Skip to content
  • Peter Collingbourne's avatar
    Protection against stack-based memory corruption errors using SafeStack · 82437bf7
    Peter Collingbourne authored
    This patch adds the safe stack instrumentation pass to LLVM, which separates
    the program stack into a safe stack, which stores return addresses, register
    spills, and local variables that are statically verified to be accessed
    in a safe way, and the unsafe stack, which stores everything else. Such
    separation makes it much harder for an attacker to corrupt objects on the
    safe stack, including function pointers stored in spilled registers and
    return addresses. You can find more information about the safe stack, as
    well as other parts of or control-flow hijack protection technique in our
    OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
    and our project website (http://levee.epfl.ch).
    
    The overhead of our implementation of the safe stack is very close to zero
    (0.01% on the Phoronix benchmarks). This is lower than the overhead of
    stack cookies, which are supported by LLVM and are commonly used today,
    yet the security guarantees of the safe stack are strictly stronger than
    stack cookies. In some cases, the safe stack improves performance due to
    better cache locality.
    
    Our current implementation of the safe stack is stable and robust, we
    used it to recompile multiple projects on Linux including Chromium, and
    we also recompiled the entire FreeBSD user-space system and more than 100
    packages. We ran unit tests on the FreeBSD system and many of the packages
    and observed no errors caused by the safe stack. The safe stack is also fully
    binary compatible with non-instrumented code and can be applied to parts of
    a program selectively.
    
    This patch is our implementation of the safe stack on top of LLVM. The
    patches make the following changes:
    
    - Add the safestack function attribute, similar to the ssp, sspstrong and
      sspreq attributes.
    
    - Add the SafeStack instrumentation pass that applies the safe stack to all
      functions that have the safestack attribute. This pass moves all unsafe local
      variables to the unsafe stack with a separate stack pointer, whereas all
      safe variables remain on the regular stack that is managed by LLVM as usual.
    
    - Invoke the pass as the last stage before code generation (at the same time
      the existing cookie-based stack protector pass is invoked).
    
    - Add unit tests for the safe stack.
    
    Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
    Lab at EPFL; updates and upstreaming by myself.
    
    Differential Revision: http://reviews.llvm.org/D6094
    
    llvm-svn: 239761
    82437bf7
Loading