[mlir] Add pass to convert elementwise ops to linalg.
This patch converts elementwise ops on tensors to linalg.generic ops with the same elementwise op in the payload (except rewritten to operate on scalars, obviously). This is a great form for later fusion to clean up. E.g. ``` // Compute: %arg0 + %arg1 - %arg2 func @f(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>) -> tensor<?xf32> { %0 = addf %arg0, %arg1 : tensor<?xf32> %1 = subf %0, %arg2 : tensor<?xf32> return %1 : tensor<?xf32> } ``` Running this through `mlir-opt -convert-std-to-linalg -linalg-fusion-for-tensor-ops` we get: ``` func @f(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>) -> tensor<?xf32> { %0 = linalg.generic {indexing_maps = [#map0, #map0, #map0, #map0], iterator_types = ["parallel"]} ins(%arg0, %arg1, %arg2 : tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) { ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors %1 = addf %arg3, %arg4 : f32 %2 = subf %1, %arg5 : f32 linalg.yield %2 : f32 } -> tensor<?xf32> return %0 : tensor<?xf32> } ``` So the elementwise ops on tensors have nicely collapsed into a single linalg.generic, which is the form we want for further transformations. Differential Revision: https://reviews.llvm.org/D90354
Loading
Please register or sign in to comment