Skip to content
Snippets Groups Projects
Commit 19a906f3 authored by Aart Bik's avatar Aart Bik
Browse files

[mlir][sparse][python] make imports more selective

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D108055
parent 570c9beb
No related branches found
No related tags found
No related merge requests found
# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
import os
import ctypes
import mlir.all_passes_registration
import numpy as np
import os
import mlir.all_passes_registration
from mlir import ir
from mlir import runtime as rt
from mlir import execution_engine
from mlir import passmanager
from mlir.dialects import sparse_tensor as st
from mlir.dialects import builtin
from mlir.dialects.linalg.opdsl.lang import *
from mlir.dialects.sparse_tensor import *
from mlir.execution_engine import *
from mlir.ir import *
from mlir.passmanager import *
from mlir.runtime import *
from mlir.dialects.linalg.opdsl import lang as dsl
def run(f):
......@@ -20,28 +22,28 @@ def run(f):
return f
@linalg_structured_op
@dsl.linalg_structured_op
def matmul_dsl(
A=TensorDef(T, S.M, S.K),
B=TensorDef(T, S.K, S.N),
C=TensorDef(T, S.M, S.N, output=True)):
C[D.m, D.n] += A[D.m, D.k] * B[D.k, D.n]
A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)):
C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
def build_SpMM(attr: EncodingAttr):
def build_SpMM(attr: st.EncodingAttr):
"""Build SpMM kernel.
This method generates a linalg op with for matrix multiplication using
just the Python API. Effectively, a generic linalg op is constructed
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
"""
module = Module.create()
module = ir.Module.create()
f64 = ir.F64Type.get()
a = RankedTensorType.get([3, 4], f64, attr)
b = RankedTensorType.get([4, 2], f64)
c = RankedTensorType.get([3, 2], f64)
a = ir.RankedTensorType.get([3, 4], f64, attr)
b = ir.RankedTensorType.get([4, 2], f64)
c = ir.RankedTensorType.get([3, 2], f64)
arguments = [a, b, c]
with InsertionPoint(module.body):
with ir.InsertionPoint(module.body):
@builtin.FuncOp.from_py_func(*arguments)
def spMxM(*args):
......@@ -50,7 +52,7 @@ def build_SpMM(attr: EncodingAttr):
return module
def boilerplate(attr: EncodingAttr):
def boilerplate(attr: st.EncodingAttr):
"""Returns boilerplate main method.
This method sets up a boilerplate main method that calls the generated
......@@ -75,14 +77,15 @@ func @main(%c: tensor<3x2xf64>) -> tensor<3x2xf64>
"""
def build_compile_and_run_SpMM(attr: EncodingAttr, support_lib: str, compiler):
def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str,
compiler):
# Build.
module = build_SpMM(attr)
func = str(module.operation.regions[0].blocks[0].operations[0].operation)
module = Module.parse(func + boilerplate(attr))
module = ir.Module.parse(func + boilerplate(attr))
# Compile.
compiler(module)
execution_engine = ExecutionEngine(
engine = execution_engine.ExecutionEngine(
module, opt_level=0, shared_libs=[support_lib])
# Set up numpy input, invoke the kernel, and get numpy output.
# Built-in bufferization uses in-out buffers.
......@@ -90,11 +93,11 @@ def build_compile_and_run_SpMM(attr: EncodingAttr, support_lib: str, compiler):
Cin = np.zeros((3, 2), np.double)
Cout = np.zeros((3, 2), np.double)
Cin_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(Cin)))
ctypes.pointer(rt.get_ranked_memref_descriptor(Cin)))
Cout_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(Cout)))
execution_engine.invoke('main', Cout_memref_ptr, Cin_memref_ptr)
Cresult = ranked_memref_to_numpy(Cout_memref_ptr[0])
ctypes.pointer(rt.get_ranked_memref_descriptor(Cout)))
engine.invoke('main', Cout_memref_ptr, Cin_memref_ptr)
Cresult = rt.ranked_memref_to_numpy(Cout_memref_ptr[0])
# Sanity check on computed result.
expected = [[12.3, 12.0], [0.0, 0.0], [16.5, 19.8]]
......@@ -121,8 +124,8 @@ class SparseCompiler:
f'convert-std-to-llvm')
self.pipeline = pipeline
def __call__(self, module: Module):
PassManager.parse(self.pipeline).run(module)
def __call__(self, module: ir.Module):
passmanager.PassManager.parse(self.pipeline).run(module)
# CHECK-LABEL: TEST: testSpMM
......@@ -130,7 +133,7 @@ class SparseCompiler:
@run
def testSpMM():
support_lib = os.getenv('SUPPORT_LIB')
with Context() as ctx, Location.unknown():
with ir.Context() as ctx, ir.Location.unknown():
count = 0
# Fixed compiler optimization strategy.
# TODO: explore state space here too
......@@ -144,20 +147,20 @@ def testSpMM():
# Exhaustive loop over various ways to annotate a kernel with
# a *single* sparse tensor. Even this subset already gives
# quite a large state space!
levels = [[DimLevelType.dense, DimLevelType.dense],
[DimLevelType.dense, DimLevelType.compressed],
[DimLevelType.compressed, DimLevelType.dense],
[DimLevelType.compressed, DimLevelType.compressed]]
levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
[st.DimLevelType.dense, st.DimLevelType.compressed],
[st.DimLevelType.compressed, st.DimLevelType.dense],
[st.DimLevelType.compressed, st.DimLevelType.compressed]]
orderings = [
AffineMap.get_permutation([0, 1]),
AffineMap.get_permutation([1, 0])
ir.AffineMap.get_permutation([0, 1]),
ir.AffineMap.get_permutation([1, 0])
]
bitwidths = [0, 8, 32]
for levels in levels:
for level in levels:
for ordering in orderings:
for pwidth in bitwidths:
for iwidth in bitwidths:
attr = EncodingAttr.get(levels, ordering, pwidth, iwidth)
attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth)
compiler = SparseCompiler(options=opt)
build_compile_and_run_SpMM(attr, support_lib, compiler)
count = count + 1
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment