Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LLVM bpEVL
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Lorenzo Albano
LLVM bpEVL
Commits
19a906f3
Commit
19a906f3
authored
3 years ago
by
Aart Bik
Browse files
Options
Downloads
Patches
Plain Diff
[mlir][sparse][python] make imports more selective
Reviewed By: bixia Differential Revision:
https://reviews.llvm.org/D108055
parent
570c9beb
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlir/test/python/dialects/sparse_tensor/test_SpMM.py
+41
-38
41 additions, 38 deletions
mlir/test/python/dialects/sparse_tensor/test_SpMM.py
with
41 additions
and
38 deletions
mlir/test/python/dialects/sparse_tensor/test_SpMM.py
+
41
−
38
View file @
19a906f3
# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
import
os
import
ctypes
import
mlir.all_passes_registration
import
numpy
as
np
import
os
import
mlir.all_passes_registration
from
mlir
import
ir
from
mlir
import
runtime
as
rt
from
mlir
import
execution_engine
from
mlir
import
passmanager
from
mlir.dialects
import
sparse_tensor
as
st
from
mlir.dialects
import
builtin
from
mlir.dialects.linalg.opdsl.lang
import
*
from
mlir.dialects.sparse_tensor
import
*
from
mlir.execution_engine
import
*
from
mlir.ir
import
*
from
mlir.passmanager
import
*
from
mlir.runtime
import
*
from
mlir.dialects.linalg.opdsl
import
lang
as
dsl
def
run
(
f
):
...
...
@@ -20,28 +22,28 @@ def run(f):
return
f
@linalg_structured_op
@
dsl.
linalg_structured_op
def
matmul_dsl
(
A
=
TensorDef
(
T
,
S
.
M
,
S
.
K
),
B
=
TensorDef
(
T
,
S
.
K
,
S
.
N
),
C
=
TensorDef
(
T
,
S
.
M
,
S
.
N
,
output
=
True
)):
C
[
D
.
m
,
D
.
n
]
+=
A
[
D
.
m
,
D
.
k
]
*
B
[
D
.
k
,
D
.
n
]
A
=
dsl
.
TensorDef
(
dsl
.
T
,
dsl
.
S
.
M
,
dsl
.
S
.
K
),
B
=
dsl
.
TensorDef
(
dsl
.
T
,
dsl
.
S
.
K
,
dsl
.
S
.
N
),
C
=
dsl
.
TensorDef
(
dsl
.
T
,
dsl
.
S
.
M
,
dsl
.
S
.
N
,
output
=
True
)):
C
[
dsl
.
D
.
m
,
dsl
.
D
.
n
]
+=
A
[
dsl
.
D
.
m
,
dsl
.
D
.
k
]
*
B
[
dsl
.
D
.
k
,
dsl
.
D
.
n
]
def
build_SpMM
(
attr
:
EncodingAttr
):
def
build_SpMM
(
attr
:
st
.
EncodingAttr
):
"""
Build SpMM kernel.
This method generates a linalg op with for matrix multiplication using
just the Python API. Effectively, a generic linalg op is constructed
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
"""
module
=
Module
.
create
()
module
=
ir
.
Module
.
create
()
f64
=
ir
.
F64Type
.
get
()
a
=
RankedTensorType
.
get
([
3
,
4
],
f64
,
attr
)
b
=
RankedTensorType
.
get
([
4
,
2
],
f64
)
c
=
RankedTensorType
.
get
([
3
,
2
],
f64
)
a
=
ir
.
RankedTensorType
.
get
([
3
,
4
],
f64
,
attr
)
b
=
ir
.
RankedTensorType
.
get
([
4
,
2
],
f64
)
c
=
ir
.
RankedTensorType
.
get
([
3
,
2
],
f64
)
arguments
=
[
a
,
b
,
c
]
with
InsertionPoint
(
module
.
body
):
with
ir
.
InsertionPoint
(
module
.
body
):
@builtin.FuncOp.from_py_func
(
*
arguments
)
def
spMxM
(
*
args
):
...
...
@@ -50,7 +52,7 @@ def build_SpMM(attr: EncodingAttr):
return
module
def
boilerplate
(
attr
:
EncodingAttr
):
def
boilerplate
(
attr
:
st
.
EncodingAttr
):
"""
Returns boilerplate main method.
This method sets up a boilerplate main method that calls the generated
...
...
@@ -75,14 +77,15 @@ func @main(%c: tensor<3x2xf64>) -> tensor<3x2xf64>
"""
def
build_compile_and_run_SpMM
(
attr
:
EncodingAttr
,
support_lib
:
str
,
compiler
):
def
build_compile_and_run_SpMM
(
attr
:
st
.
EncodingAttr
,
support_lib
:
str
,
compiler
):
# Build.
module
=
build_SpMM
(
attr
)
func
=
str
(
module
.
operation
.
regions
[
0
].
blocks
[
0
].
operations
[
0
].
operation
)
module
=
Module
.
parse
(
func
+
boilerplate
(
attr
))
module
=
ir
.
Module
.
parse
(
func
+
boilerplate
(
attr
))
# Compile.
compiler
(
module
)
execution_engine
=
ExecutionEngine
(
engine
=
execution_engine
.
ExecutionEngine
(
module
,
opt_level
=
0
,
shared_libs
=
[
support_lib
])
# Set up numpy input, invoke the kernel, and get numpy output.
# Built-in bufferization uses in-out buffers.
...
...
@@ -90,11 +93,11 @@ def build_compile_and_run_SpMM(attr: EncodingAttr, support_lib: str, compiler):
Cin
=
np
.
zeros
((
3
,
2
),
np
.
double
)
Cout
=
np
.
zeros
((
3
,
2
),
np
.
double
)
Cin_memref_ptr
=
ctypes
.
pointer
(
ctypes
.
pointer
(
get_ranked_memref_descriptor
(
Cin
)))
ctypes
.
pointer
(
rt
.
get_ranked_memref_descriptor
(
Cin
)))
Cout_memref_ptr
=
ctypes
.
pointer
(
ctypes
.
pointer
(
get_ranked_memref_descriptor
(
Cout
)))
execution_
engine
.
invoke
(
'
main
'
,
Cout_memref_ptr
,
Cin_memref_ptr
)
Cresult
=
ranked_memref_to_numpy
(
Cout_memref_ptr
[
0
])
ctypes
.
pointer
(
rt
.
get_ranked_memref_descriptor
(
Cout
)))
engine
.
invoke
(
'
main
'
,
Cout_memref_ptr
,
Cin_memref_ptr
)
Cresult
=
rt
.
ranked_memref_to_numpy
(
Cout_memref_ptr
[
0
])
# Sanity check on computed result.
expected
=
[[
12.3
,
12.0
],
[
0.0
,
0.0
],
[
16.5
,
19.8
]]
...
...
@@ -121,8 +124,8 @@ class SparseCompiler:
f
'
convert-std-to-llvm
'
)
self
.
pipeline
=
pipeline
def
__call__
(
self
,
module
:
Module
):
PassManager
.
parse
(
self
.
pipeline
).
run
(
module
)
def
__call__
(
self
,
module
:
ir
.
Module
):
passmanager
.
PassManager
.
parse
(
self
.
pipeline
).
run
(
module
)
# CHECK-LABEL: TEST: testSpMM
...
...
@@ -130,7 +133,7 @@ class SparseCompiler:
@run
def
testSpMM
():
support_lib
=
os
.
getenv
(
'
SUPPORT_LIB
'
)
with
Context
()
as
ctx
,
Location
.
unknown
():
with
ir
.
Context
()
as
ctx
,
ir
.
Location
.
unknown
():
count
=
0
# Fixed compiler optimization strategy.
# TODO: explore state space here too
...
...
@@ -144,20 +147,20 @@ def testSpMM():
# Exhaustive loop over various ways to annotate a kernel with
# a *single* sparse tensor. Even this subset already gives
# quite a large state space!
levels
=
[[
DimLevelType
.
dense
,
DimLevelType
.
dense
],
[
DimLevelType
.
dense
,
DimLevelType
.
compressed
],
[
DimLevelType
.
compressed
,
DimLevelType
.
dense
],
[
DimLevelType
.
compressed
,
DimLevelType
.
compressed
]]
levels
=
[[
st
.
DimLevelType
.
dense
,
st
.
DimLevelType
.
dense
],
[
st
.
DimLevelType
.
dense
,
st
.
DimLevelType
.
compressed
],
[
st
.
DimLevelType
.
compressed
,
st
.
DimLevelType
.
dense
],
[
st
.
DimLevelType
.
compressed
,
st
.
DimLevelType
.
compressed
]]
orderings
=
[
AffineMap
.
get_permutation
([
0
,
1
]),
AffineMap
.
get_permutation
([
1
,
0
])
ir
.
AffineMap
.
get_permutation
([
0
,
1
]),
ir
.
AffineMap
.
get_permutation
([
1
,
0
])
]
bitwidths
=
[
0
,
8
,
32
]
for
level
s
in
levels
:
for
level
in
levels
:
for
ordering
in
orderings
:
for
pwidth
in
bitwidths
:
for
iwidth
in
bitwidths
:
attr
=
EncodingAttr
.
get
(
level
s
,
ordering
,
pwidth
,
iwidth
)
attr
=
st
.
EncodingAttr
.
get
(
level
,
ordering
,
pwidth
,
iwidth
)
compiler
=
SparseCompiler
(
options
=
opt
)
build_compile_and_run_SpMM
(
attr
,
support_lib
,
compiler
)
count
=
count
+
1
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment