//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a basic region store model. In this model, we do have field // sensitivity. But we assume nothing about the heap shape. So recursive data // structures are largely ignored. Basically we do 1-limiting analysis. // Parameter pointers are assumed with no aliasing. Pointee objects of // parameters are created lazily. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/MemRegion.h" #include "clang/Analysis/PathSensitive/GRState.h" #include "clang/Analysis/PathSensitive/GRStateTrait.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Compiler.h" using namespace clang; // Actual Store type. typedef llvm::ImmutableMap RegionBindingsTy; //===----------------------------------------------------------------------===// // Region "Views" //===----------------------------------------------------------------------===// // // MemRegions can be layered on top of each other. This GDM entry tracks // what are the MemRegions that layer a given MemRegion. // typedef llvm::ImmutableSet RegionViews; namespace { class VISIBILITY_HIDDEN RegionViewMap {}; } static int RegionViewMapIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionViewMapIndex; } }; } //===----------------------------------------------------------------------===// // Region "Extents" //===----------------------------------------------------------------------===// // // MemRegions represent chunks of memory with a size (their "extent"). This // GDM entry tracks the extents for regions. Extents are in bytes. // namespace { class VISIBILITY_HIDDEN RegionExtents {}; } static int RegionExtentsIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionExtentsIndex; } }; } //===----------------------------------------------------------------------===// // Region "killsets". //===----------------------------------------------------------------------===// // // RegionStore lazily adds value bindings to regions when the analyzer handles // assignment statements. Killsets track which default values have been // killed, thus distinguishing between "unknown" values and default // values. Regions are added to killset only when they are assigned "unknown" // directly, otherwise we should have their value in the region bindings. // namespace { class VISIBILITY_HIDDEN RegionKills {}; } static int RegionKillsIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait< llvm::ImmutableSet > { static void* GDMIndex() { return &RegionKillsIndex; } }; } //===----------------------------------------------------------------------===// // Regions with default values. //===----------------------------------------------------------------------===// // // This GDM entry tracks what regions have a default value if they have no bound // value and have not been killed. // namespace { class VISIBILITY_HIDDEN RegionDefaultValue {}; } static int RegionDefaultValueIndex = 0; namespace clang { template<> struct GRStateTrait : public GRStatePartialTrait > { static void* GDMIndex() { return &RegionDefaultValueIndex; } }; } //===----------------------------------------------------------------------===// // Main RegionStore logic. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN RegionStoreManager : public StoreManager { RegionBindingsTy::Factory RBFactory; RegionViews::Factory RVFactory; GRStateManager& StateMgr; public: RegionStoreManager(GRStateManager& mgr) : StoreManager(mgr.getAllocator()), RBFactory(mgr.getAllocator()), RVFactory(mgr.getAllocator()), StateMgr(mgr) {} virtual ~RegionStoreManager() {} MemRegionManager& getRegionManager() { return MRMgr; } const GRState* BindCompoundLiteral(const GRState* St, const CompoundLiteralExpr* CL, SVal V); /// getLValueString - Returns an SVal representing the lvalue of a /// StringLiteral. Within RegionStore a StringLiteral has an /// associated StringRegion, and the lvalue of a StringLiteral is /// the lvalue of that region. SVal getLValueString(const GRState* St, const StringLiteral* S); /// getLValueCompoundLiteral - Returns an SVal representing the /// lvalue of a compound literal. Within RegionStore a compound /// literal has an associated region, and the lvalue of the /// compound literal is the lvalue of that region. SVal getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr*); /// getLValueVar - Returns an SVal that represents the lvalue of a /// variable. Within RegionStore a variable has an associated /// VarRegion, and the lvalue of the variable is the lvalue of that region. SVal getLValueVar(const GRState* St, const VarDecl* VD); SVal getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base); SVal getLValueField(const GRState* St, SVal Base, const FieldDecl* D); SVal getLValueElement(const GRState* St, SVal Base, SVal Offset); SVal getSizeInElements(const GRState* St, const MemRegion* R); /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating /// casts from arrays to pointers. SVal ArrayToPointer(SVal Array); /// CastRegion - Used by GRExprEngine::VisitCast to handle casts from /// a MemRegion* to a specific location type. 'R' is the region being /// casted and 'CastToTy' the result type of the cast. CastResult CastRegion(const GRState* state, const MemRegion* R, QualType CastToTy); /// The high level logic for this method is this: /// Retrieve (L) /// if L has binding /// return L's binding /// else if L is in killset /// return unknown /// else /// if L is on stack or heap /// return undefined /// else /// return symbolic SVal Retrieve(const GRState* state, Loc L, QualType T = QualType()); const GRState* Bind(const GRState* St, Loc LV, SVal V); Store Remove(Store store, Loc LV); Store getInitialStore() { return RBFactory.GetEmptyMap().getRoot(); } /// getSelfRegion - Returns the region for the 'self' (Objective-C) or /// 'this' object (C++). When used when analyzing a normal function this /// method returns NULL. const MemRegion* getSelfRegion(Store) { assert (false && "Not implemented."); return 0; } /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values. /// It returns a new Store with these values removed, and populates LSymbols // and DSymbols with the known set of live and dead symbols respectively. Store RemoveDeadBindings(const GRState* state, Stmt* Loc, const LiveVariables& Live, llvm::SmallVectorImpl& RegionRoots, LiveSymbolsTy& LSymbols, DeadSymbolsTy& DSymbols); void UpdateLiveSymbols(SVal X, LiveSymbolsTy& LSymbols); const GRState* BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal); const GRState* BindDeclWithNoInit(const GRState* St, const VarDecl* VD) { return St; } const GRState* setExtent(const GRState* St, const MemRegion* R, SVal Extent); static inline RegionBindingsTy GetRegionBindings(Store store) { return RegionBindingsTy(static_cast(store)); } void print(Store store, std::ostream& Out, const char* nl, const char *sep); void iterBindings(Store store, BindingsHandler& f) { // FIXME: Implement. } private: Loc getVarLoc(const VarDecl* VD) { return loc::MemRegionVal(MRMgr.getVarRegion(VD)); } const GRState* BindArray(const GRState* St, const TypedRegion* R, SVal V); /// Retrieve the values in a struct and return a CompoundVal, used when doing /// struct copy: /// struct s x, y; /// x = y; /// y's value is retrieved by this method. SVal RetrieveStruct(const GRState* St, const TypedRegion* R); const GRState* BindStruct(const GRState* St, const TypedRegion* R, SVal V); /// KillStruct - Set the entire struct to unknown. const GRState* KillStruct(const GRState* St, const TypedRegion* R); // Utility methods. BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); } ASTContext& getContext() { return StateMgr.getContext(); } SymbolManager& getSymbolManager() { return StateMgr.getSymbolManager(); } const GRState* AddRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base); const GRState* RemoveRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base); }; } // end anonymous namespace StoreManager* clang::CreateRegionStoreManager(GRStateManager& StMgr) { return new RegionStoreManager(StMgr); } /// getLValueString - Returns an SVal representing the lvalue of a /// StringLiteral. Within RegionStore a StringLiteral has an /// associated StringRegion, and the lvalue of a StringLiteral is the /// lvalue of that region. SVal RegionStoreManager::getLValueString(const GRState* St, const StringLiteral* S) { return loc::MemRegionVal(MRMgr.getStringRegion(S)); } /// getLValueVar - Returns an SVal that represents the lvalue of a /// variable. Within RegionStore a variable has an associated /// VarRegion, and the lvalue of the variable is the lvalue of that region. SVal RegionStoreManager::getLValueVar(const GRState* St, const VarDecl* VD) { return loc::MemRegionVal(MRMgr.getVarRegion(VD)); } /// getLValueCompoundLiteral - Returns an SVal representing the lvalue /// of a compound literal. Within RegionStore a compound literal /// has an associated region, and the lvalue of the compound literal /// is the lvalue of that region. SVal RegionStoreManager::getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr* CL) { return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL)); } SVal RegionStoreManager::getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base) { return UnknownVal(); } SVal RegionStoreManager::getLValueField(const GRState* St, SVal Base, const FieldDecl* D) { if (Base.isUnknownOrUndef()) return Base; Loc BaseL = cast(Base); const MemRegion* BaseR = 0; switch (BaseL.getSubKind()) { case loc::MemRegionKind: BaseR = cast(BaseL).getRegion(); break; case loc::SymbolValKind: BaseR = MRMgr.getSymbolicRegion(cast(&BaseL)->getSymbol()); break; case loc::GotoLabelKind: case loc::FuncValKind: // These are anormal cases. Flag an undefined value. return UndefinedVal(); case loc::ConcreteIntKind: // While these seem funny, this can happen through casts. // FIXME: What we should return is the field offset. For example, // add the field offset to the integer value. That way funny things // like this work properly: &(((struct foo *) 0xa)->f) return Base; default: assert(0 && "Unhandled Base."); return Base; } return loc::MemRegionVal(MRMgr.getFieldRegion(D, BaseR)); } SVal RegionStoreManager::getLValueElement(const GRState* St, SVal Base, SVal Offset) { if (Base.isUnknownOrUndef()) return Base; if (isa(Base)) return Base; loc::MemRegionVal& BaseL = cast(Base); // Pointer of any type can be cast and used as array base. We do not support // that case yet. if (!isa(BaseL.getRegion())) { // Record what we have seen in real code. assert(isa(BaseL.getRegion())); return UnknownVal(); } // We expect BaseR is an ElementRegion, not a base VarRegion. const ElementRegion* ElemR = cast(BaseL.getRegion()); SVal Idx = ElemR->getIndex(); nonloc::ConcreteInt *CI1, *CI2; // Only handle integer indices for now. if ((CI1 = dyn_cast(&Idx)) && (CI2 = dyn_cast(&Offset))) { // Temporary SVal to hold a potential signed and extended APSInt. SVal SignedInt; // Index might be unsigned. We have to convert it to signed. It might also // be less wide than the size. We have to extend it. if (CI2->getValue().isUnsigned() || CI2->getValue().getBitWidth() < CI1->getValue().getBitWidth()) { llvm::APSInt SI = CI2->getValue(); if (CI2->getValue().getBitWidth() < CI1->getValue().getBitWidth()) SI.extend(CI1->getValue().getBitWidth()); SI.setIsSigned(true); SignedInt = nonloc::ConcreteInt(getBasicVals().getValue(SI)); CI2 = cast(&SignedInt); } SVal NewIdx = CI1->EvalBinOp(getBasicVals(), BinaryOperator::Add, *CI2); return loc::MemRegionVal(MRMgr.getElementRegion(NewIdx, ElemR->getArrayRegion())); } return UnknownVal(); } SVal RegionStoreManager::getSizeInElements(const GRState* St, const MemRegion* R) { if (const VarRegion* VR = dyn_cast(R)) { // Get the type of the variable. QualType T = VR->getRValueType(getContext()); // It must be of array type. const ConstantArrayType* CAT = cast(T.getTypePtr()); // return the size as signed integer. return NonLoc::MakeVal(getBasicVals(), CAT->getSize(), false); } if (const StringRegion* SR = dyn_cast(R)) { const StringLiteral* Str = SR->getStringLiteral(); // We intentionally made the size value signed because it participates in // operations with signed indices. return NonLoc::MakeVal(getBasicVals(), Str->getByteLength() + 1, false); } if (const AnonTypedRegion* ATR = dyn_cast(R)) { GRStateRef state(St, StateMgr); // Get the size of the super region in bytes. const SVal* Extent = state.get(ATR->getSuperRegion()); assert(Extent && "region extent not exist"); // Assume it's ConcreteInt for now. llvm::APSInt SSize = cast(*Extent).getValue(); // Get the size of the element in bits. QualType LvT = ATR->getLValueType(getContext()); QualType ElemTy = cast(LvT.getTypePtr())->getPointeeType(); uint64_t X = getContext().getTypeSize(ElemTy); const llvm::APSInt& ESize = getBasicVals().getValue(X, SSize.getBitWidth(), false); // Calculate the number of elements. // FIXME: What do we do with signed-ness problem? Shall we make all APSInts // signed? if (SSize.isUnsigned()) SSize.setIsSigned(true); // FIXME: move this operation into BasicVals. const llvm::APSInt S = (SSize * getBasicVals().getValue(8, SSize.getBitWidth(), false)) / ESize; return NonLoc::MakeVal(getBasicVals(), S); } if (const FieldRegion* FR = dyn_cast(R)) { // FIXME: Unsupported yet. FR = 0; return UnknownVal(); } assert(0 && "Other regions are not supported yet."); return UnknownVal(); } /// ArrayToPointer - Emulates the "decay" of an array to a pointer /// type. 'Array' represents the lvalue of the array being decayed /// to a pointer, and the returned SVal represents the decayed /// version of that lvalue (i.e., a pointer to the first element of /// the array). This is called by GRExprEngine when evaluating casts /// from arrays to pointers. SVal RegionStoreManager::ArrayToPointer(SVal Array) { // FIXME: This should be factored into GRExprEngine. This allows // us to pass a "loc" instead of an "SVal" for "Array". if (Array.isUnknownOrUndef()) return Array; if (!isa(Array)) return UnknownVal(); const MemRegion* R = cast(&Array)->getRegion(); const TypedRegion* ArrayR = dyn_cast(R); if (!ArrayR) return UnknownVal(); nonloc::ConcreteInt Idx(getBasicVals().getZeroWithPtrWidth(false)); ElementRegion* ER = MRMgr.getElementRegion(Idx, ArrayR); return loc::MemRegionVal(ER); } StoreManager::CastResult RegionStoreManager::CastRegion(const GRState* state, const MemRegion* R, QualType CastToTy) { // Return the same region if the region types are compatible. if (const TypedRegion* TR = dyn_cast(R)) { ASTContext& Ctx = StateMgr.getContext(); QualType Ta = Ctx.getCanonicalType(TR->getLValueType(Ctx)); QualType Tb = Ctx.getCanonicalType(CastToTy); if (Ta == Tb) return CastResult(state, R); } // FIXME: We should handle the case when we are casting *back* to a // previous type. For example: // // void* x = ...; // char* y = (char*) x; // void* z = (void*) y; // <-- we should get the same region that is // bound to 'x' const MemRegion* ViewR = MRMgr.getAnonTypedRegion(CastToTy, R); return CastResult(AddRegionView(state, ViewR, R), ViewR); } SVal RegionStoreManager::Retrieve(const GRState* St, Loc L, QualType T) { assert(!isa(L) && "location unknown"); assert(!isa(L) && "location undefined"); // FIXME: What does loc::SymbolVal represent? It represents the value // of a location but that value is not known. In the future we should // handle potential aliasing relationships; e.g. a loc::SymbolVal could // be an alias for a particular region. if (isa(L)) return UnknownVal(); // FIXME: Is this even possible? Shouldn't this be treated as a null // dereference at a higher level? if (isa(L)) return UndefinedVal(); // FIXME: Should this be refactored into GRExprEngine or GRStateManager? // It seems that all StoreManagers would do the same thing here. if (isa(L)) return L; // FIXME: Perhaps this method should just take a 'const MemRegion*' argument // instead of 'Loc', and have the other Loc cases handled at a higher level. const MemRegion* R = cast(L).getRegion(); assert(R && "bad region"); // FIXME: We should eventually handle funny addressing. e.g.: // // int x = ...; // int *p = &x; // char *q = (char*) p; // char c = *q; // returns the first byte of 'x'. // // Such funny addressing will occur due to layering of regions. if (const TypedRegion* TR = dyn_cast(R)) if (TR->getRValueType(getContext())->isStructureType()) return RetrieveStruct(St, TR); RegionBindingsTy B = GetRegionBindings(St->getStore()); RegionBindingsTy::data_type* V = B.lookup(R); // Check if the region has a binding. if (V) return *V; GRStateRef state(St, StateMgr); // FIXME: Do we even need a killset? If 'Unknown' is explicitly // bound to to a region won't this be enough? (that's basically // what a killset is). RemoveDeadBindings should only remove // bindings that are no longer accessible, which means that won't // ever be read. // Check if the region is in killset. if (state.contains(R)) return UnknownVal(); // The location does not have a bound value. This means that it has // the value it had upon its creation and/or entry to the analyzed // function/method. These are either symbolic values or 'undefined'. // We treat function parameters as symbolic values. if (const VarRegion* VR = dyn_cast(R)) if (isa(VR->getDecl())) return SVal::MakeSymbolValue(getSymbolManager(), VR, VR->getRValueType(getContext())); if (MRMgr.onStack(R) || MRMgr.onHeap(R)) { // All stack variables are considered to have undefined values // upon creation. All heap allocated blocks are considered to // have undefined values as well unless they are explicitly bound // to specific values. return UndefinedVal(); } // All other values are symbolic. return SVal::MakeSymbolValue(getSymbolManager(), R, cast(R)->getRValueType(getContext())); // FIXME: consider default values for elements and fields. } SVal RegionStoreManager::RetrieveStruct(const GRState* St,const TypedRegion* R){ Store store = St->getStore(); GRStateRef state(St, StateMgr); // FIXME: Verify we want getRValueType instead of getLValueType. QualType T = R->getRValueType(getContext()); assert(T->isStructureType()); const RecordType* RT = cast(T.getTypePtr()); RecordDecl* RD = RT->getDecl(); assert(RD->isDefinition()); llvm::ImmutableList StructVal = getBasicVals().getEmptySValList(); std::vector Fields(RD->field_begin(), RD->field_end()); for (std::vector::reverse_iterator Field = Fields.rbegin(), FieldEnd = Fields.rend(); Field != FieldEnd; ++Field) { FieldRegion* FR = MRMgr.getFieldRegion(*Field, R); RegionBindingsTy B = GetRegionBindings(store); RegionBindingsTy::data_type* data = B.lookup(FR); SVal FieldValue; if (data) FieldValue = *data; else if (state.contains(FR)) FieldValue = UnknownVal(); else { if (MRMgr.onStack(FR) || MRMgr.onHeap(FR)) FieldValue = UndefinedVal(); else FieldValue = SVal::MakeSymbolValue(getSymbolManager(), FR, FR->getRValueType(getContext())); } StructVal = getBasicVals().consVals(FieldValue, StructVal); } return NonLoc::MakeCompoundVal(T, StructVal, getBasicVals()); } const GRState* RegionStoreManager::Bind(const GRState* St, Loc L, SVal V) { // Currently we don't bind value to symbolic location. But if the logic is // made clear, we might change this decision. if (isa(L)) return St; // If we get here, the location should be a region. const MemRegion* R = cast(L).getRegion(); assert(R); // Check if the region is a struct region. if (const TypedRegion* TR = dyn_cast(R)) // FIXME: Verify we want getRValueType(). if (TR->getRValueType(getContext())->isStructureType()) return BindStruct(St, TR, V); Store store = St->getStore(); RegionBindingsTy B = GetRegionBindings(store); if (V.isUnknown()) { // Remove the binding. store = RBFactory.Remove(B, R).getRoot(); // Add the region to the killset. GRStateRef state(St, StateMgr); St = state.add(R); } else store = RBFactory.Add(B, R, V).getRoot(); return StateMgr.MakeStateWithStore(St, store); } Store RegionStoreManager::Remove(Store store, Loc L) { RegionBindingsTy B = GetRegionBindings(store); const MemRegion* R = cast(L).getRegion(); assert(R); return RBFactory.Remove(B, R).getRoot(); } const GRState* RegionStoreManager::BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal) { // All static variables are treated as symbolic values. if (VD->hasGlobalStorage()) return St; // Process local variables. QualType T = VD->getType(); VarRegion* VR = MRMgr.getVarRegion(VD); if (Loc::IsLocType(T) || T->isIntegerType()) return Bind(St, Loc::MakeVal(VR), InitVal); else if (T->isArrayType()) return BindArray(St, VR, InitVal); else if (T->isStructureType()) return BindStruct(St, VR, InitVal); // Other types of variable are not supported yet. return St; } // FIXME: this method should be merged into Bind(). const GRState* RegionStoreManager::BindCompoundLiteral(const GRState* St, const CompoundLiteralExpr* CL, SVal V) { CompoundLiteralRegion* R = MRMgr.getCompoundLiteralRegion(CL); return Bind(St, loc::MemRegionVal(R), V); } const GRState* RegionStoreManager::setExtent(const GRState* St, const MemRegion* R, SVal Extent) { GRStateRef state(St, StateMgr); return state.set(R, Extent); } void RegionStoreManager::UpdateLiveSymbols(SVal X, LiveSymbolsTy& LSymbols) { for (SVal::symbol_iterator SI=X.symbol_begin(),SE=X.symbol_end();SI!=SE;++SI) LSymbols.insert(*SI); } Store RegionStoreManager::RemoveDeadBindings(const GRState* state, Stmt* Loc, const LiveVariables& Live, llvm::SmallVectorImpl& RegionRoots, LiveSymbolsTy& LSymbols, DeadSymbolsTy& DSymbols) { Store store = state->getStore(); RegionBindingsTy B = GetRegionBindings(store); // Lazily constructed backmap from MemRegions to SubRegions. typedef llvm::ImmutableSet SubRegionsTy; typedef llvm::ImmutableMap SubRegionsMapTy; // FIXME: As a future optimization we can modifiy BumpPtrAllocator to have // the ability to reuse memory. This way we can keep TmpAlloc around as // an instance variable of RegionStoreManager (avoiding repeated malloc // overhead). llvm::BumpPtrAllocator TmpAlloc; // Factory objects. SubRegionsMapTy::Factory SubRegMapF(TmpAlloc); SubRegionsTy::Factory SubRegF(TmpAlloc); // The backmap from regions to subregions. SubRegionsMapTy SubRegMap = SubRegMapF.GetEmptyMap(); // Do a pass over the regions in the store. For VarRegions we check if // the variable is still live and if so add it to the list of live roots. // For other regions we populate our region backmap. for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion* R = I.getKey(); if (const VarRegion* VR = dyn_cast(R)) { if (Live.isLive(Loc, VR->getDecl())) RegionRoots.push_back(VR); // This is a live "root". } else { // Get the super region for R. const MemRegion* SuperR = cast(R)->getSuperRegion(); // Get the current set of subregions for SuperR. const SubRegionsTy* SRptr = SubRegMap.lookup(SuperR); SubRegionsTy SR = SRptr ? *SRptr : SubRegF.GetEmptySet(); // Add R to the subregions of SuperR. SubRegMap = SubRegMapF.Add(SubRegMap, SuperR, SubRegF.Add(SR, R)); // Finally, check if SuperR is a VarRegion. We need to do this // to also mark SuperR as a root (as it may not have a value directly // bound to it in the store). if (const VarRegion* VR = dyn_cast(SuperR)) { if (Live.isLive(Loc, VR->getDecl())) RegionRoots.push_back(VR); // This is a live "root". } } } // Process the worklist of RegionRoots. This performs a "mark-and-sweep" // of the store. We want to find all live symbols and dead regions. llvm::SmallPtrSet Marked; while (!RegionRoots.empty()) { // Dequeue the next region on the worklist. const MemRegion* R = RegionRoots.back(); RegionRoots.pop_back(); // Check if we have already processed this region. if (Marked.count(R)) continue; // Mark this region as processed. This is needed for termination in case // a region is referenced more than once. Marked.insert(R); // Mark the symbol for any live SymbolicRegion as "live". This means we // should continue to track that symbol. if (const SymbolicRegion* SymR = dyn_cast(R)) LSymbols.insert(SymR->getSymbol()); // Get the data binding for R (if any). RegionBindingsTy::data_type* Xptr = B.lookup(R); if (Xptr) { SVal X = *Xptr; UpdateLiveSymbols(X, LSymbols); // Update the set of live symbols. // If X is a region, then add it the RegionRoots. if (loc::MemRegionVal* RegionX = dyn_cast(&X)) RegionRoots.push_back(RegionX->getRegion()); } // Get the subregions of R. These are RegionRoots as well since they // represent values that are also bound to R. const SubRegionsTy* SRptr = SubRegMap.lookup(R); if (!SRptr) continue; SubRegionsTy SR = *SRptr; for (SubRegionsTy::iterator I=SR.begin(), E=SR.end(); I!=E; ++I) RegionRoots.push_back(*I); } // We have now scanned the store, marking reachable regions and symbols // as live. We now remove all the regions that are dead from the store // as well as update DSymbols with the set symbols that are now dead. for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion* R = I.getKey(); // If this region live? Is so, none of its symbols are dead. if (Marked.count(R)) continue; // Remove this dead region from the store. store = Remove(store, Loc::MakeVal(R)); // Mark all non-live symbols that this region references as dead. if (const SymbolicRegion* SymR = dyn_cast(R)) { SymbolRef Sym = SymR->getSymbol(); if (!LSymbols.count(Sym)) DSymbols.insert(Sym); } SVal X = I.getData(); SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); for (; SI != SE; ++SI) { if (!LSymbols.count(*SI)) DSymbols.insert(*SI); } } return store; } void RegionStoreManager::print(Store store, std::ostream& Out, const char* nl, const char *sep) { llvm::raw_os_ostream OS(Out); RegionBindingsTy B = GetRegionBindings(store); OS << "Store:" << nl; for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { OS << ' '; I.getKey()->print(OS); OS << " : "; I.getData().print(OS); OS << nl; } } const GRState* RegionStoreManager::BindArray(const GRState* St, const TypedRegion* R, SVal Init) { // FIXME: Verify we should use getLValueType or getRValueType. QualType T = R->getRValueType(getContext()); assert(T->isArrayType()); // When we are binding the whole array, it always has default value 0. GRStateRef state(St, StateMgr); St = state.set(R, NonLoc::MakeVal(getBasicVals(), 0, false)); Store store = St->getStore(); ConstantArrayType* CAT = cast(T.getTypePtr()); llvm::APSInt Size(CAT->getSize(), false); llvm::APSInt i = getBasicVals().getZeroWithPtrWidth(false); // Check if the init expr is a StringLiteral. if (isa(Init)) { const MemRegion* InitR = cast(Init).getRegion(); const StringLiteral* S = cast(InitR)->getStringLiteral(); const char* str = S->getStrData(); unsigned len = S->getByteLength(); unsigned j = 0; // Copy bytes from the string literal into the target array. Trailing bytes // in the array that are not covered by the string literal are initialized // to zero. for (; i < Size; ++i, ++j) { if (j >= len) break; SVal Idx = NonLoc::MakeVal(getBasicVals(), i); ElementRegion* ER = MRMgr.getElementRegion(Idx, R); SVal V = NonLoc::MakeVal(getBasicVals(), str[j], sizeof(char)*8, true); St = Bind(St, loc::MemRegionVal(ER), V); } return StateMgr.MakeStateWithStore(St, store); } nonloc::CompoundVal& CV = cast(Init); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); for (; i < Size; ++i, ++VI) { // The init list might be shorter than the array decl. if (VI == VE) break; SVal Idx = NonLoc::MakeVal(getBasicVals(), i); ElementRegion* ER = MRMgr.getElementRegion(Idx, R); if (CAT->getElementType()->isStructureType()) St = BindStruct(St, ER, *VI); else St = Bind(St, Loc::MakeVal(ER), *VI); } return StateMgr.MakeStateWithStore(St, store); } const GRState* RegionStoreManager::BindStruct(const GRState* St, const TypedRegion* R, SVal V){ // FIXME: Verify that we should use getRValueType or getLValueType. QualType T = R->getRValueType(getContext()); assert(T->isStructureType()); RecordType* RT = cast(T.getTypePtr()); RecordDecl* RD = RT->getDecl(); assert(RD->isDefinition()); if (V.isUnknown()) return KillStruct(St, R); nonloc::CompoundVal& CV = cast(V); nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); RecordDecl::field_iterator FI = RD->field_begin(), FE = RD->field_end(); for (; FI != FE; ++FI, ++VI) { // There may be fewer values than fields only when we are initializing a // struct decl. In this case, mark the region as having default value. if (VI == VE) { GRStateRef state(St, StateMgr); St = state.set(R, NonLoc::MakeVal(getBasicVals(), 0, false)); break; } QualType FTy = (*FI)->getType(); FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); if (Loc::IsLocType(FTy) || FTy->isIntegerType()) St = Bind(St, Loc::MakeVal(FR), *VI); else if (FTy->isArrayType()) St = BindArray(St, FR, *VI); else if (FTy->isStructureType()) St = BindStruct(St, FR, *VI); } return St; } const GRState* RegionStoreManager::KillStruct(const GRState* St, const TypedRegion* R){ GRStateRef state(St, StateMgr); // Kill the struct region because it is assigned "unknown". St = state.add(R); // Set the default value of the struct region to "unknown". St = state.set(R, UnknownVal()); Store store = St->getStore(); RegionBindingsTy B = GetRegionBindings(store); // Remove all bindings for the subregions of the struct. for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { const MemRegion* r = I.getKey(); if (const SubRegion* sr = dyn_cast(r)) if (sr->isSubRegionOf(R)) store = Remove(store, Loc::MakeVal(sr)); } return StateMgr.MakeStateWithStore(St, store); } const GRState* RegionStoreManager::AddRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base) { GRStateRef state(St, StateMgr); // First, retrieve the region view of the base region. const RegionViews* d = state.get(Base); RegionViews L = d ? *d : RVFactory.GetEmptySet(); // Now add View to the region view. L = RVFactory.Add(L, View); // Create a new state with the new region view. return state.set(Base, L); } const GRState* RegionStoreManager::RemoveRegionView(const GRState* St, const MemRegion* View, const MemRegion* Base) { GRStateRef state(St, StateMgr); // Retrieve the region view of the base region. const RegionViews* d = state.get(Base); // If the base region has no view, return. if (!d) return St; // Remove the view. RegionViews V = *d; V = RVFactory.Remove(V, View); return state.set(Base, V); }