//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Guarantees that all loops with identifiable, linear, induction variables will // be transformed to have a single, canonical, induction variable. After this // pass runs, it guarantees the the first PHI node of the header block in the // loop is the canonical induction variable if there is one. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Type.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/Analysis/InductionVariable.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/CFG.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/Local.h" #include "Support/Debug.h" #include "Support/Statistic.h" using namespace llvm; namespace { Statistic<> NumRemoved ("indvars", "Number of aux indvars removed"); Statistic<> NumInserted("indvars", "Number of canonical indvars added"); class IndVarSimplify : public FunctionPass { LoopInfo *Loops; TargetData *TD; public: virtual bool runOnFunction(Function &) { Loops = &getAnalysis(); TD = &getAnalysis(); // Induction Variables live in the header nodes of loops bool Changed = false; for (unsigned i = 0, e = Loops->getTopLevelLoops().size(); i != e; ++i) Changed |= runOnLoop(Loops->getTopLevelLoops()[i]); return Changed; } unsigned getTypeSize(const Type *Ty) { if (unsigned Size = Ty->getPrimitiveSize()) return Size; return TD->getTypeSize(Ty); // Must be a pointer } bool runOnLoop(Loop *L); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); // Need pointer size AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.setPreservesCFG(); } }; RegisterOpt X("indvars", "Canonicalize Induction Variables"); } Pass *llvm::createIndVarSimplifyPass() { return new IndVarSimplify(); } bool IndVarSimplify::runOnLoop(Loop *Loop) { // Transform all subloops before this loop... bool Changed = false; for (unsigned i = 0, e = Loop->getSubLoops().size(); i != e; ++i) Changed |= runOnLoop(Loop->getSubLoops()[i]); // Get the header node for this loop. All of the phi nodes that could be // induction variables must live in this basic block. // BasicBlock *Header = Loop->getHeader(); // Loop over all of the PHI nodes in the basic block, calculating the // induction variables that they represent... stuffing the induction variable // info into a vector... // std::vector IndVars; // Induction variables for block BasicBlock::iterator AfterPHIIt = Header->begin(); for (; PHINode *PN = dyn_cast(AfterPHIIt); ++AfterPHIIt) IndVars.push_back(InductionVariable(PN, Loops)); // AfterPHIIt now points to first non-phi instruction... // If there are no phi nodes in this basic block, there can't be indvars... if (IndVars.empty()) return Changed; // Loop over the induction variables, looking for a canonical induction // variable, and checking to make sure they are not all unknown induction // variables. Keep track of the largest integer size of the induction // variable. // InductionVariable *Canonical = 0; unsigned MaxSize = 0; for (unsigned i = 0; i != IndVars.size(); ++i) { InductionVariable &IV = IndVars[i]; if (IV.InductionType != InductionVariable::Unknown) { unsigned IVSize = getTypeSize(IV.Phi->getType()); if (IV.InductionType == InductionVariable::Canonical && !isa(IV.Phi->getType()) && IVSize >= MaxSize) Canonical = &IV; if (IVSize > MaxSize) MaxSize = IVSize; // If this variable is larger than the currently identified canonical // indvar, the canonical indvar is not usable. if (Canonical && IVSize > getTypeSize(Canonical->Phi->getType())) Canonical = 0; } } // No induction variables, bail early... don't add a canonical indvar if (MaxSize == 0) return Changed; // Okay, we want to convert other induction variables to use a canonical // indvar. If we don't have one, add one now... if (!Canonical) { // Create the PHI node for the new induction variable, and insert the phi // node at the start of the PHI nodes... const Type *IVType; switch (MaxSize) { default: assert(0 && "Unknown integer type size!"); case 1: IVType = Type::UByteTy; break; case 2: IVType = Type::UShortTy; break; case 4: IVType = Type::UIntTy; break; case 8: IVType = Type::ULongTy; break; } PHINode *PN = new PHINode(IVType, "cann-indvar", Header->begin()); // Create the increment instruction to add one to the counter... Instruction *Add = BinaryOperator::create(Instruction::Add, PN, ConstantUInt::get(IVType, 1), "next-indvar", AfterPHIIt); // Figure out which block is incoming and which is the backedge for the loop BasicBlock *Incoming, *BackEdgeBlock; pred_iterator PI = pred_begin(Header); assert(PI != pred_end(Header) && "Loop headers should have 2 preds!"); if (Loop->contains(*PI)) { // First pred is back edge... BackEdgeBlock = *PI++; Incoming = *PI++; } else { Incoming = *PI++; BackEdgeBlock = *PI++; } assert(PI == pred_end(Header) && "Loop headers should have 2 preds!"); // Add incoming values for the PHI node... PN->addIncoming(Constant::getNullValue(IVType), Incoming); PN->addIncoming(Add, BackEdgeBlock); // Analyze the new induction variable... IndVars.push_back(InductionVariable(PN, Loops)); assert(IndVars.back().InductionType == InductionVariable::Canonical && "Just inserted canonical indvar that is not canonical!"); Canonical = &IndVars.back(); ++NumInserted; Changed = true; } else { // If we have a canonical induction variable, make sure that it is the first // one in the basic block. if (&Header->front() != Canonical->Phi) Header->getInstList().splice(Header->begin(), Header->getInstList(), Canonical->Phi); } DEBUG(std::cerr << "Induction variables:\n"); // Get the current loop iteration count, which is always the value of the // canonical phi node... // PHINode *IterCount = Canonical->Phi; // Loop through and replace all of the auxiliary induction variables with // references to the canonical induction variable... // for (unsigned i = 0; i != IndVars.size(); ++i) { InductionVariable *IV = &IndVars[i]; DEBUG(IV->print(std::cerr)); while (isa(AfterPHIIt)) ++AfterPHIIt; // Don't do math with pointers... const Type *IVTy = IV->Phi->getType(); if (isa(IVTy)) IVTy = Type::ULongTy; // Don't modify the canonical indvar or unrecognized indvars... if (IV != Canonical && IV->InductionType != InductionVariable::Unknown) { Instruction *Val = IterCount; if (!isa(IV->Step) || // If the step != 1 !cast(IV->Step)->equalsInt(1)) { // If the types are not compatible, insert a cast now... if (Val->getType() != IVTy) Val = new CastInst(Val, IVTy, Val->getName(), AfterPHIIt); if (IV->Step->getType() != IVTy) IV->Step = new CastInst(IV->Step, IVTy, IV->Step->getName(), AfterPHIIt); Val = BinaryOperator::create(Instruction::Mul, Val, IV->Step, IV->Phi->getName()+"-scale", AfterPHIIt); } // If the start != 0 if (IV->Start != Constant::getNullValue(IV->Start->getType())) { // If the types are not compatible, insert a cast now... if (Val->getType() != IVTy) Val = new CastInst(Val, IVTy, Val->getName(), AfterPHIIt); if (IV->Start->getType() != IVTy) IV->Start = new CastInst(IV->Start, IVTy, IV->Start->getName(), AfterPHIIt); // Insert the instruction after the phi nodes... Val = BinaryOperator::create(Instruction::Add, Val, IV->Start, IV->Phi->getName()+"-offset", AfterPHIIt); } // If the PHI node has a different type than val is, insert a cast now... if (Val->getType() != IV->Phi->getType()) Val = new CastInst(Val, IV->Phi->getType(), Val->getName(), AfterPHIIt); // Replace all uses of the old PHI node with the new computed value... IV->Phi->replaceAllUsesWith(Val); // Move the PHI name to it's new equivalent value... std::string OldName = IV->Phi->getName(); IV->Phi->setName(""); Val->setName(OldName); // Get the incoming values used by the PHI node std::vector PHIOps; PHIOps.reserve(IV->Phi->getNumIncomingValues()); for (unsigned i = 0, e = IV->Phi->getNumIncomingValues(); i != e; ++i) PHIOps.push_back(IV->Phi->getIncomingValue(i)); // Delete the old, now unused, phi node... Header->getInstList().erase(IV->Phi); // If the PHI is the last user of any instructions for computing PHI nodes // that are irrelevant now, delete those instructions. while (!PHIOps.empty()) { Instruction *MaybeDead = dyn_cast(PHIOps.back()); PHIOps.pop_back(); if (MaybeDead && isInstructionTriviallyDead(MaybeDead)) { PHIOps.insert(PHIOps.end(), MaybeDead->op_begin(), MaybeDead->op_end()); MaybeDead->getParent()->getInstList().erase(MaybeDead); // Erase any duplicates entries in the PHIOps list. std::vector::iterator It = std::find(PHIOps.begin(), PHIOps.end(), MaybeDead); while (It != PHIOps.end()) { PHIOps.erase(It); It = std::find(PHIOps.begin(), PHIOps.end(), MaybeDead); } // Erasing the instruction could invalidate the AfterPHI iterator! AfterPHIIt = Header->begin(); } } Changed = true; ++NumRemoved; } } return Changed; }