"llvm/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "40b4f6eca8d42d51d6d4820d83679fe9d8b33766"
Newer
Older
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
//
// This file defines a simple peephole instruction selector for the x86 platform
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iOperators.h"
#include "llvm/iOther.h"
#include "llvm/iPHINode.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MRegisterInfo.h"
#include <map>
/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block.
/// this is the version for when you have a destination register in mind.
inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &I,
MachineOpCode Opcode,
unsigned NumOperands,
unsigned DestReg) {
assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
}
/// BMI - A special BuildMI variant that takes an iterator to insert the
/// instruction at as well as a basic block.
MachineBasicBlock::iterator &I,
MachineOpCode Opcode,
unsigned NumOperands) {
assert(I > MBB->begin() && I <= MBB->end() && "Bad iterator!");
MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
struct ISel : public FunctionPass, InstVisitor<ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
unsigned CurReg;
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
// MBBMap - Mapping between LLVM BB -> Machine BB
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
ISel(TargetMachine &tm)
: TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn) {
F = &MachineFunction::construct(&Fn, TM);
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
// Emit instructions to load the arguments... The function's arguments
// look like this:
//
// [EBP] -- copy of old EBP
// [EBP + 4] -- return address
// [EBP + 8] -- first argument (leftmost lexically)
//
// So we want to start with counter = 2.
//
BB = &F->front();
unsigned ArgOffset = 8;
for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E;
++I, ArgOffset += 4) {
unsigned Reg = getReg(*I);
// Load it out of the stack frame at EBP + 4*argPos.
// FIXME: This should load the argument of the appropriate size!!
addRegOffset(BuildMI(BB, X86::MOVmr32, 4, Reg), X86::EBP, ArgOffset);
}
// Instruction select everything except PHI nodes
// Select the PHI nodes
SelectPHINodes();
CurReg = MRegisterInfo::FirstVirtualRegister;
return false; // We never modify the LLVM itself.
}
virtual const char *getPassName() const {
return "X86 Simple Instruction Selection";
}
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks,
/// not the current one.
///
void SelectPHINodes();
// Visitation methods for various instructions. These methods simply emit
// fixed X86 code for each instruction.
//
// Control flow operators
void visitBranchInst(BranchInst &BI);
void visitCallInst(CallInst &I);
// Arithmetic operators
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner
committed
void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
unsigned destReg, const Type *resultType,
unsigned op0Reg, unsigned op1Reg);
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
void visitRem(BinaryOperator &B) { visitDivRem(B); }
void visitDivRem(BinaryOperator &B);
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
// Binary comparison operators
void visitSetCCInst(SetCondInst &I, unsigned OpNum);
void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
// Memory Instructions
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitMallocInst(MallocInst &I);
void visitShiftInst(ShiftInst &I);
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
void visitCastInst(CastInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "Cannot instruction select: " << I;
abort();
}
/// promote32 - Make a value 32-bits wide, and put it somewhere.
void promote32 (const unsigned targetReg, Value *v);
// emitGEPOperation - Common code shared between visitGetElementPtrInst and
// constant expression GEP support.
//
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
User::op_iterator IdxEnd, unsigned TargetReg);
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
Chris Lattner
committed
void copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &MBBI,
Constant *C, unsigned Reg);
/// makeAnotherReg - This method returns the next register number
/// we haven't yet used.
unsigned makeAnotherReg(const Type *Ty) {
// Add the mapping of regnumber => reg class to MachineFunction
const TargetRegisterClass *RC =
TM.getRegisterInfo()->getRegClassForType(Ty);
F->getSSARegMap()->addRegMap(CurReg, RC);
/// getReg - This method turns an LLVM value into a register number. This
/// is guaranteed to produce the same register number for a particular value
/// every time it is queried.
///
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
unsigned getReg(Value *V) {
// Just append to the end of the current bb.
MachineBasicBlock::iterator It = BB->end();
return getReg(V, BB, It);
}
if (Reg == 0) {
Reg = makeAnotherReg(V->getType());
RegMap[V] = Reg;
}
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner
committed
copyConstantToRegister(MBB, IPt, C, Reg);
RegMap.erase(V); // Assign a new name to this constant if ref'd again
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Move the address of the global into the register
RegMap.erase(V); // Assign a new name to this address if ref'd again
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
/// Representation.
///
enum TypeClass {
/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline TypeClass getClass(const Type *Ty) {
switch (Ty->getPrimitiveID()) {
case Type::SByteTyID:
case Type::UByteTyID: return cByte; // Byte operands are class #0
case Type::ShortTyID:
case Type::UShortTyID: return cShort; // Short operands are class #1
case Type::IntTyID:
case Type::UIntTyID:
case Type::PointerTyID: return cInt; // Int's and pointers are class #2
case Type::FloatTyID:
case Type::DoubleTyID: return cFP; // Floating Point is #3
case Type::LongTyID:
case Type::ULongTyID: //return cLong; // Longs are class #3
return cInt; // FIXME: LONGS ARE TREATED AS INTS!
default:
assert(0 && "Invalid type to getClass!");
}
}
// getClassB - Just like getClass, but treat boolean values as bytes.
static inline TypeClass getClassB(const Type *Ty) {
if (Ty == Type::BoolTy) return cByte;
return getClass(Ty);
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
Chris Lattner
committed
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator &IP,
Constant *C, unsigned R) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
assert(0 && "Constant expressions not yet handled!\n");
if (C->getType()->isIntegral()) {
unsigned Class = getClassB(C->getType());
assert(Class <= cInt && "Type not handled yet!");
static const unsigned IntegralOpcodeTab[] = {
X86::MOVir8, X86::MOVir16, X86::MOVir32
};
if (C->getType() == Type::BoolTy) {
BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
} else if (C->getType()->isSigned()) {
ConstantSInt *CSI = cast<ConstantSInt>(C);
} else {
ConstantUInt *CUI = cast<ConstantUInt>(C);
}
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
double Value = CFP->getValue();
if (Value == +0.0)
BMI(MBB, IP, X86::FLD0, 0, R);
else if (Value == +1.0)
BMI(MBB, IP, X86::FLD1, 0, R);
else {
std::cerr << "Cannot load constant '" << Value << "'!\n";
assert(0);
}
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
} else {
assert(0 && "Type not handled yet!");
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks, not
/// the current one.
///
void ISel::SelectPHINodes() {
const Function &LF = *F->getFunction(); // The LLVM function...
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
const BasicBlock *BB = I;
MachineBasicBlock *MBB = MBBMap[I];
// Loop over all of the PHI nodes in the LLVM basic block...
unsigned NumPHIs = 0;
for (BasicBlock::const_iterator I = BB->begin();
PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
// Create a new machine instr PHI node, and insert it.
MachineInstr *MI = BuildMI(X86::PHI, PN->getNumOperands(), getReg(*PN));
MBB->insert(MBB->begin()+NumPHIs++, MI); // Insert it at the top of the BB
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
// Get the incoming value into a virtual register. If it is not already
// available in a virtual register, insert the computation code into
// PredMBB
//
MachineBasicBlock::iterator PI = PredMBB->begin();
while ((*PI)->getOpcode() == X86::PHI) ++PI;
MI->addRegOperand(getReg(PN->getIncomingValue(i), PredMBB, PI));
MI->addMachineBasicBlockOperand(PredMBB);
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
/// register, then move it to wherever the result should be.
/// We handle FP setcc instructions by pushing them, doing a
/// compare-and-pop-twice, and then copying the concodes to the main
/// processor's concodes (I didn't make this up, it's in the Intel manual)
///
void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
// The arguments are already supposed to be of the same type.
const Type *CompTy = I.getOperand(0)->getType();
unsigned reg1 = getReg(I.getOperand(0));
unsigned reg2 = getReg(I.getOperand(1));
unsigned Class = getClass(CompTy);
switch (Class) {
// Emit: cmp <var1>, <var2> (do the comparison). We can
// compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
// 32-bit.
case cByte:
BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
break;
case cShort:
BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
break;
case cInt:
BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
break;
// Push the variables on the stack with fldl opcodes.
// FIXME: assuming var1, var2 are in memory, if not, spill to
// stack first
BuildMI (BB, X86::FLDr32, 1).addReg (reg1);
BuildMI (BB, X86::FLDr32, 1).addReg (reg2);
BuildMI (BB, X86::FLDr64, 1).addReg (reg1);
BuildMI (BB, X86::FLDr64, 1).addReg (reg2);
case cLong:
default:
visitInstruction(I);
}
if (CompTy->isFloatingPoint()) {
// (Non-trapping) compare and pop twice.
BuildMI (BB, X86::FUCOMPP, 0);
// Move fp status word (concodes) to ax.
BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
// Load real concodes from ax.
BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
}
// Emit setOp instruction (extract concode; clobbers ax),
// using the following mapping:
// LLVM -> X86 signed X86 unsigned
// ----- ----- -----
// seteq -> sete sete
// setne -> setne setne
// setlt -> setl setb
// setgt -> setg seta
// setle -> setle setbe
// setge -> setge setae
{X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
{X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, getReg(I));
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
/// operand, in the specified target register.
void ISel::promote32 (unsigned targetReg, Value *v) {
unsigned vReg = getReg(v);
bool isUnsigned = v->getType()->isUnsigned();
switch (getClass(v->getType())) {
case cByte:
// Extend value into target register (8->32)
if (isUnsigned)
BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(vReg);
else
BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(vReg);
break;
case cShort:
// Extend value into target register (16->32)
if (isUnsigned)
BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(vReg);
else
BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(vReg);
break;
case cInt:
// Move value into target register (32->32)
BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(vReg);
break;
default:
assert(0 && "Unpromotable operand class in promote32");
}
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
/// we have the following possibilities:
///
/// ret void: No return value, simply emit a 'ret' instruction
/// ret sbyte, ubyte : Extend value into EAX and return
/// ret short, ushort: Extend value into EAX and return
/// ret int, uint : Move value into EAX and return
/// ret pointer : Move value into EAX and return
/// ret long, ulong : Move value into EAX/EDX and return
/// ret float/double : Top of FP stack
void ISel::visitReturnInst (ReturnInst &I) {
if (I.getNumOperands() == 0) {
BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
return;
}
Value *RetVal = I.getOperand(0);
switch (getClass(RetVal->getType())) {
case cByte: // integral return values: extend or move into EAX and return
case cShort:
case cInt:
promote32(X86::EAX, RetVal);
break;
case cFP: // Floats & Doubles: Return in ST(0)
BuildMI(BB, X86::FpMOV, 1, X86::ST0).addReg(getReg(RetVal));
break;
case cLong:
// ret long: use EAX(least significant 32 bits)/EDX (most
// significant 32)...
default:
visitInstruction (I);
}
/// visitBranchInst - Handle conditional and unconditional branches here. Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through. (but we don't currently).
///
void ISel::visitBranchInst(BranchInst &BI) {
if (BI.isConditional()) {
BasicBlock *ifTrue = BI.getSuccessor(0);
BasicBlock *ifFalse = BI.getSuccessor(1);
// Compare condition with zero, followed by jump-if-equal to ifFalse, and
// jump-if-nonequal to ifTrue
unsigned int condReg = getReg(BI.getCondition());
BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
} else { // unconditional branch
BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
}
/// visitCallInst - Push args on stack and do a procedure call instruction.
Misha Brukman
committed
// keep a counter of how many bytes we pushed on the stack
unsigned bytesPushed = 0;
// Push the arguments on the stack in reverse order, as specified by
// the ABI.
for (unsigned i = CI.getNumOperands()-1; i >= 1; --i) {
Value *v = CI.getOperand(i);
switch (getClass(v->getType())) {
case cByte:
case cShort:
// Promote V to 32 bits wide, and move the result into EAX,
// then push EAX.
promote32 (X86::EAX, v);
BuildMI(BB, X86::PUSHr32, 1).addReg(X86::EAX);
bytesPushed += 4;
break;
case cInt: {
unsigned Reg = getReg(v);
BuildMI(BB, X86::PUSHr32, 1).addReg(Reg);
bytesPushed += 4;
break;
}
default:
// FIXME: long/ulong/float/double args not handled.
visitInstruction(CI);
break;
if (Function *F = CI.getCalledFunction()) {
// Emit a CALL instruction with PC-relative displacement.
BuildMI(BB, X86::CALLpcrel32, 1).addPCDisp(F);
} else {
unsigned Reg = getReg(CI.getCalledValue());
BuildMI(BB, X86::CALLr32, 1).addReg(Reg);
}
Misha Brukman
committed
// Adjust the stack by `bytesPushed' amount if non-zero
if (bytesPushed > 0)
BuildMI(BB, X86::ADDri32,2, X86::ESP).addReg(X86::ESP).addZImm(bytesPushed);
// If there is a return value, scavenge the result from the location the call
// leaves it in...
//
if (CI.getType() != Type::VoidTy) {
unsigned resultTypeClass = getClass(CI.getType());
switch (resultTypeClass) {
case cByte:
case cShort:
case cInt: {
// Integral results are in %eax, or the appropriate portion
// thereof.
static const unsigned regRegMove[] = {
X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
};
static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
BuildMI(BB, regRegMove[resultTypeClass], 1, getReg(CI))
.addReg(AReg[resultTypeClass]);
case cFP: // Floating-point return values live in %ST(0)
BuildMI(BB, X86::FpMOV, 1, getReg(CI)).addReg(X86::ST0);
break;
default:
std::cerr << "Cannot get return value for call of type '"
<< *CI.getType() << "'\n";
visitInstruction(CI);
}
/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
/// 4 for Xor.
///
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
visitInstruction(B);
unsigned Class = getClass(B.getType());
visitInstruction(B);
static const unsigned OpcodeTab[][4] = {
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
};
unsigned Opcode = OpcodeTab[OperatorClass][Class];
assert(Opcode && "Floating point arguments to logical inst?");
unsigned Op0r = getReg(B.getOperand(0));
unsigned Op1r = getReg(B.getOperand(1));
BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
}
/// doMultiply - Emit appropriate instructions to multiply together
/// the registers op0Reg and op1Reg, and put the result in destReg.
/// The type of the result should be given as resultType.
Chris Lattner
committed
void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
unsigned destReg, const Type *resultType,
unsigned op0Reg, unsigned op1Reg) {
unsigned Class = getClass(resultType);
switch (Class) {
case cFP: // Floating point multiply
BuildMI(BB, X86::FpMUL, 2, destReg).addReg(op0Reg).addReg(op1Reg);
return;
default:
case cLong:
assert(0 && "doMultiply not implemented for this class yet!");
case cByte:
case cShort:
case cInt: // Small integerals, handled below...
break;
}
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
// Emit a MOV to put the first operand into the appropriately-sized
// subreg of EAX.
}
/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
unsigned DestReg = getReg(I);
unsigned Op0Reg = getReg(I.getOperand(0));
unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner
committed
doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register. Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
unsigned Class = getClass(I.getType());
unsigned Op0Reg = getReg(I.getOperand(0));
unsigned Op1Reg = getReg(I.getOperand(1));
unsigned ResultReg = getReg(I);
switch (Class) {
case cFP: // Floating point multiply
if (I.getOpcode() == Instruction::Div)
BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
else
BuildMI(BB, X86::FpREM, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
return;
default:
case cLong:
assert(0 && "div/rem not implemented for this class yet!");
case cByte:
case cShort:
case cInt: // Small integerals, handled below...
break;
}
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
static const unsigned DivOpcode[][4] = {
{ X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
{ X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
};
bool isSigned = I.getType()->isSigned();
unsigned Reg = Regs[Class];
unsigned ExtReg = ExtRegs[Class];
// Put the first operand into one of the A registers...
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
if (isSigned) {
// Emit a sign extension instruction...
} else {
// If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
}
// Emit the appropriate divide or remainder instruction...
BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
// Figure out which register we want to pick the result out of...
unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
// Put the result into the destination register...
BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst (ShiftInst &I) {
unsigned Op0r = getReg (I.getOperand(0));
unsigned DestReg = getReg(I);
bool isLeftShift = I.getOpcode() == Instruction::Shl;
bool isOperandSigned = I.getType()->isUnsigned();
unsigned OperandClass = getClass(I.getType());
visitInstruction(I); // Can't handle longs yet!
if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
{
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
unsigned char shAmt = CUI->getValue();
static const unsigned ConstantOperand[][4] = {
{ X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
{ X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
};
const unsigned *OpTab = // Figure out the operand table to use
ConstantOperand[isLeftShift*2+isOperandSigned];
// Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
}
else
{
// The shift amount is non-constant.
//
// In fact, you can only shift with a variable shift amount if
// that amount is already in the CL register, so we have to put it
// there first.
//
// Emit: move cl, shiftAmount (put the shift amount in CL.)
BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
// This is a shift right (SHR).
static const unsigned NonConstantOperand[][4] = {
{ X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
{ X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
};
const unsigned *OpTab = // Figure out the operand table to use
NonConstantOperand[isLeftShift*2+isOperandSigned];
BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
/// instruction. The load and store instructions are the only place where we
/// need to worry about the memory layout of the target machine.
///
void ISel::visitLoadInst(LoadInst &I) {
bool isLittleEndian = TM.getTargetData().isLittleEndian();
bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
unsigned SrcAddrReg = getReg(I.getOperand(0));
unsigned DestReg = getReg(I);
unsigned Class = getClass(I.getType());
switch (Class) {
default: visitInstruction(I); // FIXME: Handle longs...
case cFP: {
// FIXME: Handle endian swapping for FP values.
unsigned Opcode = I.getType() == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
return;
}
case cInt: // Integers of various sizes handled below
case cShort:
case cByte: break;
}
// We need to adjust the input pointer if we are emulating a big-endian
// long-pointer target. On these systems, the pointer that we are interested
// in is in the upper part of the eight byte memory image of the pointer. It
// also happens to be byte-swapped, but this will be handled later.
//
if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
unsigned R = makeAnotherReg(Type::UIntTy);
BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
SrcAddrReg = R;
}
unsigned IReg = DestReg;
if (!isLittleEndian) { // If big endian we need an intermediate stage
IReg = makeAnotherReg(I.getType());
std::swap(IReg, DestReg);
}
static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
if (!isLittleEndian) {
// Emit the byte swap instruction...
switch (Class) {
case cByte:
// No byteswap neccesary for 8 bit value...
BuildMI(BB, X86::MOVrr8, 1, IReg).addReg(DestReg);
break;
case cInt:
// Use the 32 bit bswap instruction to do a 32 bit swap...
BuildMI(BB, X86::BSWAPr32, 1, IReg).addReg(DestReg);
break;
case cShort:
// For 16 bit we have to use an xchg instruction, because there is no
// 16-bit bswap. XCHG is neccesarily not in SSA form, so we force things
// into AX to do the xchg.
//
BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(DestReg);
BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
.addReg(X86::AH, MOTy::UseAndDef);
BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
break;
default: assert(0 && "Class not handled yet!");
}
/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
/// instruction.
///
void ISel::visitStoreInst(StoreInst &I) {
bool isLittleEndian = TM.getTargetData().isLittleEndian();
bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
unsigned ValReg = getReg(I.getOperand(0));
unsigned AddressReg = getReg(I.getOperand(1));
unsigned Class = getClass(I.getOperand(0)->getType());
switch (Class) {
default: visitInstruction(I); // FIXME: Handle longs...
case cFP: {
// FIXME: Handle endian swapping for FP values.
unsigned Opcode = I.getOperand(0)->getType() == Type::FloatTy ?
X86::FSTr32 : X86::FSTr64;
addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
return;
}
case cInt: // Integers of various sizes handled below
case cShort:
case cByte: break;
}
if (!isLittleEndian && hasLongPointers &&
isa<PointerType>(I.getOperand(0)->getType())) {
unsigned R = makeAnotherReg(Type::UIntTy);
BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
AddressReg = R;
}
if (!isLittleEndian && Class != cByte) {
// Emit a byte swap instruction...
switch (Class) {
case cInt: {
unsigned R = makeAnotherReg(I.getOperand(0)->getType());
BuildMI(BB, X86::BSWAPr32, 1, R).addReg(ValReg);
ValReg = R;
break;
}
case cShort:
// For 16 bit we have to use an xchg instruction, because there is no
// 16-bit bswap. XCHG is neccesarily not in SSA form, so we force things
// into AX to do the xchg.
//
BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(ValReg);
BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
.addReg(X86::AH, MOTy::UseAndDef);
ValReg = X86::AX;
break;
default: assert(0 && "Unknown class!");
}
static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
}
/// visitCastInst - Here we have various kinds of copying with or without
/// sign extension going on.
void
ISel::visitCastInst (CastInst &CI)
{
Value *operand = CI.getOperand (0);
unsigned int operandReg = getReg (operand);
//
// Currently we handle:
//
// 1) cast * to bool
//
// 2) cast {sbyte, ubyte} to {sbyte, ubyte}
// cast {short, ushort} to {ushort, short}
// cast {int, uint, ptr} to {int, uint, ptr}
//
// 3) cast {sbyte, ubyte} to {ushort, short}
// cast {sbyte, ubyte} to {int, uint, ptr}
// cast {short, ushort} to {int, uint, ptr}
//
// 4) cast {int, uint, ptr} to {short, ushort}
// cast {int, uint, ptr} to {sbyte, ubyte}
// cast {short, ushort} to {sbyte, ubyte}
// 1) Implement casts to bool by using compare on the operand followed
// by set if not zero on the result.
if (targetType == Type::BoolTy)
{
BuildMI (BB, X86::CMPri8, 2).addReg (operandReg).addZImm (0);
BuildMI (BB, X86::SETNEr, 1, destReg);
return;
}
// 2) Implement casts between values of the same type class (as determined
// by getClass) by using a register-to-register move.
unsigned srcClass = getClassB(sourceType);
unsigned targClass = getClass(targetType);
static const unsigned regRegMove[] = {
X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
};
if (srcClass <= cInt && targClass <= cInt && srcClass == targClass) {
BuildMI(BB, regRegMove[srcClass], 1, destReg).addReg(operandReg);
return;
}
// 3) Handle cast of SMALLER int to LARGER int using a move with sign