//===- Reassociate.cpp - Reassociate binary expressions -------------------===// // // This pass reassociates commutative expressions in an order that is designed // to promote better constant propogation, GCSE, LICM, PRE... // // For example: 4 + (x + 5) -> x + (4 + 5) // // Note that this pass works best if left shifts have been promoted to explicit // multiplies before this pass executes. // // In the implementation of this algorithm, constants are assigned rank = 0, // function arguments are rank = 1, and other values are assigned ranks // corresponding to the reverse post order traversal of current function // (starting at 2), which effectively gives values in deep loops higher rank // than values not in loops. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/iOperators.h" #include "llvm/Type.h" #include "llvm/Pass.h" #include "llvm/Constant.h" #include "llvm/Support/CFG.h" #include "Support/PostOrderIterator.h" namespace { class Reassociate : public FunctionPass { map RankMap; public: const char *getPassName() const { return "Expression Reassociation"; } bool runOnFunction(Function *F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); } private: void BuildRankMap(Function *F); unsigned getRank(Value *V); bool ReassociateExpr(BinaryOperator *I); bool ReassociateBB(BasicBlock *BB); }; } Pass *createReassociatePass() { return new Reassociate(); } void Reassociate::BuildRankMap(Function *F) { unsigned i = 1; ReversePostOrderTraversal RPOT(F); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) RankMap[*I] = ++i; } unsigned Reassociate::getRank(Value *V) { if (isa(V)) return 1; // Function argument... if (Instruction *I = dyn_cast(V)) { // If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we // can reassociate expressions for code motion! Since we do not recurse for // PHI nodes, we cannot have infinite recursion here, because there cannot // be loops in the value graph (except for PHI nodes). // if (I->getOpcode() == Instruction::PHINode || I->getOpcode() == Instruction::Alloca || I->getOpcode() == Instruction::Malloc || isa(I) || I->hasSideEffects()) return RankMap[I->getParent()]; unsigned Rank = 0; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) Rank = std::max(Rank, getRank(I->getOperand(i))); return Rank; } // Otherwise it's a global or constant, rank 0. return 0; } // isCommutativeOperator - Return true if the specified instruction is // commutative and associative. If the instruction is not commutative and // associative, we can not reorder its operands! // static inline BinaryOperator *isCommutativeOperator(Instruction *I) { // Floating point operations do not commute! if (I->getType()->isFloatingPoint()) return 0; if (I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Mul || I->getOpcode() == Instruction::And || I->getOpcode() == Instruction::Or || I->getOpcode() == Instruction::Xor) return cast(I); return 0; } bool Reassociate::ReassociateExpr(BinaryOperator *I) { Value *LHS = I->getOperand(0); Value *RHS = I->getOperand(1); unsigned LHSRank = getRank(LHS); unsigned RHSRank = getRank(RHS); bool Changed = false; // Make sure the LHS of the operand always has the greater rank... if (LHSRank < RHSRank) { I->swapOperands(); std::swap(LHS, RHS); std::swap(LHSRank, RHSRank); Changed = true; //cerr << "Transposed: " << I << " Result BB: " << I->getParent(); } // If the LHS is the same operator as the current one is, and if we are the // only expression using it... // if (BinaryOperator *LHSI = dyn_cast(LHS)) if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) { // If the rank of our current RHS is less than the rank of the LHS's LHS, // then we reassociate the two instructions... if (RHSRank < getRank(LHSI->getOperand(0))) { unsigned TakeOp = 0; if (BinaryOperator *IOp = dyn_cast(LHSI->getOperand(0))) if (IOp->getOpcode() == LHSI->getOpcode()) TakeOp = 1; // Hoist out non-tree portion // Convert ((a + 12) + 10) into (a + (12 + 10)) I->setOperand(0, LHSI->getOperand(TakeOp)); LHSI->setOperand(TakeOp, RHS); I->setOperand(1, LHSI); //cerr << "Reassociated: " << I << " Result BB: " << I->getParent(); // Since we modified the RHS instruction, make sure that we recheck it. ReassociateExpr(LHSI); return true; } } return Changed; } bool Reassociate::ReassociateBB(BasicBlock *BB) { bool Changed = false; for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) { Instruction *Inst = *BI; // If this instruction is a commutative binary operator, and the ranks of // the two operands are sorted incorrectly, fix it now. // if (BinaryOperator *I = isCommutativeOperator(Inst)) { // Make sure that this expression is correctly reassociated with respect // to it's used values... // Changed |= ReassociateExpr(I); } else if (Inst->getOpcode() == Instruction::Sub && Inst->getOperand(0) != Constant::getNullValue(Inst->getType())) { // Convert a subtract into an add and a neg instruction... so that sub // instructions can be commuted with other add instructions... // Instruction *New = BinaryOperator::create(Instruction::Add, Inst->getOperand(0), Inst, Inst->getName()+".add"); // Everyone now refers to the add instruction... Inst->replaceAllUsesWith(New); New->setOperand(1, Inst); // Except for the add inst itself! BI = BB->getInstList().insert(BI+1, New)-1; // Add to the basic block... Inst->setOperand(0, Constant::getNullValue(Inst->getType())); Changed = true; } } return Changed; } bool Reassociate::runOnFunction(Function *F) { // Recalculate the rank map for F BuildRankMap(F); bool Changed = false; for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) Changed |= ReassociateBB(*FI); // We are done with the rank map... RankMap.clear(); return Changed; }