//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/GRExprEngine.h" #include "llvm/Support/Streams.h" #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #include #endif using namespace clang; using llvm::dyn_cast; using llvm::cast; using llvm::APSInt; GRExprEngine::StateTy GRExprEngine::getInitialState() { // The LiveVariables information already has a compilation of all VarDecls // used in the function. Iterate through this set, and "symbolicate" // any VarDecl whose value originally comes from outside the function. typedef LiveVariables::AnalysisDataTy LVDataTy; LVDataTy& D = Liveness.getAnalysisData(); ValueStateImpl StateImpl = *StateMgr.getInitialState().getImpl(); for (LVDataTy::decl_iterator I=D.begin_decl(), E=D.end_decl(); I != E; ++I) { VarDecl* VD = cast(const_cast(I->first)); if (VD->hasGlobalStorage() || isa(VD)) { RVal X = RVal::GetSymbolValue(SymMgr, VD); StateMgr.BindVar(StateImpl, VD, X); } } return StateMgr.getPersistentState(StateImpl); } GRExprEngine::StateTy GRExprEngine::SetRVal(StateTy St, Expr* Ex, const RVal& V) { if (!StateCleaned) { St = RemoveDeadBindings(CurrentStmt, St); StateCleaned = true; } bool isBlkExpr = false; if (Ex == CurrentStmt) { isBlkExpr = getCFG().isBlkExpr(Ex); if (!isBlkExpr) return St; } return StateMgr.SetRVal(St, Ex, V, isBlkExpr, false); } const GRExprEngine::StateTy::BufferTy& GRExprEngine::SetRVal(StateTy St, Expr* Ex, const RVal::BufferTy& RB, StateTy::BufferTy& RetBuf) { assert (RetBuf.empty()); for (RVal::BufferTy::const_iterator I = RB.begin(), E = RB.end(); I!=E; ++I) RetBuf.push_back(SetRVal(St, Ex, *I)); return RetBuf; } GRExprEngine::StateTy GRExprEngine::SetRVal(StateTy St, const LVal& LV, const RVal& RV) { if (!StateCleaned) { St = RemoveDeadBindings(CurrentStmt, St); StateCleaned = true; } return StateMgr.SetRVal(St, LV, RV); } GRExprEngine::StateTy GRExprEngine::MarkBranch(StateTy St, Stmt* Terminator, bool branchTaken) { switch (Terminator->getStmtClass()) { default: return St; case Stmt::BinaryOperatorClass: { // '&&' and '||' BinaryOperator* B = cast(Terminator); BinaryOperator::Opcode Op = B->getOpcode(); assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); // For &&, if we take the true branch, then the value of the whole // expression is that of the RHS expression. // // For ||, if we take the false branch, then the value of the whole // expression is that of the RHS expression. Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || (Op == BinaryOperator::LOr && !branchTaken) ? B->getRHS() : B->getLHS(); return SetBlkExprRVal(St, B, UninitializedVal(Ex)); } case Stmt::ConditionalOperatorClass: { // ?: ConditionalOperator* C = cast(Terminator); // For ?, if branchTaken == true then the value is either the LHS or // the condition itself. (GNU extension). Expr* Ex; if (branchTaken) Ex = C->getLHS() ? C->getLHS() : C->getCond(); else Ex = C->getRHS(); return SetBlkExprRVal(St, C, UninitializedVal(Ex)); } case Stmt::ChooseExprClass: { // ?: ChooseExpr* C = cast(Terminator); Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); return SetBlkExprRVal(St, C, UninitializedVal(Ex)); } } } void GRExprEngine::ProcessBranch(Expr* Condition, Stmt* Term, BranchNodeBuilder& builder) { // Remove old bindings for subexpressions. StateTy PrevState = StateMgr.RemoveSubExprBindings(builder.getState()); // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { builder.markInfeasible(false); // Get the current block counter. GRBlockCounter BC = builder.getBlockCounter(); unsigned BlockID = builder.getTargetBlock(true)->getBlockID(); unsigned NumVisited = BC.getNumVisited(BlockID); if (NumVisited < 1) builder.generateNode(PrevState, true); else builder.markInfeasible(true); return; } RVal V = GetRVal(PrevState, Condition); switch (V.getBaseKind()) { default: break; case RVal::UnknownKind: builder.generateNode(MarkBranch(PrevState, Term, true), true); builder.generateNode(MarkBranch(PrevState, Term, false), false); return; case RVal::UninitializedKind: { NodeTy* N = builder.generateNode(PrevState, true); if (N) { N->markAsSink(); UninitBranches.insert(N); } builder.markInfeasible(false); return; } } // Get the current block counter. GRBlockCounter BC = builder.getBlockCounter(); unsigned BlockID = builder.getTargetBlock(true)->getBlockID(); unsigned NumVisited = BC.getNumVisited(BlockID); if (isa(V) || BC.getNumVisited(builder.getTargetBlock(true)->getBlockID()) < 1) { // Process the true branch. bool isFeasible = true; StateTy St = Assume(PrevState, V, true, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(St, Term, true), true); else builder.markInfeasible(true); } else builder.markInfeasible(true); BlockID = builder.getTargetBlock(false)->getBlockID(); NumVisited = BC.getNumVisited(BlockID); if (isa(V) || BC.getNumVisited(builder.getTargetBlock(false)->getBlockID()) < 1) { // Process the false branch. bool isFeasible = false; StateTy St = Assume(PrevState, V, false, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(St, Term, false), false); else builder.markInfeasible(false); } else builder.markInfeasible(false); } /// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { StateTy St = builder.getState(); RVal V = GetRVal(St, builder.getTarget()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Uninitialized. // (3) We have no clue about the label. Dispatch to all targets. // typedef IndirectGotoNodeBuilder::iterator iterator; if (isa(V)) { LabelStmt* L = cast(V).getLabel(); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { if (I.getLabel() == L) { builder.generateNode(I, St); return; } } assert (false && "No block with label."); return; } if (isa(V) || isa(V)) { // Dispatch to the first target and mark it as a sink. NodeTy* N = builder.generateNode(builder.begin(), St, true); UninitBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. assert (V.isUnknown()); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) builder.generateNode(I, St); } /// ProcessSwitch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) { typedef SwitchNodeBuilder::iterator iterator; StateTy St = builder.getState(); Expr* CondE = builder.getCondition(); RVal CondV = GetRVal(St, CondE); if (CondV.isUninit()) { NodeTy* N = builder.generateDefaultCaseNode(St, true); UninitBranches.insert(N); return; } StateTy DefaultSt = St; // While most of this can be assumed (such as the signedness), having it // just computed makes sure everything makes the same assumptions end-to-end. unsigned bits = getContext().getTypeSize(CondE->getType(), CondE->getExprLoc()); APSInt V1(bits, false); APSInt V2 = V1; for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { CaseStmt* Case = cast(I.getCase()); // Evaluate the case. if (!Case->getLHS()->isIntegerConstantExpr(V1, getContext(), 0, true)) { assert (false && "Case condition must evaluate to an integer constant."); return; } // Get the RHS of the case, if it exists. if (Expr* E = Case->getRHS()) { if (!E->isIntegerConstantExpr(V2, getContext(), 0, true)) { assert (false && "Case condition (RHS) must evaluate to an integer constant."); return ; } assert (V1 <= V2); } else V2 = V1; // FIXME: Eventually we should replace the logic below with a range // comparison, rather than concretize the values within the range. // This should be easy once we have "ranges" for NonLVals. do { nonlval::ConcreteInt CaseVal(ValMgr.getValue(V1)); RVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal); // Now "assume" that the case matches. bool isFeasible = false; StateTy StNew = Assume(St, Res, true, isFeasible); if (isFeasible) { builder.generateCaseStmtNode(I, StNew); // If CondV evaluates to a constant, then we know that this // is the *only* case that we can take, so stop evaluating the // others. if (isa(CondV)) return; } // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). StNew = Assume(DefaultSt, Res, false, isFeasible); if (isFeasible) DefaultSt = StNew; // Concretize the next value in the range. ++V1; } while (V1 < V2); } // If we reach here, than we know that the default branch is // possible. builder.generateDefaultCaseNode(DefaultSt); } void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst) { assert (B->getOpcode() == BinaryOperator::LAnd || B->getOpcode() == BinaryOperator::LOr); assert (B == CurrentStmt && getCFG().isBlkExpr(B)); StateTy St = Pred->getState(); RVal X = GetBlkExprRVal(St, B); assert (X.isUninit()); Expr* Ex = (Expr*) cast(X).getData(); assert (Ex); if (Ex == B->getRHS()) { X = GetBlkExprRVal(St, Ex); // Handle uninitialized values. if (X.isUninit()) { Nodify(Dst, B, Pred, SetBlkExprRVal(St, B, X)); return; } // We took the RHS. Because the value of the '&&' or '||' expression must // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 // or 1. Alternatively, we could take a lazy approach, and calculate this // value later when necessary. We don't have the machinery in place for // this right now, and since most logical expressions are used for branches, // the payoff is not likely to be large. Instead, we do eager evaluation. bool isFeasible = false; StateTy NewState = Assume(St, X, true, isFeasible); if (isFeasible) Nodify(Dst, B, Pred, SetBlkExprRVal(NewState, B, MakeConstantVal(1U, B))); isFeasible = false; NewState = Assume(St, X, false, isFeasible); if (isFeasible) Nodify(Dst, B, Pred, SetBlkExprRVal(NewState, B, MakeConstantVal(0U, B))); } else { // We took the LHS expression. Depending on whether we are '&&' or // '||' we know what the value of the expression is via properties of // the short-circuiting. X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B); Nodify(Dst, B, Pred, SetBlkExprRVal(St, B, X)); } } void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { Builder = &builder; StmtEntryNode = builder.getLastNode(); CurrentStmt = S; NodeSet Dst; StateCleaned = false; Visit(S, StmtEntryNode, Dst); // If no nodes were generated, generate a new node that has all the // dead mappings removed. if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) { StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState()); builder.generateNode(S, St, StmtEntryNode); } // For safety, NULL out these variables. CurrentStmt = NULL; StmtEntryNode = NULL; Builder = NULL; } GRExprEngine::NodeTy* GRExprEngine::Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St) { // If the state hasn't changed, don't generate a new node. if (St == Pred->getState()) return NULL; NodeTy* N = Builder->generateNode(S, St, Pred); Dst.Add(N); return N; } void GRExprEngine::Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, const StateTy::BufferTy& SB) { for (StateTy::BufferTy::const_iterator I=SB.begin(), E=SB.end(); I!=E; ++I) Nodify(Dst, S, Pred, *I); } void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst){ if (D != CurrentStmt) { Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. return; } // If we are here, we are loading the value of the decl and binding // it to the block-level expression. StateTy St = Pred->getState(); Nodify(Dst, D, Pred, SetRVal(St, D, GetRVal(St, D))); } void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst) { // Process the arguments. if (AI != AE) { NodeSet DstTmp; Visit(*AI, Pred, DstTmp); if (DstTmp.empty()) DstTmp.Add(Pred); ++AI; for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI) VisitCall(CE, *DI, AI, AE, Dst); return; } // If we reach here we have processed all of the arguments. Evaluate // the callee expression. NodeSet DstTmp; Expr* Callee = CE->getCallee()->IgnoreParenCasts(); VisitLVal(Callee, Pred, DstTmp); if (DstTmp.empty()) DstTmp.Add(Pred); // Finally, evaluate the function call. for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) { StateTy St = (*DI)->getState(); RVal L = GetLVal(St, Callee); // Check for uninitialized control-flow. if (L.isUninit()) { NodeTy* N = Builder->generateNode(CE, St, *DI); N->markAsSink(); UninitBranches.insert(N); continue; } if (L.isUnknown()) { // Invalidate all arguments passed in by reference (LVals). for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { RVal V = GetRVal(St, *I); if (isa(V)) St = SetRVal(St, cast(V), UnknownVal()); } } else St = EvalCall(CE, cast(L), (*DI)->getState()); // Check for the "noreturn" attribute. if (isa(L)) if (cast(L).getDecl()->getAttr()) { NodeTy* N = Builder->generateNode(CE, St, *DI); if (N) { N->markAsSink(); NoReturnCalls.insert(N); } continue; } Nodify(Dst, CE, *DI, St); } } void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){ NodeSet S1; Visit(Ex, Pred, S1); QualType T = CastE->getType(); // Check for redundant casts or casting to "void" if (T->isVoidType() || Ex->getType() == T || (T->isPointerType() && Ex->getType()->isFunctionType())) { for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) Dst.Add(*I1); return; } for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { NodeTy* N = *I1; StateTy St = N->getState(); RVal V = GetRVal(St, Ex); Nodify(Dst, CastE, N, SetRVal(St, CastE, EvalCast(V, CastE->getType()))); } } void GRExprEngine::VisitDeclStmt(DeclStmt* DS, GRExprEngine::NodeTy* Pred, GRExprEngine::NodeSet& Dst) { StateTy St = Pred->getState(); for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator()) if (const VarDecl* VD = dyn_cast(D)) { // FIXME: Add support for local arrays. if (VD->getType()->isArrayType()) continue; const Expr* Ex = VD->getInit(); if (!VD->hasGlobalStorage() || VD->getStorageClass() == VarDecl::Static) { // In this context, Static => Local variable. assert (!VD->getStorageClass() == VarDecl::Static || !isa(VD)); // If there is no initializer, set the value of the // variable to "Uninitialized". // // FIXME: static variables may have an initializer, but the second // time a function is called those values may not be current. St = SetRVal(St, lval::DeclVal(VD), Ex ? GetRVal(St, Ex) : UninitializedVal()); } } Nodify(Dst, DS, Pred, St); if (Dst.empty()) { Dst.Add(Pred); } } void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, NodeTy* Pred, NodeSet& Dst) { assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex)); StateTy St = Pred->getState(); RVal X = GetBlkExprRVal(St, Ex); assert (X.isUninit()); Expr* SE = (Expr*) cast(X).getData(); assert (SE); X = GetBlkExprRVal(St, SE); // Make sure that we invalidate the previous binding. Nodify(Dst, Ex, Pred, StateMgr.SetRVal(St, Ex, X, true, true)); } /// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type). void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex, NodeTy* Pred, NodeSet& Dst) { assert (Ex->isSizeOf() && "FIXME: AlignOf(Expr) not yet implemented."); // 6.5.3.4 sizeof: "The result type is an integer." QualType T = Ex->getArgumentType(); // FIXME: Add support for VLAs. if (!T.getTypePtr()->isConstantSizeType()) return; uint64_t size = 1; // Handle sizeof(void) if (T != getContext().VoidTy) { SourceLocation Loc = Ex->getExprLoc(); size = getContext().getTypeSize(T, Loc) / 8; } Nodify(Dst, Ex, Pred, SetRVal(Pred->getState(), Ex, NonLVal::MakeVal(ValMgr, size, Ex->getType()))); } void GRExprEngine::VisitDeref(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst) { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet DstTmp; if (isa(Ex)) DstTmp.Add(Pred); else Visit(Ex, Pred, DstTmp); for (NodeSet::iterator I = DstTmp.begin(), DE = DstTmp.end(); I != DE; ++I) { NodeTy* N = *I; StateTy St = N->getState(); // FIXME: Bifurcate when dereferencing a symbolic with no constraints? RVal V = GetRVal(St, Ex); // Check for dereferences of uninitialized values. if (V.isUninit()) { NodeTy* Succ = Builder->generateNode(U, St, N); if (Succ) { Succ->markAsSink(); UninitDeref.insert(Succ); } continue; } // Check for dereferences of unknown values. Treat as No-Ops. if (V.isUnknown()) { Dst.Add(N); continue; } // After a dereference, one of two possible situations arise: // (1) A crash, because the pointer was NULL. // (2) The pointer is not NULL, and the dereference works. // // We add these assumptions. LVal LV = cast(V); bool isFeasibleNotNull; // "Assume" that the pointer is Not-NULL. StateTy StNotNull = Assume(St, LV, true, isFeasibleNotNull); if (isFeasibleNotNull) { // FIXME: Currently symbolic analysis "generates" new symbols // for the contents of values. We need a better approach. Nodify(Dst, U, N, SetRVal(StNotNull, U, GetRVal(StNotNull, LV, U->getType()))); } bool isFeasibleNull; // Now "assume" that the pointer is NULL. StateTy StNull = Assume(St, LV, false, isFeasibleNull); if (isFeasibleNull) { // We don't use "Nodify" here because the node will be a sink // and we have no intention of processing it later. NodeTy* NullNode = Builder->generateNode(U, StNull, N); if (NullNode) { NullNode->markAsSink(); if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode); else ExplicitNullDeref.insert(NullNode); } } } } void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst) { NodeSet S1; assert (U->getOpcode() != UnaryOperator::Deref); assert (U->getOpcode() != UnaryOperator::SizeOf); assert (U->getOpcode() != UnaryOperator::AlignOf); bool use_GetLVal = false; switch (U->getOpcode()) { case UnaryOperator::PostInc: case UnaryOperator::PostDec: case UnaryOperator::PreInc: case UnaryOperator::PreDec: case UnaryOperator::AddrOf: // Evalue subexpression as an LVal. use_GetLVal = true; VisitLVal(U->getSubExpr(), Pred, S1); break; default: Visit(U->getSubExpr(), Pred, S1); break; } for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { NodeTy* N1 = *I1; StateTy St = N1->getState(); RVal SubV = use_GetLVal ? GetLVal(St, U->getSubExpr()) : GetRVal(St, U->getSubExpr()); if (SubV.isUnknown()) { Dst.Add(N1); continue; } if (SubV.isUninit()) { Nodify(Dst, U, N1, SetRVal(St, U, SubV)); continue; } if (U->isIncrementDecrementOp()) { // Handle ++ and -- (both pre- and post-increment). LVal SubLV = cast(SubV); RVal V = GetRVal(St, SubLV, U->getType()); if (V.isUnknown()) { Dst.Add(N1); continue; } // Propagate uninitialized values. if (V.isUninit()) { Nodify(Dst, U, N1, SetRVal(St, U, V)); continue; } // Handle all other values. BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add : BinaryOperator::Sub; RVal Result = EvalBinOp(Op, V, MakeConstantVal(1U, U)); if (U->isPostfix()) St = SetRVal(SetRVal(St, U, V), SubLV, Result); else St = SetRVal(SetRVal(St, U, Result), SubLV, Result); Nodify(Dst, U, N1, St); continue; } // Handle all other unary operators. switch (U->getOpcode()) { case UnaryOperator::Minus: St = SetRVal(St, U, EvalMinus(U, cast(SubV))); break; case UnaryOperator::Not: St = SetRVal(St, U, EvalComplement(cast(SubV))); break; case UnaryOperator::LNot: // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." // // Note: technically we do "E == 0", but this is the same in the // transfer functions as "0 == E". if (isa(SubV)) { lval::ConcreteInt V(ValMgr.getZeroWithPtrWidth()); RVal Result = EvalBinOp(BinaryOperator::EQ, cast(SubV), V); St = SetRVal(St, U, Result); } else { Expr* Ex = U->getSubExpr(); nonlval::ConcreteInt V(ValMgr.getValue(0, Ex->getType())); RVal Result = EvalBinOp(BinaryOperator::EQ, cast(SubV), V); St = SetRVal(St, U, Result); } break; case UnaryOperator::AddrOf: { assert (isa(SubV)); St = SetRVal(St, U, SubV); break; } default: ; assert (false && "Not implemented."); } Nodify(Dst, U, N1, St); } } void GRExprEngine::VisitSizeOfExpr(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst) { QualType T = U->getSubExpr()->getType(); // FIXME: Add support for VLAs. if (!T.getTypePtr()->isConstantSizeType()) return; SourceLocation Loc = U->getExprLoc(); uint64_t size = getContext().getTypeSize(T, Loc) / 8; StateTy St = Pred->getState(); St = SetRVal(St, U, NonLVal::MakeVal(ValMgr, size, U->getType(), Loc)); Nodify(Dst, U, Pred, St); } void GRExprEngine::VisitLVal(Expr* Ex, NodeTy* Pred, NodeSet& Dst) { if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) { Dst.Add(Pred); return; } Ex = Ex->IgnoreParens(); if (isa(Ex)) { Dst.Add(Pred); return; } if (UnaryOperator* U = dyn_cast(Ex)) { if (U->getOpcode() == UnaryOperator::Deref) { Ex = U->getSubExpr()->IgnoreParens(); if (isa(Ex)) Dst.Add(Pred); else Visit(Ex, Pred, Dst); return; } } Visit(Ex, Pred, Dst); } void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, GRExprEngine::NodeTy* Pred, GRExprEngine::NodeSet& Dst) { NodeSet S1; if (B->isAssignmentOp()) VisitLVal(B->getLHS(), Pred, S1); else Visit(B->getLHS(), Pred, S1); for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { NodeTy* N1 = *I1; // When getting the value for the LHS, check if we are in an assignment. // In such cases, we want to (initially) treat the LHS as an LVal, // so we use GetLVal instead of GetRVal so that DeclRefExpr's are // evaluated to LValDecl's instead of to an NonLVal. RVal LeftV = B->isAssignmentOp() ? GetLVal(N1->getState(), B->getLHS()) : GetRVal(N1->getState(), B->getLHS()); // Visit the RHS... NodeSet S2; Visit(B->getRHS(), N1, S2); // Process the binary operator. for (NodeSet::iterator I2 = S2.begin(), E2 = S2.end(); I2 != E2; ++I2) { NodeTy* N2 = *I2; StateTy St = N2->getState(); Expr* RHS = B->getRHS(); RVal RightV = GetRVal(St, RHS); BinaryOperator::Opcode Op = B->getOpcode(); if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) && RHS->getType()->isIntegerType()) { // Check if the denominator is uninitialized. if (!RightV.isUnknown()) { if (RightV.isUninit()) { NodeTy* DivUninit = Builder->generateNode(B, St, N2); if (DivUninit) { DivUninit->markAsSink(); BadDivides.insert(DivUninit); } continue; } // Check for divide/remainder-by-zero. // // First, "assume" that the denominator is 0 or uninitialized. bool isFeasible = false; StateTy ZeroSt = Assume(St, RightV, false, isFeasible); if (isFeasible) { NodeTy* DivZeroNode = Builder->generateNode(B, ZeroSt, N2); if (DivZeroNode) { DivZeroNode->markAsSink(); BadDivides.insert(DivZeroNode); } } // Second, "assume" that the denominator cannot be 0. isFeasible = false; St = Assume(St, RightV, true, isFeasible); if (!isFeasible) continue; } // Fall-through. The logic below processes the divide. } if (Op <= BinaryOperator::Or) { // Process non-assignements except commas or short-circuited // logical expressions (LAnd and LOr). RVal Result = EvalBinOp(Op, LeftV, RightV); if (Result.isUnknown()) { Dst.Add(N2); continue; } Nodify(Dst, B, N2, SetRVal(St, B, Result)); continue; } // Process assignments. switch (Op) { case BinaryOperator::Assign: { // Simple assignments. if (LeftV.isUninit()) { HandleUninitializedStore(B, N2); continue; } if (LeftV.isUnknown()) { St = SetRVal(St, B, RightV); break; } St = SetRVal(SetRVal(St, B, RightV), cast(LeftV), RightV); break; } // Compound assignment operators. default: { assert (B->isCompoundAssignmentOp()); if (Op >= BinaryOperator::AndAssign) ((int&) Op) -= (BinaryOperator::AndAssign - BinaryOperator::And); else ((int&) Op) -= BinaryOperator::MulAssign; // Check if the LHS is uninitialized. if (LeftV.isUninit()) { HandleUninitializedStore(B, N2); continue; } if (LeftV.isUnknown()) { // While we do not know the location to store RightV, // the entire expression does evaluate to RightV. if (RightV.isUnknown()) { Dst.Add(N2); continue; } St = SetRVal(St, B, RightV); break; } // At this pointer we know that the LHS evaluates to an LVal // that is neither "Unknown" or "Unintialized." LVal LeftLV = cast(LeftV); // Fetch the value of the LHS (the value of the variable, etc.). RVal V = GetRVal(N1->getState(), LeftLV, B->getLHS()->getType()); // Propagate uninitialized value (left-side). We // propogate uninitialized values for the RHS below when // we also check for divide-by-zero. if (V.isUninit()) { St = SetRVal(St, B, V); break; } // Propagate unknown values. if (V.isUnknown()) { Dst.Add(N2); continue; } if (RightV.isUnknown()) { St = SetRVal(SetRVal(St, LeftLV, RightV), B, RightV); break; } // At this point: // // The LHS is not Uninit/Unknown. // The RHS is not Unknown. // Get the computation type. QualType CTy = cast(B)->getComputationType(); // Perform promotions. V = EvalCast(V, CTy); RightV = EvalCast(RightV, CTy); // Evaluate operands and promote to result type. if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) && RHS->getType()->isIntegerType()) { // Check if the denominator is uninitialized. if (RightV.isUninit()) { NodeTy* DivUninit = Builder->generateNode(B, St, N2); if (DivUninit) { DivUninit->markAsSink(); BadDivides.insert(DivUninit); } continue; } // First, "assume" that the denominator is 0. bool isFeasible = false; StateTy ZeroSt = Assume(St, RightV, false, isFeasible); if (isFeasible) { NodeTy* DivZeroNode = Builder->generateNode(B, ZeroSt, N2); if (DivZeroNode) { DivZeroNode->markAsSink(); BadDivides.insert(DivZeroNode); } } // Second, "assume" that the denominator cannot be 0. isFeasible = false; St = Assume(St, RightV, true, isFeasible); if (!isFeasible) continue; // Fall-through. The logic below processes the divide. } else { // Propagate uninitialized values (right-side). if (RightV.isUninit()) { St = SetRVal(SetRVal(St, B, RightV), LeftLV, RightV); break; } } RVal Result = EvalCast(EvalBinOp(Op, V, RightV), B->getType()); St = SetRVal(SetRVal(St, B, Result), LeftLV, Result); } } Nodify(Dst, B, N2, St); } } } void GRExprEngine::HandleUninitializedStore(Stmt* S, NodeTy* Pred) { NodeTy* N = Builder->generateNode(S, Pred->getState(), Pred); N->markAsSink(); UninitStores.insert(N); } void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) { // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != CurrentStmt && getCFG().isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { default: // Cases we intentionally have "default" handle: // AddrLabelExpr, IntegerLiteral, CharacterLiteral Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; case Stmt::BinaryOperatorClass: { BinaryOperator* B = cast(S); if (B->isLogicalOp()) { VisitLogicalExpr(B, Pred, Dst); break; } else if (B->getOpcode() == BinaryOperator::Comma) { StateTy St = Pred->getState(); Nodify(Dst, B, Pred, SetRVal(St, B, GetRVal(St, B->getRHS()))); break; } VisitBinaryOperator(cast(S), Pred, Dst); break; } case Stmt::CallExprClass: { CallExpr* C = cast(S); VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); break; } case Stmt::CastExprClass: { CastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr ChooseExpr* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst); break; case Stmt::ConditionalOperatorClass: { // '?' operator ConditionalOperator* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::DeclRefExprClass: VisitDeclRefExpr(cast(S), Pred, Dst); break; case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; case Stmt::ImplicitCastExprClass: { ImplicitCastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } case Stmt::ParenExprClass: Visit(cast(S)->getSubExpr(), Pred, Dst); break; case Stmt::SizeOfAlignOfTypeExprClass: VisitSizeOfAlignOfTypeExpr(cast(S), Pred, Dst); break; case Stmt::StmtExprClass: { StmtExpr* SE = cast(S); StateTy St = Pred->getState(); Expr* LastExpr = cast(*SE->getSubStmt()->body_rbegin()); Nodify(Dst, SE, Pred, SetRVal(St, SE, GetRVal(St, LastExpr))); break; } // FIXME: We may wish to always bind state to ReturnStmts so // that users can quickly query what was the state at the // exit points of a function. case Stmt::ReturnStmtClass: { if (Expr* R = cast(S)->getRetValue()) Visit(R, Pred, Dst); else Dst.Add(Pred); break; } case Stmt::UnaryOperatorClass: { UnaryOperator* U = cast(S); switch (U->getOpcode()) { case UnaryOperator::Deref: VisitDeref(U, Pred, Dst); break; case UnaryOperator::Plus: Visit(U->getSubExpr(), Pred, Dst); break; case UnaryOperator::SizeOf: VisitSizeOfExpr(U, Pred, Dst); break; default: VisitUnaryOperator(U, Pred, Dst); break; } break; } } } //===----------------------------------------------------------------------===// // "Assume" logic. //===----------------------------------------------------------------------===// GRExprEngine::StateTy GRExprEngine::Assume(StateTy St, LVal Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this LVal."); return St; case lval::SymbolValKind: if (Assumption) return AssumeSymNE(St, cast(Cond).getSymbol(), ValMgr.getZeroWithPtrWidth(), isFeasible); else return AssumeSymEQ(St, cast(Cond).getSymbol(), ValMgr.getZeroWithPtrWidth(), isFeasible); case lval::DeclValKind: case lval::FuncValKind: case lval::GotoLabelKind: isFeasible = Assumption; return St; case lval::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } } } GRExprEngine::StateTy GRExprEngine::Assume(StateTy St, NonLVal Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this NonLVal."); return St; case nonlval::SymbolValKind: { nonlval::SymbolVal& SV = cast(Cond); SymbolID sym = SV.getSymbol(); if (Assumption) return AssumeSymNE(St, sym, ValMgr.getValue(0, SymMgr.getType(sym)), isFeasible); else return AssumeSymEQ(St, sym, ValMgr.getValue(0, SymMgr.getType(sym)), isFeasible); } case nonlval::SymIntConstraintValKind: return AssumeSymInt(St, Assumption, cast(Cond).getConstraint(), isFeasible); case nonlval::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } } } GRExprEngine::StateTy GRExprEngine::AssumeSymNE(StateTy St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // First, determine if sym == X, where X != V. if (const llvm::APSInt* X = St.getSymVal(sym)) { isFeasible = *X != V; return St; } // Second, determine if sym != V. if (St.isNotEqual(sym, V)) { isFeasible = true; return St; } // If we reach here, sym is not a constant and we don't know if it is != V. // Make that assumption. isFeasible = true; return StateMgr.AddNE(St, sym, V); } GRExprEngine::StateTy GRExprEngine::AssumeSymEQ(StateTy St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // First, determine if sym == X, where X != V. if (const llvm::APSInt* X = St.getSymVal(sym)) { isFeasible = *X == V; return St; } // Second, determine if sym != V. if (St.isNotEqual(sym, V)) { isFeasible = false; return St; } // If we reach here, sym is not a constant and we don't know if it is == V. // Make that assumption. isFeasible = true; return StateMgr.AddEQ(St, sym, V); } GRExprEngine::StateTy GRExprEngine::AssumeSymInt(StateTy St, bool Assumption, const SymIntConstraint& C, bool& isFeasible) { switch (C.getOpcode()) { default: // No logic yet for other operators. return St; case BinaryOperator::EQ: if (Assumption) return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); case BinaryOperator::NE: if (Assumption) return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); } } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// #ifndef NDEBUG static GRExprEngine* GraphPrintCheckerState; namespace llvm { template<> struct VISIBILITY_HIDDEN DOTGraphTraits : public DefaultDOTGraphTraits { static void PrintVarBindings(std::ostream& Out, GRExprEngine::StateTy St) { Out << "Variables:\\l"; bool isFirst = true; for (GRExprEngine::StateTy::vb_iterator I=St.vb_begin(), E=St.vb_end(); I!=E;++I) { if (isFirst) isFirst = false; else Out << "\\l"; Out << ' ' << I.getKey()->getName() << " : "; I.getData().print(Out); } } static void PrintSubExprBindings(std::ostream& Out, GRExprEngine::StateTy St){ bool isFirst = true; for (GRExprEngine::StateTy::seb_iterator I=St.seb_begin(), E=St.seb_end(); I != E;++I) { if (isFirst) { Out << "\\l\\lSub-Expressions:\\l"; isFirst = false; } else Out << "\\l"; Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } } static void PrintBlkExprBindings(std::ostream& Out, GRExprEngine::StateTy St){ bool isFirst = true; for (GRExprEngine::StateTy::beb_iterator I=St.beb_begin(), E=St.beb_end(); I != E; ++I) { if (isFirst) { Out << "\\l\\lBlock-level Expressions:\\l"; isFirst = false; } else Out << "\\l"; Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } } static void PrintEQ(std::ostream& Out, GRExprEngine::StateTy St) { ValueState::ConstEqTy CE = St.getImpl()->ConstEq; if (CE.isEmpty()) return; Out << "\\l\\|'==' constraints:"; for (ValueState::ConstEqTy::iterator I=CE.begin(), E=CE.end(); I!=E;++I) Out << "\\l $" << I.getKey() << " : " << I.getData()->toString(); } static void PrintNE(std::ostream& Out, GRExprEngine::StateTy St) { ValueState::ConstNotEqTy NE = St.getImpl()->ConstNotEq; if (NE.isEmpty()) return; Out << "\\l\\|'!=' constraints:"; for (ValueState::ConstNotEqTy::iterator I=NE.begin(), EI=NE.end(); I != EI; ++I){ Out << "\\l $" << I.getKey() << " : "; bool isFirst = true; ValueState::IntSetTy::iterator J=I.getData().begin(), EJ=I.getData().end(); for ( ; J != EJ; ++J) { if (isFirst) isFirst = false; else Out << ", "; Out << (*J)->toString(); } } } static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) { if (GraphPrintCheckerState->isImplicitNullDeref(N) || GraphPrintCheckerState->isExplicitNullDeref(N) || GraphPrintCheckerState->isUninitDeref(N) || GraphPrintCheckerState->isUninitStore(N) || GraphPrintCheckerState->isUninitControlFlow(N) || GraphPrintCheckerState->isBadDivide(N)) return "color=\"red\",style=\"filled\""; return ""; } static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) { std::ostringstream Out; // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; case ProgramPoint::PostStmtKind: { const PostStmt& L = cast(Loc); Out << L.getStmt()->getStmtClassName() << ':' << (void*) L.getStmt() << ' '; L.getStmt()->printPretty(Out); if (GraphPrintCheckerState->isImplicitNullDeref(N)) { Out << "\\|Implicit-Null Dereference.\\l"; } else if (GraphPrintCheckerState->isExplicitNullDeref(N)) { Out << "\\|Explicit-Null Dereference.\\l"; } else if (GraphPrintCheckerState->isUninitDeref(N)) { Out << "\\|Dereference of uninitialied value.\\l"; } else if (GraphPrintCheckerState->isUninitStore(N)) { Out << "\\|Store to Uninitialized LVal."; } else if (GraphPrintCheckerState->isBadDivide(N)) { Out << "\\|Divide-by zero or uninitialized value."; } break; } default: { const BlockEdge& E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (Stmt* T = E.getSrc()->getTerminator()) { Out << "\\|Terminator: "; E.getSrc()->printTerminator(Out); if (isa(T)) { Stmt* Label = E.getDst()->getLabel(); if (Label) { if (CaseStmt* C = dyn_cast(Label)) { Out << "\\lcase "; C->getLHS()->printPretty(Out); if (Stmt* RHS = C->getRHS()) { Out << " .. "; RHS->printPretty(Out); } Out << ":"; } else { assert (isa(Label)); Out << "\\ldefault:"; } } else Out << "\\l(implicit) default:"; } else if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } if (GraphPrintCheckerState->isUninitControlFlow(N)) { Out << "\\|Control-flow based on\\lUninitialized value.\\l"; } } } Out << "\\|StateID: " << (void*) N->getState().getImpl() << "\\|"; N->getState().printDOT(Out); Out << "\\l"; return Out.str(); } }; } // end llvm namespace #endif void GRExprEngine::ViewGraph() { #ifndef NDEBUG GraphPrintCheckerState = this; llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); GraphPrintCheckerState = NULL; #endif }