Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "LiveDebugValues.h"
class VLocTracker;
class TransferTracker;
// Forward dec of unit test class, so that we can peer into the LDV object.
class InstrRefLDVTest;
namespace LiveDebugValues {
class MLocTracker;
using namespace llvm;
/// Handle-class for a particular "location". This value-type uniquely
/// symbolises a register or stack location, allowing manipulation of locations
/// without concern for where that location is. Practically, this allows us to
/// treat the state of the machine at a particular point as an array of values,
/// rather than a map of values.
class LocIdx {
unsigned Location;
// Default constructor is private, initializing to an illegal location number.
// Use only for "not an entry" elements in IndexedMaps.
LocIdx() : Location(UINT_MAX) {}
public:
#define NUM_LOC_BITS 24
LocIdx(unsigned L) : Location(L) {
assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
}
static LocIdx MakeIllegalLoc() { return LocIdx(); }
bool isIllegal() const { return Location == UINT_MAX; }
uint64_t asU64() const { return Location; }
bool operator==(unsigned L) const { return Location == L; }
bool operator==(const LocIdx &L) const { return Location == L.Location; }
bool operator!=(unsigned L) const { return !(*this == L); }
bool operator!=(const LocIdx &L) const { return !(*this == L); }
bool operator<(const LocIdx &Other) const {
return Location < Other.Location;
}
};
// The location at which a spilled value resides. It consists of a register and
// an offset.
struct SpillLoc {
unsigned SpillBase;
StackOffset SpillOffset;
bool operator==(const SpillLoc &Other) const {
return std::make_pair(SpillBase, SpillOffset) ==
std::make_pair(Other.SpillBase, Other.SpillOffset);
}
bool operator<(const SpillLoc &Other) const {
return std::make_tuple(SpillBase, SpillOffset.getFixed(),
SpillOffset.getScalable()) <
std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
Other.SpillOffset.getScalable());
}
};
/// Unique identifier for a value defined by an instruction, as a value type.
/// Casts back and forth to a uint64_t. Probably replacable with something less
/// bit-constrained. Each value identifies the instruction and machine location
/// where the value is defined, although there may be no corresponding machine
/// operand for it (ex: regmasks clobbering values). The instructions are
/// one-based, and definitions that are PHIs have instruction number zero.
///
/// The obvious limits of a 1M block function or 1M instruction blocks are
/// problematic; but by that point we should probably have bailed out of
/// trying to analyse the function.
class ValueIDNum {
uint64_t BlockNo : 20; /// The block where the def happens.
uint64_t InstNo : 20; /// The Instruction where the def happens.
/// One based, is distance from start of block.
uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
public:
// Default-initialize to EmptyValue. This is necessary to make IndexedMaps
// of values to work.
ValueIDNum() : BlockNo(0xFFFFF), InstNo(0xFFFFF), LocNo(0xFFFFFF) {}
ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
: BlockNo(Block), InstNo(Inst), LocNo(Loc) {}
ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
: BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) {}
uint64_t getBlock() const { return BlockNo; }
uint64_t getInst() const { return InstNo; }
uint64_t getLoc() const { return LocNo; }
bool isPHI() const { return InstNo == 0; }
uint64_t asU64() const {
uint64_t TmpBlock = BlockNo;
uint64_t TmpInst = InstNo;
return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
}
static ValueIDNum fromU64(uint64_t v) {
uint64_t L = (v & 0x3FFF);
return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
}
bool operator<(const ValueIDNum &Other) const {
return asU64() < Other.asU64();
}
bool operator==(const ValueIDNum &Other) const {
return std::tie(BlockNo, InstNo, LocNo) ==
std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
}
bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
std::string asString(const std::string &mlocname) const {
return Twine("Value{bb: ")
.concat(Twine(BlockNo).concat(
Twine(", inst: ")
.concat((InstNo ? Twine(InstNo) : Twine("live-in"))
.concat(Twine(", loc: ").concat(Twine(mlocname)))
.concat(Twine("}")))))
.str();
}
static ValueIDNum EmptyValue;
};
/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
/// the the value, and Boolean of whether or not it's indirect.
class DbgValueProperties {
public:
DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
: DIExpr(DIExpr), Indirect(Indirect) {}
/// Extract properties from an existing DBG_VALUE instruction.
DbgValueProperties(const MachineInstr &MI) {
assert(MI.isDebugValue());
DIExpr = MI.getDebugExpression();
Indirect = MI.getOperand(1).isImm();
}
bool operator==(const DbgValueProperties &Other) const {
return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
}
bool operator!=(const DbgValueProperties &Other) const {
return !(*this == Other);
}
const DIExpression *DIExpr;
bool Indirect;
};
/// Class recording the (high level) _value_ of a variable. Identifies either
/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
/// This class also stores meta-information about how the value is qualified.
/// Used to reason about variable values when performing the second
/// (DebugVariable specific) dataflow analysis.
class DbgValue {
public:
union {
/// If Kind is Def, the value number that this value is based on.
ValueIDNum ID;
/// If Kind is Const, the MachineOperand defining this value.
MachineOperand MO;
/// For a NoVal DbgValue, which block it was generated in.
unsigned BlockNo;
};
/// Qualifiers for the ValueIDNum above.
DbgValueProperties Properties;
typedef enum {
Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
Def, // This value is defined by an inst, or is a PHI value.
Const, // A constant value contained in the MachineOperand field.
Proposed, // This is a tentative PHI value, which may be confirmed or
// invalidated later.
NoVal // Empty DbgValue, generated during dataflow. BlockNo stores
// which block this was generated in.
} KindT;
/// Discriminator for whether this is a constant or an in-program value.
KindT Kind;
DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
: ID(Val), Properties(Prop), Kind(Kind) {
assert(Kind == Def || Kind == Proposed);
}
DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
: BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
assert(Kind == NoVal);
}
DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
: MO(MO), Properties(Prop), Kind(Kind) {
assert(Kind == Const);
}
DbgValue(const DbgValueProperties &Prop, KindT Kind)
: Properties(Prop), Kind(Kind) {
assert(Kind == Undef &&
"Empty DbgValue constructor must pass in Undef kind");
}
void dump(const MLocTracker *MTrack) const;
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
bool operator==(const DbgValue &Other) const {
if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
return false;
else if (Kind == Proposed && ID != Other.ID)
return false;
else if (Kind == Def && ID != Other.ID)
return false;
else if (Kind == NoVal && BlockNo != Other.BlockNo)
return false;
else if (Kind == Const)
return MO.isIdenticalTo(Other.MO);
return true;
}
bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
};
class LocIdxToIndexFunctor {
public:
using argument_type = LocIdx;
unsigned operator()(const LocIdx &L) const { return L.asU64(); }
};
/// Tracker for what values are in machine locations. Listens to the Things
/// being Done by various instructions, and maintains a table of what machine
/// locations have what values (as defined by a ValueIDNum).
///
/// There are potentially a much larger number of machine locations on the
/// target machine than the actual working-set size of the function. On x86 for
/// example, we're extremely unlikely to want to track values through control
/// or debug registers. To avoid doing so, MLocTracker has several layers of
/// indirection going on, with two kinds of ``location'':
/// * A LocID uniquely identifies a register or spill location, with a
/// predictable value.
/// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
/// Whenever a location is def'd or used by a MachineInstr, we automagically
/// create a new LocIdx for a location, but not otherwise. This ensures we only
/// account for locations that are actually used or defined. The cost is another
/// vector lookup (of LocID -> LocIdx) over any other implementation. This is
/// fairly cheap, and the compiler tries to reduce the working-set at any one
/// time in the function anyway.
///
/// Register mask operands completely blow this out of the water; I've just
/// piled hacks on top of hacks to get around that.
class MLocTracker {
public:
MachineFunction &MF;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
const TargetLowering &TLI;
/// IndexedMap type, mapping from LocIdx to ValueIDNum.
using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
/// Map of LocIdxes to the ValueIDNums that they store. This is tightly
/// packed, entries only exist for locations that are being tracked.
LocToValueType LocIdxToIDNum;
/// "Map" of machine location IDs (i.e., raw register or spill number) to the
/// LocIdx key / number for that location. There are always at least as many
/// as the number of registers on the target -- if the value in the register
/// is not being tracked, then the LocIdx value will be zero. New entries are
/// appended if a new spill slot begins being tracked.
/// This, and the corresponding reverse map persist for the analysis of the
/// whole function, and is necessarying for decoding various vectors of
/// values.
std::vector<LocIdx> LocIDToLocIdx;
/// Inverse map of LocIDToLocIdx.
IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
/// Unique-ification of spill slots. Used to number them -- their LocID
/// number is the index in SpillLocs minus one plus NumRegs.
UniqueVector<SpillLoc> SpillLocs;
// If we discover a new machine location, assign it an mphi with this
// block number.
unsigned CurBB;
/// Cached local copy of the number of registers the target has.
unsigned NumRegs;
/// Collection of register mask operands that have been observed. Second part
/// of pair indicates the instruction that they happened in. Used to
/// reconstruct where defs happened if we start tracking a location later
/// on.
SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
/// Iterator for locations and the values they contain. Dereferencing
/// produces a struct/pair containing the LocIdx key for this location,
/// and a reference to the value currently stored. Simplifies the process
/// of seeking a particular location.
class MLocIterator {
LocToValueType &ValueMap;
LocIdx Idx;
public:
class value_type {
public:
value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
const LocIdx Idx; /// Read-only index of this location.
ValueIDNum &Value; /// Reference to the stored value at this location.
};
MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
: ValueMap(ValueMap), Idx(Idx) {}
bool operator==(const MLocIterator &Other) const {
assert(&ValueMap == &Other.ValueMap);
return Idx == Other.Idx;
}
bool operator!=(const MLocIterator &Other) const {
return !(*this == Other);
}
void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
};
MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI, const TargetLowering &TLI);
/// Produce location ID number for indexing LocIDToLocIdx. Takes the register
/// or spill number, and flag for whether it's a spill or not.
unsigned getLocID(Register RegOrSpill, bool isSpill) {
return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
}
/// Accessor for reading the value at Idx.
ValueIDNum getNumAtPos(LocIdx Idx) const {
assert(Idx.asU64() < LocIdxToIDNum.size());
return LocIdxToIDNum[Idx];
}
unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
/// Reset all locations to contain a PHI value at the designated block. Used
/// sometimes for actual PHI values, othertimes to indicate the block entry
/// value (before any more information is known).
void setMPhis(unsigned NewCurBB) {
CurBB = NewCurBB;
for (auto Location : locations())
Location.Value = {CurBB, 0, Location.Idx};
}
/// Load values for each location from array of ValueIDNums. Take current
/// bbnum just in case we read a value from a hitherto untouched register.
void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
CurBB = NewCurBB;
// Iterate over all tracked locations, and load each locations live-in
// value into our local index.
for (auto Location : locations())
Location.Value = Locs[Location.Idx.asU64()];
}
/// Wipe any un-necessary location records after traversing a block.
void reset(void) {
// We could reset all the location values too; however either loadFromArray
// or setMPhis should be called before this object is re-used. Just
// clear Masks, they're definitely not needed.
Masks.clear();
}
/// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
/// the information in this pass uninterpretable.
void clear(void) {
reset();
LocIDToLocIdx.clear();
LocIdxToLocID.clear();
LocIdxToIDNum.clear();
// SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
// 0
SpillLocs = decltype(SpillLocs)();
LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
}
/// Set a locaiton to a certain value.
void setMLoc(LocIdx L, ValueIDNum Num) {
assert(L.asU64() < LocIdxToIDNum.size());
LocIdxToIDNum[L] = Num;
}
/// Create a LocIdx for an untracked register ID. Initialize it to either an
/// mphi value representing a live-in, or a recent register mask clobber.
LocIdx trackRegister(unsigned ID);
LocIdx lookupOrTrackRegister(unsigned ID) {
LocIdx &Index = LocIDToLocIdx[ID];
if (Index.isIllegal())
Index = trackRegister(ID);
return Index;
}
/// Record a definition of the specified register at the given block / inst.
/// This doesn't take a ValueIDNum, because the definition and its location
/// are synonymous.
void defReg(Register R, unsigned BB, unsigned Inst) {
unsigned ID = getLocID(R, false);
LocIdx Idx = lookupOrTrackRegister(ID);
ValueIDNum ValueID = {BB, Inst, Idx};
LocIdxToIDNum[Idx] = ValueID;
}
/// Set a register to a value number. To be used if the value number is
/// known in advance.
void setReg(Register R, ValueIDNum ValueID) {
unsigned ID = getLocID(R, false);
LocIdx Idx = lookupOrTrackRegister(ID);
LocIdxToIDNum[Idx] = ValueID;
}
ValueIDNum readReg(Register R) {
unsigned ID = getLocID(R, false);
LocIdx Idx = lookupOrTrackRegister(ID);
return LocIdxToIDNum[Idx];
}
/// Reset a register value to zero / empty. Needed to replicate the
/// VarLoc implementation where a copy to/from a register effectively
/// clears the contents of the source register. (Values can only have one
/// machine location in VarLocBasedImpl).
void wipeRegister(Register R) {
unsigned ID = getLocID(R, false);
LocIdx Idx = LocIDToLocIdx[ID];
LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
}
/// Determine the LocIdx of an existing register.
LocIdx getRegMLoc(Register R) {
unsigned ID = getLocID(R, false);
return LocIDToLocIdx[ID];
}
/// Record a RegMask operand being executed. Defs any register we currently
/// track, stores a pointer to the mask in case we have to account for it
/// later.
void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
/// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
LocIdx getOrTrackSpillLoc(SpillLoc L);
/// Set the value stored in a spill slot.
void setSpill(SpillLoc L, ValueIDNum ValueID) {
LocIdx Idx = getOrTrackSpillLoc(L);
LocIdxToIDNum[Idx] = ValueID;
}
/// Read whatever value is in a spill slot, or None if it isn't tracked.
Optional<ValueIDNum> readSpill(SpillLoc L) {
unsigned SpillID = SpillLocs.idFor(L);
if (SpillID == 0)
return None;
unsigned LocID = getLocID(SpillID, true);
LocIdx Idx = LocIDToLocIdx[LocID];
return LocIdxToIDNum[Idx];
}
/// Determine the LocIdx of a spill slot. Return None if it previously
/// hasn't had a value assigned.
Optional<LocIdx> getSpillMLoc(SpillLoc L) {
unsigned SpillID = SpillLocs.idFor(L);
if (SpillID == 0)
return None;
unsigned LocNo = getLocID(SpillID, true);
return LocIDToLocIdx[LocNo];
}
/// Return true if Idx is a spill machine location.
bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
MLocIterator end() {
return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
}
/// Return a range over all locations currently tracked.
iterator_range<MLocIterator> locations() {
return llvm::make_range(begin(), end());
}
std::string LocIdxToName(LocIdx Idx) const;
std::string IDAsString(const ValueIDNum &Num) const;
LLVM_DUMP_METHOD void dump();
LLVM_DUMP_METHOD void dump_mloc_map();
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the
/// information in \pProperties, for variable Var. Don't insert it anywhere,
/// just return the builder for it.
MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
const DbgValueProperties &Properties);
};
/// Types for recording sets of variable fragments that overlap. For a given
/// local variable, we record all other fragments of that variable that could
/// overlap it, to reduce search time.
using FragmentOfVar =
std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
using OverlapMap =
DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
// XXX XXX docs
class InstrRefBasedLDV : public LDVImpl {
private:
friend class ::InstrRefLDVTest;
using FragmentInfo = DIExpression::FragmentInfo;
using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
// Helper while building OverlapMap, a map of all fragments seen for a given
// DILocalVariable.
using VarToFragments =
DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
/// Machine location/value transfer function, a mapping of which locations
/// are assigned which new values.
using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
/// Live in/out structure for the variable values: a per-block map of
/// variables to their values. XXX, better name?
using LiveIdxT =
DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
using VarAndLoc = std::pair<DebugVariable, DbgValue>;
/// Type for a live-in value: the predecessor block, and its value.
using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
/// Vector (per block) of a collection (inner smallvector) of live-ins.
/// Used as the result type for the variable value dataflow problem.
using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
const TargetFrameLowering *TFI;
const MachineFrameInfo *MFI;
BitVector CalleeSavedRegs;
LexicalScopes LS;
TargetPassConfig *TPC;
/// Object to track machine locations as we step through a block. Could
/// probably be a field rather than a pointer, as it's always used.
MLocTracker *MTracker;
/// Number of the current block LiveDebugValues is stepping through.
unsigned CurBB;
/// Number of the current instruction LiveDebugValues is evaluating.
unsigned CurInst;
/// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
/// steps through a block. Reads the values at each location from the
/// MLocTracker object.
VLocTracker *VTracker;
/// Tracker for transfers, listens to DBG_VALUEs and transfers of values
/// between locations during stepping, creates new DBG_VALUEs when values move
/// location.
TransferTracker *TTracker;
/// Blocks which are artificial, i.e. blocks which exclusively contain
/// instructions without DebugLocs, or with line 0 locations.
SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
// Mapping of blocks to and from their RPOT order.
DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
DenseMap<unsigned, unsigned> BBNumToRPO;
/// Pair of MachineInstr, and its 1-based offset into the containing block.
using InstAndNum = std::pair<const MachineInstr *, unsigned>;
/// Map from debug instruction number to the MachineInstr labelled with that
/// number, and its location within the function. Used to transform
/// instruction numbers in DBG_INSTR_REFs into machine value numbers.
std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
/// Record of where we observed a DBG_PHI instruction.
class DebugPHIRecord {
public:
uint64_t InstrNum; ///< Instruction number of this DBG_PHI.
MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
ValueIDNum ValueRead; ///< The value number read by the DBG_PHI.
LocIdx ReadLoc; ///< Register/Stack location the DBG_PHI reads.
operator unsigned() const { return InstrNum; }
};
/// Map from instruction numbers defined by DBG_PHIs to a record of what that
/// DBG_PHI read and where. Populated and edited during the machine value
/// location problem -- we use LLVMs SSA Updater to fix changes by
/// optimizations that destroy PHI instructions.
SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
// Map of overlapping variable fragments.
OverlapMap OverlapFragments;
VarToFragments SeenFragments;
/// Tests whether this instruction is a spill to a stack slot.
bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
/// Decide if @MI is a spill instruction and return true if it is. We use 2
/// criteria to make this decision:
/// - Is this instruction a store to a spill slot?
/// - Is there a register operand that is both used and killed?
/// TODO: Store optimization can fold spills into other stores (including
/// other spills). We do not handle this yet (more than one memory operand).
bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
unsigned &Reg);
/// If a given instruction is identified as a spill, return the spill slot
/// and set \p Reg to the spilled register.
Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg);
/// Given a spill instruction, extract the register and offset used to
/// address the spill slot in a target independent way.
SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
/// Observe a single instruction while stepping through a block.
void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
ValueIDNum **MLiveIns = nullptr);
/// Examines whether \p MI is a DBG_VALUE and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferDebugValue(const MachineInstr &MI);
/// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns);
/// Stores value-information about where this PHI occurred, and what
/// instruction number is associated with it.
/// \returns true if MI was recognized and processed.
bool transferDebugPHI(MachineInstr &MI);
/// Examines whether \p MI is copy instruction, and notifies trackers.
/// \returns true if MI was recognized and processed.
bool transferRegisterCopy(MachineInstr &MI);
/// Examines whether \p MI is stack spill or restore instruction, and
/// notifies trackers. \returns true if MI was recognized and processed.
bool transferSpillOrRestoreInst(MachineInstr &MI);
/// Examines \p MI for any registers that it defines, and notifies trackers.
void transferRegisterDef(MachineInstr &MI);
/// Copy one location to the other, accounting for movement of subregisters
/// too.
void performCopy(Register Src, Register Dst);
void accumulateFragmentMap(MachineInstr &MI);
/// Determine the machine value number referred to by (potentially several)
/// DBG_PHI instructions. Block duplication and tail folding can duplicate
/// DBG_PHIs, shifting the position where values in registers merge, and
/// forming another mini-ssa problem to solve.
/// \p Here the position of a DBG_INSTR_REF seeking a machine value number
/// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
/// \returns The machine value number at position Here, or None.
Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns, MachineInstr &Here,
uint64_t InstrNum);
/// Step through the function, recording register definitions and movements
/// in an MLocTracker. Convert the observations into a per-block transfer
/// function in \p MLocTransfer, suitable for using with the machine value
/// location dataflow problem.
void
produceMLocTransferFunction(MachineFunction &MF,
SmallVectorImpl<MLocTransferMap> &MLocTransfer,
unsigned MaxNumBlocks);
/// Solve the machine value location dataflow problem. Takes as input the
/// transfer functions in \p MLocTransfer. Writes the output live-in and
/// live-out arrays to the (initialized to zero) multidimensional arrays in
/// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
/// number, the inner by LocIdx.
void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
SmallVectorImpl<MLocTransferMap> &MLocTransfer);
/// Perform a control flow join (lattice value meet) of the values in machine
/// locations at \p MBB. Follows the algorithm described in the file-comment,
/// reading live-outs of predecessors from \p OutLocs, the current live ins
/// from \p InLocs, and assigning the newly computed live ins back into
/// \p InLocs. \returns two bools -- the first indicates whether a change
/// was made, the second whether a lattice downgrade occurred. If the latter
/// is true, revisiting this block is necessary.
std::tuple<bool, bool>
mlocJoin(MachineBasicBlock &MBB,
SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
ValueIDNum **OutLocs, ValueIDNum *InLocs);
/// Solve the variable value dataflow problem, for a single lexical scope.
/// Uses the algorithm from the file comment to resolve control flow joins,
/// although there are extra hacks, see vlocJoin. Reads the
/// locations of values from the \p MInLocs and \p MOutLocs arrays (see
/// mlocDataflow) and reads the variable values transfer function from
/// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
/// with the live-ins permanently stored to \p Output once the fixedpoint is
/// reached.
/// \p VarsWeCareAbout contains a collection of the variables in \p Scope
/// that we should be tracking.
/// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
/// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
/// through.
void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
LiveInsT &Output, ValueIDNum **MOutLocs,
ValueIDNum **MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs);
/// Compute the live-ins to a block, considering control flow merges according
/// to the method in the file comment. Live out and live in variable values
/// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
/// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
/// are modified.
/// \p InLocsT Output argument, storage for calculated live-ins.
/// \returns two bools -- the first indicates whether a change
/// was made, the second whether a lattice downgrade occurred. If the latter
/// is true, revisiting this block is necessary.
std::tuple<bool, bool>
vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
DenseMap<DebugVariable, DbgValue> &InLocsT);
/// Continue exploration of the variable-value lattice, as explained in the
/// file-level comment. \p OldLiveInLocation contains the current
/// exploration position, from which we need to descend further. \p Values
/// contains the set of live-in values, \p CurBlockRPONum the RPO number of
/// the current block, and \p CandidateLocations a set of locations that
/// should be considered as PHI locations, if we reach the bottom of the
/// lattice. \returns true if we should downgrade; the value is the agreeing
/// value number in a non-backedge predecessor.
bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
const DbgValue &OldLiveInLocation,
const SmallVectorImpl<InValueT> &Values,
unsigned CurBlockRPONum);
/// For the given block and live-outs feeding into it, try to find a
/// machine location where they all join. If a solution for all predecessors
/// can't be found, a location where all non-backedge-predecessors join
/// will be returned instead. While this method finds a join location, this
/// says nothing as to whether it should be used.
/// \returns Pair of value ID if found, and true when the correct value
/// is available on all predecessor edges, or false if it's only available
/// for non-backedge predecessors.
std::tuple<Optional<ValueIDNum>, bool>
pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
ValueIDNum **MInLocs,
const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
/// Given the solutions to the two dataflow problems, machine value locations
/// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
/// TransferTracker class over the function to produce live-in and transfer
/// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
/// order given by AllVarsNumbering -- this could be any stable order, but
/// right now "order of appearence in function, when explored in RPO", so
/// that we can compare explictly against VarLocBasedImpl.
void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
const TargetPassConfig &TPC);
/// Boilerplate computation of some initial sets, artifical blocks and
/// RPOT block ordering.
void initialSetup(MachineFunction &MF);
bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
unsigned InputBBLimit, unsigned InputDbgValLimit) override;
public:
/// Default construct and initialize the pass.
InstrRefBasedLDV();
LLVM_DUMP_METHOD
void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
bool isCalleeSaved(LocIdx L) const;
};
} // namespace LiveDebugValues
#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */