigned = LHSC->isUnsignedIntegerType(); bool RHSUnsigned = RHSC->isUnsignedIntegerType(); unsigned LHSRank = getIntegerRank(LHSC); unsigned RHSRank = getIntegerRank(RHSC); if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. if (LHSRank == RHSRank) return 0; return LHSRank > RHSRank ? 1 : -1; } // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. if (LHSUnsigned) { // If the unsigned [LHS] type is larger, return it. if (LHSRank >= RHSRank) return 1; // If the signed type can represent all values of the unsigned type, it // wins. Because we are dealing with 2's complement and types that are // powers of two larger than each other, this is always safe. return -1; } // If the unsigned [RHS] type is larger, return it. if (RHSRank >= LHSRank) return -1; // If the signed type can represent all values of the unsigned type, it // wins. Because we are dealing with 2's complement and types that are // powers of two larger than each other, this is always safe. return 1; } // getCFConstantStringType - Return the type used for constant CFStrings. QualType ASTContext::getCFConstantStringType() { if (!CFConstantStringTypeDecl) { CFConstantStringTypeDecl = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), &Idents.get("NSConstantString"), 0); QualType FieldTypes[4]; // const int *isa; FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const)); // int flags; FieldTypes[1] = IntTy; // const char *str; FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const)); // long length; FieldTypes[3] = LongTy; // Create fields FieldDecl *FieldDecls[4]; for (unsigned i = 0; i < 4; ++i) FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0, FieldTypes[i]); CFConstantStringTypeDecl->defineBody(FieldDecls, 4); } return getTagDeclType(CFConstantStringTypeDecl); } // This returns true if a type has been typedefed to BOOL: // typedef BOOL; static bool isTypeTypedefedAsBOOL(QualType T) { if (const TypedefType *TT = dyn_cast(T)) return !strcmp(TT->getDecl()->getName(), "BOOL"); return false; } /// getObjCEncodingTypeSize returns size of type for objective-c encoding /// purpose. int ASTContext::getObjCEncodingTypeSize(QualType type) { uint64_t sz = getTypeSize(type); // Make all integer and enum types at least as large as an int if (sz > 0 && type->isIntegralType()) sz = std::max(sz, getTypeSize(IntTy)); // Treat arrays as pointers, since that's how they're passed in. else if (type->isArrayType()) sz = getTypeSize(VoidPtrTy); return sz / getTypeSize(CharTy); } /// getObjCEncodingForMethodDecl - Return the encoded type for this method /// declaration. void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl, std::string& S) { // Encode type qualifer, 'in', 'inout', etc. for the return type. getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S); // Encode result type. getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes); // Compute size of all parameters. // Start with computing size of a pointer in number of bytes. // FIXME: There might(should) be a better way of doing this computation! SourceLocation Loc; int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy); // The first two arguments (self and _cmd) are pointers; account for // their size. int ParmOffset = 2 * PtrSize; int NumOfParams = Decl->getNumParams(); for (int i = 0; i < NumOfParams; i++) { QualType PType = Decl->getParamDecl(i)->getType(); int sz = getObjCEncodingTypeSize (PType); assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type"); ParmOffset += sz; } S += llvm::utostr(ParmOffset); S += "@0:"; S += llvm::utostr(PtrSize); // Argument types. ParmOffset = 2 * PtrSize; for (int i = 0; i < NumOfParams; i++) { QualType PType = Decl->getParamDecl(i)->getType(); // Process argument qualifiers for user supplied arguments; such as, // 'in', 'inout', etc. getObjCEncodingForTypeQualifier( Decl->getParamDecl(i)->getObjCDeclQualifier(), S); getObjCEncodingForType(PType, S, EncodingRecordTypes); S += llvm::utostr(ParmOffset); ParmOffset += getObjCEncodingTypeSize(PType); } } void ASTContext::getObjCEncodingForType(QualType T, std::string& S, llvm::SmallVector &ERType) const { // FIXME: This currently doesn't encode: // @ An object (whether statically typed or typed id) // # A class object (Class) // : A method selector (SEL) // {name=type...} A structure // (name=type...) A union // bnum A bit field of num bits if (const BuiltinType *BT = T->getAsBuiltinType()) { char encoding; switch (BT->getKind()) { default: assert(0 && "Unhandled builtin type kind"); case BuiltinType::Void: encoding = 'v'; break; case BuiltinType::Bool: encoding = 'B'; break; case BuiltinType::Char_U: case BuiltinType::UChar: encoding = 'C'; break; case BuiltinType::UShort: encoding = 'S'; break; case BuiltinType::UInt: encoding = 'I'; break; case BuiltinType::ULong: encoding = 'L'; break; case BuiltinType::ULongLong: encoding = 'Q'; break; case BuiltinType::Char_S: case BuiltinType::SChar: encoding = 'c'; break; case BuiltinType::Short: encoding = 's'; break; case BuiltinType::Int: encoding = 'i'; break; case BuiltinType::Long: encoding = 'l'; break; case BuiltinType::LongLong: encoding = 'q'; break; case BuiltinType::Float: encoding = 'f'; break; case BuiltinType::Double: encoding = 'd'; break; case BuiltinType::LongDouble: encoding = 'd'; break; } S += encoding; } else if (T->isObjCQualifiedIdType()) { // Treat id same as 'id' for encoding purposes. return getObjCEncodingForType(getObjCIdType(), S, ERType); } else if (const PointerType *PT = T->getAsPointerType()) { QualType PointeeTy = PT->getPointeeType(); if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) { S += '@'; return; } else if (isObjCClassType(PointeeTy)) { S += '#'; return; } else if (isObjCSelType(PointeeTy)) { S += ':'; return; } if (PointeeTy->isCharType()) { // char pointer types should be encoded as '*' unless it is a // type that has been typedef'd to 'BOOL'. if (!isTypeTypedefedAsBOOL(PointeeTy)) { S += '*'; return; } } S += '^'; getObjCEncodingForType(PT->getPointeeType(), S, ERType); } else if (const ArrayType *AT = T->getAsArrayType()) { S += '['; if (const ConstantArrayType *CAT = dyn_cast(AT)) S += llvm::utostr(CAT->getSize().getZExtValue()); else assert(0 && "Unhandled array type!"); getObjCEncodingForType(AT->getElementType(), S, ERType); S += ']'; } else if (T->getAsFunctionType()) { S += '?'; } else if (const RecordType *RTy = T->getAsRecordType()) { RecordDecl *RDecl= RTy->getDecl(); S += '{'; S += RDecl->getName(); bool found = false; for (unsigned i = 0, e = ERType.size(); i != e; ++i) if (ERType[i] == RTy) { found = true; break; } if (!found) { ERType.push_back(RTy); S += '='; for (int i = 0; i < RDecl->getNumMembers(); i++) { FieldDecl *field = RDecl->getMember(i); getObjCEncodingForType(field->getType(), S, ERType); } assert(ERType.back() == RTy && "Record Type stack mismatch."); ERType.pop_back(); } S += '}'; } else if (T->isEnumeralType()) { S += 'i'; } else assert(0 && "@encode for type not implemented!"); } void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, std::string& S) const { if (QT & Decl::OBJC_TQ_In) S += 'n'; if (QT & Decl::OBJC_TQ_Inout) S += 'N'; if (QT & Decl::OBJC_TQ_Out) S += 'o'; if (QT & Decl::OBJC_TQ_Bycopy) S += 'O'; if (QT & Decl::OBJC_TQ_Byref) S += 'R'; if (QT & Decl::OBJC_TQ_Oneway) S += 'V'; } void ASTContext::setBuiltinVaListType(QualType T) { assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!"); BuiltinVaListType = T; } void ASTContext::setObjCIdType(TypedefDecl *TD) { assert(ObjCIdType.isNull() && "'id' type already set!"); ObjCIdType = getTypedefType(TD); // typedef struct objc_object *id; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); assert(ptr && "'id' incorrectly typed"); const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); assert(rec && "'id' incorrectly typed"); IdStructType = rec; } void ASTContext::setObjCSelType(TypedefDecl *TD) { assert(ObjCSelType.isNull() && "'SEL' type already set!"); ObjCSelType = getTypedefType(TD); // typedef struct objc_selector *SEL; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); assert(ptr && "'SEL' incorrectly typed"); const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); assert(rec && "'SEL' incorrectly typed"); SelStructType = rec; } void ASTContext::setObjCProtoType(QualType QT) { assert(ObjCProtoType.isNull() && "'Protocol' type already set!"); ObjCProtoType = QT; } void ASTContext::setObjCClassType(TypedefDecl *TD) { assert(ObjCClassType.isNull() && "'Class' type already set!"); ObjCClassType = getTypedefType(TD); // typedef struct objc_class *Class; const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); assert(ptr && "'Class' incorrectly typed"); const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); assert(rec && "'Class' incorrectly typed"); ClassStructType = rec; } void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { assert(ObjCConstantStringType.isNull() && "'NSConstantString' type already set!"); ObjCConstantStringType = getObjCInterfaceType(Decl); } //===----------------------------------------------------------------------===// // Type Predicates. //===----------------------------------------------------------------------===// /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer /// to an object type. This includes "id" and "Class" (two 'special' pointers /// to struct), Interface* (pointer to ObjCInterfaceType) and id

(qualified /// ID type). bool ASTContext::isObjCObjectPointerType(QualType Ty) const { if (Ty->isObjCQualifiedIdType()) return true; if (!Ty->isPointerType()) return false; // Check to see if this is 'id' or 'Class', both of which are typedefs for // pointer types. This looks for the typedef specifically, not for the // underlying type. if (Ty == getObjCIdType() || Ty == getObjCClassType()) return true; // If this a pointer to an interface (e.g. NSString*), it is ok. return Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType(); } //===----------------------------------------------------------------------===// // Type Compatibility Testing //===----------------------------------------------------------------------===// /// C99 6.2.7p1: If both are complete types, then the following additional /// requirements apply. /// FIXME (handle compatibility across source files). static bool areCompatTagTypes(TagType *LHS, TagType *RHS, const ASTContext &C) { // "Class" and "id" are compatible built-in structure types. if (C.isObjCIdType(QualType(LHS, 0)) && C.isObjCClassType(QualType(RHS, 0)) || C.isObjCClassType(QualType(LHS, 0)) && C.isObjCIdType(QualType(RHS, 0))) return true; // Within a translation unit a tag type is only compatible with itself. Self // equality is already handled by the time we get here. assert(LHS != RHS && "Self equality not handled!"); return false; } bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) { // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be // identically qualified and both shall be pointers to compatible types. if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() || lhs.getAddressSpace() != rhs.getAddressSpace()) return false; QualType ltype = lhs->getAsPointerType()->getPointeeType(); QualType rtype = rhs->getAsPointerType()->getPointeeType(); return typesAreCompatible(ltype, rtype); } bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) { const FunctionType *lbase = lhs->getAsFunctionType(); const FunctionType *rbase = rhs->getAsFunctionType(); const FunctionTypeProto *lproto = dyn_cast(lbase); const FunctionTypeProto *rproto = dyn_cast(rbase); // first check the return types (common between C99 and K&R). if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType())) return false; if (lproto && rproto) { // two C99 style function prototypes unsigned lproto_nargs = lproto->getNumArgs(); unsigned rproto_nargs = rproto->getNumArgs(); if (lproto_nargs != rproto_nargs) return false; // both prototypes have the same number of arguments. if ((lproto->isVariadic() && !rproto->isVariadic()) || (rproto->isVariadic() && !lproto->isVariadic())) return false; // The use of ellipsis agree...now check the argument types. for (unsigned i = 0; i < lproto_nargs; i++) // C99 6.7.5.3p15: ...and each parameter declared with qualified type // is taken as having the unqualified version of it's declared type. if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(), rproto->getArgType(i).getUnqualifiedType())) return false; return true; } if (!lproto && !rproto) // two K&R style function decls, nothing to do. return true; // we have a mixture of K&R style with C99 prototypes const FunctionTypeProto *proto = lproto ? lproto : rproto; if (proto->isVariadic()) return false; // FIXME: Each parameter type T in the prototype must be compatible with the // type resulting from applying the usual argument conversions to T. return true; } // C99 6.7.5.2p6 static bool areCompatArrayTypes(ArrayType *LHS, ArrayType *RHS, ASTContext &C) { // Constant arrays must be the same size to be compatible. if (const ConstantArrayType* LCAT = dyn_cast(LHS)) if (const ConstantArrayType* RCAT = dyn_cast(RHS)) if (RCAT->getSize() != LCAT->getSize()) return false; // Compatible arrays must have compatible element types return C.typesAreCompatible(LHS->getElementType(), RHS->getElementType()); } /// areCompatVectorTypes - Return true if the two specified vector types are /// compatible. static bool areCompatVectorTypes(const VectorType *LHS, const VectorType *RHS) { assert(LHS->isCanonical() && RHS->isCanonical()); return LHS->getElementType() == RHS->getElementType() && LHS->getNumElements() == RHS->getNumElements(); } /// areCompatObjCInterfaces - Return true if the two interface types are /// compatible for assignment from RHS to LHS. This handles validation of any /// protocol qualifiers on the LHS or RHS. /// static bool areCompatObjCInterfaces(const ObjCInterfaceType *LHS, const ObjCInterfaceType *RHS) { // Verify that the base decls are compatible: the RHS must be a subclass of // the LHS. if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl())) return false; // RHS must have a superset of the protocols in the LHS. If the LHS is not // protocol qualified at all, then we are good. if (!isa(LHS)) return true; // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, then it // isn't a superset. if (!isa(RHS)) return true; // FIXME: should return false! // Finally, we must have two protocol-qualified interfaces. const ObjCQualifiedInterfaceType *LHSP =cast(LHS); const ObjCQualifiedInterfaceType *RHSP =cast(RHS); ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(); ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end(); ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(); ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end(); // All protocols in LHS must have a presence in RHS. Since the protocol lists // are both sorted alphabetically and have no duplicates, we can scan RHS and // LHS in a single parallel scan until we run out of elements in LHS. assert(LHSPI != LHSPE && "Empty LHS protocol list?"); ObjCProtocolDecl *LHSProto = *LHSPI; while (RHSPI != RHSPE) { ObjCProtocolDecl *RHSProto = *RHSPI++; // If the RHS has a protocol that the LHS doesn't, ignore it. if (RHSProto != LHSProto) continue; // Otherwise, the RHS does have this element. ++LHSPI; if (LHSPI == LHSPE) return true; // All protocols in LHS exist in RHS. LHSProto = *LHSPI; } // If we got here, we didn't find one of the LHS's protocols in the RHS list. return false; } /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, /// both shall have the identically qualified version of a compatible type. /// C99 6.2.7p1: Two types have compatible types if their types are the /// same. See 6.7.[2,3,5] for additional rules. bool ASTContext::typesAreCompatible(QualType LHS_NC, QualType RHS_NC) { QualType LHS = getCanonicalType(LHS_NC); QualType RHS = getCanonicalType(RHS_NC); // C++ [expr]: If an expression initially has the type "reference to T", the // type is adjusted to "T" prior to any further analysis, the expression // designates the object or function denoted by the reference, and the // expression is an lvalue. if (ReferenceType *RT = dyn_cast(LHS)) LHS = RT->getPointeeType(); if (ReferenceType *RT = dyn_cast(RHS)) RHS = RT->getPointeeType(); // If two types are identical, they are compatible. if (LHS == RHS) return true; // If qualifiers differ, the types are different. unsigned LHSAS = LHS.getAddressSpace(), RHSAS = RHS.getAddressSpace(); if (LHS.getCVRQualifiers() != RHS.getCVRQualifiers() || LHSAS != RHSAS) return false; // Strip off ASQual's if present. if (LHSAS) { LHS = LHS.getUnqualifiedType(); RHS = RHS.getUnqualifiedType(); } Type::TypeClass LHSClass = LHS->getTypeClass(); Type::TypeClass RHSClass = RHS->getTypeClass(); // We want to consider the two function types to be the same for these // comparisons, just force one to the other. if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; // Same as above for arrays if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray; if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray; // Canonicalize ExtVector -> Vector. if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; // Consider qualified interfaces and interfaces the same. if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface; if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface; // If the canonical type classes don't match. if (LHSClass != RHSClass) { // ID is compatible with all interface types. if (isa(LHS)) return isObjCIdType(RHS); if (isa(RHS)) return isObjCIdType(LHS); // ID is compatible with all qualified id types. if (isa(LHS)) { if (const PointerType *PT = RHS->getAsPointerType()) return isObjCIdType(PT->getPointeeType()); } if (isa(RHS)) { if (const PointerType *PT = LHS->getAsPointerType()) return isObjCIdType(PT->getPointeeType()); } // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, // a signed integer type, or an unsigned integer type. if (LHS->isEnumeralType() && RHS->isIntegralType()) { EnumDecl* EDecl = cast(LHS)->getDecl(); return EDecl->getIntegerType() == RHS; } if (RHS->isEnumeralType() && LHS->isIntegralType()) { EnumDecl* EDecl = cast(RHS)->getDecl(); return EDecl->getIntegerType() == LHS; } return false; } // The canonical type classes match. switch (LHSClass) { case Type::ASQual: case Type::FunctionProto: case Type::VariableArray: case Type::IncompleteArray: case Type::Reference: case Type::ObjCQualifiedInterface: assert(0 && "Canonicalized away above"); case Type::Pointer: return pointerTypesAreCompatible(LHS, RHS); case Type::ConstantArray: return areCompatArrayTypes(cast(LHS), cast(RHS), *this); case Type::FunctionNoProto: return functionTypesAreCompatible(LHS, RHS); case Type::Tagged: // handle structures, unions return areCompatTagTypes(cast(LHS), cast(RHS), *this); case Type::Builtin: // Only exactly equal builtin types are compatible, which is tested above. return false; case Type::Vector: return areCompatVectorTypes(cast(LHS), cast(RHS)); case Type::ObjCInterface: return areCompatObjCInterfaces(cast(LHS), cast(RHS)); default: assert(0 && "unexpected type"); } return true; // should never get here... } //===----------------------------------------------------------------------===// // Integer Predicates //===----------------------------------------------------------------------===// unsigned ASTContext::getIntWidth(QualType T) { if (T == BoolTy) return 1; // At the moment, only bool has padding bits return (unsigned)getTypeSize(T); } QualType ASTContext::getCorrespondingUnsignedType(QualType T) { assert(T->isSignedIntegerType() && "Unexpected type"); if (const EnumType* ETy = T->getAsEnumType()) T = ETy->getDecl()->getIntegerType(); const BuiltinType* BTy = T->getAsBuiltinType(); assert (BTy && "Unexpected signed integer type"); switch (BTy->getKind()) { case BuiltinType::Char_S: case BuiltinType::SChar: return UnsignedCharTy; case BuiltinType::Short: return UnsignedShortTy; case BuiltinType::Int: return UnsignedIntTy; case BuiltinType::Long: return UnsignedLongTy; case BuiltinType::LongLong: return UnsignedLongLongTy; default: assert(0 && "Unexpected signed integer type"); return QualType(); } } //===----------------------------------------------------------------------===// // Serialization Support //===----------------------------------------------------------------------===// /// Emit - Serialize an ASTContext object to Bitcode. void ASTContext::Emit(llvm::Serializer& S) const { S.Emit(LangOpts); S.EmitRef(SourceMgr); S.EmitRef(Target); S.EmitRef(Idents); S.EmitRef(Selectors); // Emit the size of the type vector so that we can reserve that size // when we reconstitute the ASTContext object. S.EmitInt(Types.size()); for (std::vector::const_iterator I=Types.begin(), E=Types.end(); I!=E;++I) (*I)->Emit(S); S.EmitOwnedPtr(TUDecl); // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl); } ASTContext* ASTContext::Create(llvm::Deserializer& D) { // Read the language options. LangOptions LOpts; LOpts.Read(D); SourceManager &SM = D.ReadRef(); TargetInfo &t = D.ReadRef(); IdentifierTable &idents = D.ReadRef(); SelectorTable &sels = D.ReadRef(); unsigned size_reserve = D.ReadInt(); ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels, size_reserve); for (unsigned i = 0; i < size_reserve; ++i) Type::Create(*A,i,D); A->TUDecl = cast(D.ReadOwnedPtr(*A)); // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr(); return A; }