- Oct 08, 2014
-
-
David Majnemer authored
A function with discardable linkage cannot be discarded if its a member of a COMDAT group without considering all the other COMDAT members as well. This sort of thing is already handled by GlobalOpt/GlobalDCE. This fixes PR21206. llvm-svn: 219335
-
- Sep 07, 2014
-
-
Hal Finkel authored
This adds an immutable pass, AssumptionTracker, which keeps a cache of @llvm.assume call instructions within a module. It uses callback value handles to keep stale functions and intrinsics out of the map, and it relies on any code that creates new @llvm.assume calls to notify it of the new instructions. The benefit is that code needing to find @llvm.assume intrinsics can do so directly, without scanning the function, thus allowing the cost of @llvm.assume handling to be negligible when none are present. The current design is intended to be lightweight. We don't keep track of anything until we need a list of assumptions in some function. The first time this happens, we scan the function. After that, we add/remove @llvm.assume calls from the cache in response to registration calls and ValueHandle callbacks. There are no new direct test cases for this pass, but because it calls it validation function upon module finalization, we'll pick up detectable inconsistencies from the other tests that touch @llvm.assume calls. This pass will be used by follow-up commits that make use of @llvm.assume. llvm-svn: 217334
-
- Sep 01, 2014
-
-
Hal Finkel authored
This feeds AA through the IFI structure into the inliner so that AddAliasScopeMetadata can use AA->getModRefBehavior to figure out which functions only access their arguments (instead of just hard-coding some knowledge of memory intrinsics). Most of the information is only available from BasicAA; this is important for preserving alias scoping information for target-specific intrinsics when doing the noalias parameter attribute to metadata conversion. llvm-svn: 216866
-
- Jul 30, 2014
-
-
Rafael Espindola authored
llvm-svn: 214312
-
- May 22, 2014
-
-
Diego Novillo authored
Summary: This adds two new diagnostics: -pass-remarks-missed and -pass-remarks-analysis. They take the same values as -pass-remarks but are intended to be triggered in different contexts. -pass-remarks-missed is used by LLVMContext::emitOptimizationRemarkMissed, which passes call when they tried to apply a transformation but couldn't. -pass-remarks-analysis is used by LLVMContext::emitOptimizationRemarkAnalysis, which passes call when they want to inform the user about analysis results. The patch also: 1- Adds support in the inliner for the two new remarks and a test case. 2- Moves emitOptimizationRemark* functions to the llvm namespace. 3- Adds an LLVMContext argument instead of making them member functions of LLVMContext. Reviewers: qcolombet Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D3682 llvm-svn: 209442
-
- Apr 25, 2014
-
-
Manman Ren authored
override the default cold threshold. When we use command line argument to set the inline threshold, the default cold threshold will not be used. This is in line with how we use OptSizeThreshold. When we want a higher threshold for all functions, we do not have to set both inline threshold and cold threshold. llvm-svn: 207245
-
Craig Topper authored
llvm-svn: 207196
-
- Apr 22, 2014
-
-
Chandler Carruth authored
definition below all of the header #include lines, lib/Transforms/... edition. This one is tricky for two reasons. We again have a couple of passes that define something else before the includes as well. I've sunk their name macros with the DEBUG_TYPE. Also, InstCombine contains headers that need DEBUG_TYPE, so now those headers #define and #undef DEBUG_TYPE around their code, leaving them well formed modular headers. Fixing these headers was a large motivation for all of these changes, as "leaky" macros of this form are hard on the modules implementation. llvm-svn: 206844
-
- Apr 17, 2014
-
-
NAKAMURA Takumi authored
Inliner::OptimizationRemark: Fix crash in clang/test/Frontend/optimization-remark.c on some hosts, including --vg. DebugLoc in Callsite would not live after Inliner. It should be copied before Inliner. llvm-svn: 206459
-
- Apr 08, 2014
-
-
Diego Novillo authored
Summary: This patch adds backend support for -Rpass=, which indicates the name of the optimization pass that should emit remarks stating when it made a transformation to the code. Pass names are taken from their DEBUG_NAME definitions. When emitting an optimization report diagnostic, the lack of debug information causes the diagnostic to use "<unknown>:0:0" as the location string. This is the back end counterpart for http://llvm-reviews.chandlerc.com/D3226 Reviewers: qcolombet CC: llvm-commits Differential Revision: http://llvm-reviews.chandlerc.com/D3227 llvm-svn: 205774
-
- Mar 09, 2014
-
-
Chandler Carruth authored
This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
-
- Mar 04, 2014
-
-
Chandler Carruth authored
abstracting between a CallInst and an InvokeInst, both of which are IR concepts. llvm-svn: 202816
-
- Feb 25, 2014
-
-
Rafael Espindola authored
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM don't don't handle passes to also use DataLayout. llvm-svn: 202168
-
- Feb 21, 2014
-
-
Rafael Espindola authored
llvm-svn: 201833
-
- Feb 06, 2014
-
-
Manman Ren authored
225 is the default value of inline-threshold. This change will make sure we have the same inlining behavior as prior to r200886. As Chandler points out, even though we don't have code in our testing suite that uses cold attribute, there are larger applications that do use cold attribute. r200886 + this commit intend to keep the same behavior as prior to r200886. We can later on tune the inlinecold-threshold. The main purpose of r200886 is to help performance of instrumentation based PGO before we actually hook up inliner with analysis passes such as BPI and BFI. For instrumentation based PGO, we try to increase inlining of hot functions and reduce inlining of cold functions by setting inlinecold-threshold. Another option suggested by Chandler is to use a boolean flag that controls if we should use OptSizeThreshold for cold functions. The default value of the boolean flag should not change the current behavior. But it gives us less freedom in controlling inlining of cold functions. llvm-svn: 200898
-
- Feb 05, 2014
-
-
Manman Ren authored
Added command line option inlinecold-threshold to set threshold for inlining functions with cold attribute. Listen to the cold attribute when it would decrease the inline threshold. llvm-svn: 200886
-
- Nov 26, 2013
-
-
Chandler Carruth authored
CallGraph. This makes the CallGraph a totally generic analysis object that is the container for the graph data structure and the primary interface for querying and manipulating it. The pass logic is separated into its own class. For compatibility reasons, the pass provides wrapper methods for most of the methods on CallGraph -- they all just forward. This will allow the new pass manager infrastructure to provide its own analysis pass that constructs the same CallGraph object and makes it available. The idea is that in the new pass manager, the analysis pass's 'run' method returns a concrete analysis 'result'. Here, that result is a 'CallGraph'. The 'run' method will typically do only minimal work, deferring much of the work into the implementation of the result object in order to be lazy about computing things, but when (like DomTree) there is *some* up-front computation, the analysis does it prior to handing the result back to the querying pass. I know some of this is fairly ugly. I'm happy to change it around if folks can suggest a cleaner interim state, but there is going to be some amount of unavoidable ugliness during the transition period. The good thing is that this is very limited and will naturally go away when the old pass infrastructure goes away. It won't hang around to bother us later. Next up is the initial new-PM-style call graph analysis. =] llvm-svn: 195722
-
- Jul 17, 2013
-
-
Hal Finkel authored
Duncan pointed out a mistake in my fix in r186425 when only one of the allocas being compared had the target-default alignment. This is essentially his suggested solution. Thanks! llvm-svn: 186510
-
- Jul 16, 2013
-
-
Hal Finkel authored
For safety, the inliner cannot decrease the allignment on an alloca when merging it with another. I've included two variants of the test case for this: one with DataLayout available, and one without. When DataLayout is not available, if only one of the allocas uses the default alignment (getAlignment() == 0), then they cannot be safely merged. llvm-svn: 186425
-
- Jan 23, 2013
-
-
Bill Wendling authored
SSPStrong applies a heuristic to insert stack protectors in these situations: * A Protector is required for functions which contain an array, regardless of type or length. * A Protector is required for functions which contain a structure/union which contains an array, regardless of type or length. Note, there is no limit to the depth of nesting. * A protector is required when the address of a local variable (i.e., stack based variable) is exposed. (E.g., such as through a local whose address is taken as part of the RHS of an assignment or a local whose address is taken as part of a function argument.) This patch implements the SSPString attribute to be equivalent to SSPRequired. This will change in a subsequent patch. llvm-svn: 173230
-
- Jan 02, 2013
-
-
Chandler Carruth authored
into their new header subdirectory: include/llvm/IR. This matches the directory structure of lib, and begins to correct a long standing point of file layout clutter in LLVM. There are still more header files to move here, but I wanted to handle them in separate commits to make tracking what files make sense at each layer easier. The only really questionable files here are the target intrinsic tablegen files. But that's a battle I'd rather not fight today. I've updated both CMake and Makefile build systems (I think, and my tests think, but I may have missed something). I've also re-sorted the includes throughout the project. I'll be committing updates to Clang, DragonEgg, and Polly momentarily. llvm-svn: 171366
-
- Dec 30, 2012
-
-
Bill Wendling authored
directly. This is in preparation for removing the use of the 'Attribute' class as a collection of attributes. That will shift to the AttributeSet class instead. llvm-svn: 171253
-
- Dec 27, 2012
-
-
Chandler Carruth authored
getAnalysisUsage implementations. llvm-svn: 171157
-
- Dec 19, 2012
-
-
Bill Wendling authored
Rename the 'Attributes' class to 'Attribute'. It's going to represent a single attribute in the future. llvm-svn: 170502
-
- Dec 13, 2012
-
-
Quentin Colombet authored
Better controls the inlining of functions when the caller function has MinSize attribute. Basically, when the caller function has this attribute, we do not "force" the inlining of callee functions carrying the InlineHint attribute (i.e., functions defined with inline keyword) llvm-svn: 170065
-
- Dec 03, 2012
-
-
Chandler Carruth authored
Sooooo many of these had incorrect or strange main module includes. I have manually inspected all of these, and fixed the main module include to be the nearest plausible thing I could find. If you own or care about any of these source files, I encourage you to take some time and check that these edits were sensible. I can't have broken anything (I strictly added headers, and reordered them, never removed), but they may not be the headers you'd really like to identify as containing the API being implemented. Many forward declarations and missing includes were added to a header files to allow them to parse cleanly when included first. The main module rule does in fact have its merits. =] llvm-svn: 169131
-
- Oct 10, 2012
-
-
Bill Wendling authored
Have 'addFnAttr' take the attribute enum value. Then have it build the attribute object and add it appropriately. No functionality change. llvm-svn: 165595
-
- Oct 09, 2012
-
-
Bill Wendling authored
We use the enums to query whether an Attributes object has that attribute. The opaque layer is responsible for knowing where that specific attribute is stored. llvm-svn: 165488
-
- Oct 08, 2012
-
-
Micah Villmow authored
llvm-svn: 165402
-
- Sep 26, 2012
-
-
Bill Wendling authored
The hasFnAttr method has been replaced by querying the Attributes explicitly. No intended functionality change. llvm-svn: 164725
-
- Sep 13, 2012
-
-
Nadav Rotem authored
llvm-svn: 163808
-
- Aug 29, 2012
-
-
Benjamin Kramer authored
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding) is specified. This has been a problem for a long time but became more severe with the recent memory builtin improvements. Since the memory builtin functions are used everywhere, this required passing TLI in many places. This means that functions that now have an optional TLI argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead mallocs anymore if the TLI argument is missing. I've updated most passes to do the right thing. Fixes PR13694 and probably others. llvm-svn: 162841
-
- Jun 02, 2012
-
-
- May 23, 2012
-
-
Patrik Hägglund authored
inline threshold if the global inline threshold is lower (as for -Oz). Reviewed by Chandler Carruth and Bill Wendling. llvm-svn: 157323
-
- Apr 11, 2012
-
-
Chandler Carruth authored
Yea, 'NumCallerCallersAnalyzed' isn't a great name, suggestions welcome. llvm-svn: 154492
-
- Apr 01, 2012
-
-
Chandler Carruth authored
As a side note, I really dislike array_pod_sort... Do we really still care about any STL implementations that get this so wrong? Does libc++? llvm-svn: 153834
-
- Mar 31, 2012
-
-
Chandler Carruth authored
interfaces. These methods were used in the old inline cost system where there was a persistent cache that had to be updated, invalidated, and cleared. We're now doing more direct computations that don't require this intricate dance. Even if we resume some level of caching, it would almost certainly have a simpler and more narrow interface than this. llvm-svn: 153813
-
Chandler Carruth authored
on a per-callsite walk of the called function's instructions, in breadth-first order over the potentially reachable set of basic blocks. This is a major shift in how inline cost analysis works to improve the accuracy and rationality of inlining decisions. A brief outline of the algorithm this moves to: - Build a simplification mapping based on the callsite arguments to the function arguments. - Push the entry block onto a worklist of potentially-live basic blocks. - Pop the first block off of the *front* of the worklist (for breadth-first ordering) and walk its instructions using a custom InstVisitor. - For each instruction's operands, re-map them based on the simplification mappings available for the given callsite. - Compute any simplification possible of the instruction after re-mapping, and store that back int othe simplification mapping. - Compute any bonuses, costs, or other impacts of the instruction on the cost metric. - When the terminator is reached, replace any conditional value in the terminator with any simplifications from the mapping we have, and add any successors which are not proven to be dead from these simplifications to the worklist. - Pop the next block off of the front of the worklist, and repeat. - As soon as the cost of inlining exceeds the threshold for the callsite, stop analyzing the function in order to bound cost. The primary goal of this algorithm is to perfectly handle dead code paths. We do not want any code in trivially dead code paths to impact inlining decisions. The previous metric was *extremely* flawed here, and would always subtract the average cost of two successors of a conditional branch when it was proven to become an unconditional branch at the callsite. There was no handling of wildly different costs between the two successors, which would cause inlining when the path actually taken was too large, and no inlining when the path actually taken was trivially simple. There was also no handling of the code *path*, only the immediate successors. These problems vanish completely now. See the added regression tests for the shiny new features -- we skip recursive function calls, SROA-killing instructions, and high cost complex CFG structures when dead at the callsite being analyzed. Switching to this algorithm required refactoring the inline cost interface to accept the actual threshold rather than simply returning a single cost. The resulting interface is pretty bad, and I'm planning to do lots of interface cleanup after this patch. Several other refactorings fell out of this, but I've tried to minimize them for this patch. =/ There is still more cleanup that can be done here. Please point out anything that you see in review. I've worked really hard to try to mirror at least the spirit of all of the previous heuristics in the new model. It's not clear that they are all correct any more, but I wanted to minimize the change in this single patch, it's already a bit ridiculous. One heuristic that is *not* yet mirrored is to allow inlining of functions with a dynamic alloca *if* the caller has a dynamic alloca. I will add this back, but I think the most reasonable way requires changes to the inliner itself rather than just the cost metric, and so I've deferred this for a subsequent patch. The test case is XFAIL-ed until then. As mentioned in the review mail, this seems to make Clang run about 1% to 2% faster in -O0, but makes its binary size grow by just under 4%. I've looked into the 4% growth, and it can be fixed, but requires changes to other parts of the inliner. llvm-svn: 153812
-
- Mar 27, 2012
-
-
Chandler Carruth authored
size bloat. Unfortunately, I expect this to disable the majority of the benefit from r152737. I'm hopeful at least that it will fix PR12345. To explain this requires... quite a bit of backstory I'm afraid. TL;DR: The change in r152737 actually did The Wrong Thing for linkonce-odr functions. This change makes it do the right thing. The benefits we saw were simple luck, not any actual strategy. Benchmark numbers after a mini-blog-post so that I've written down my thoughts on why all of this works and doesn't work... To understand what's going on here, you have to understand how the "bottom-up" inliner actually works. There are two fundamental modes to the inliner: 1) Standard fixed-cost bottom-up inlining. This is the mode we usually think about. It walks from the bottom of the CFG up to the top, looking at callsites, taking information about the callsite and the called function and computing th expected cost of inlining into that callsite. If the cost is under a fixed threshold, it inlines. It's a touch more complicated than that due to all the bonuses, weights, etc. Inlining the last callsite to an internal function gets higher weighth, etc. But essentially, this is the mode of operation. 2) Deferred bottom-up inlining (a term I just made up). This is the interesting mode for this patch an r152737. Initially, this works just like mode #1, but once we have the cost of inlining into the callsite, we don't just compare it with a fixed threshold. First, we check something else. Let's give some names to the entities at this point, or we'll end up hopelessly confused. We're considering inlining a function 'A' into its callsite within a function 'B'. We want to check whether 'B' has any callers, and whether it might be inlined into those callers. If so, we also check whether inlining 'A' into 'B' would block any of the opportunities for inlining 'B' into its callers. We take the sum of the costs of inlining 'B' into its callers where that inlining would be blocked by inlining 'A' into 'B', and if that cost is less than the cost of inlining 'A' into 'B', then we skip inlining 'A' into 'B'. Now, in order for #2 to make sense, we have to have some confidence that we will actually have the opportunity to inline 'B' into its callers when cheaper, *and* that we'll be able to revisit the decision and inline 'A' into 'B' if that ever becomes the correct tradeoff. This often isn't true for external functions -- we can see very few of their callers, and we won't be able to re-consider inlining 'A' into 'B' if 'B' is external when we finally see more callers of 'B'. There are two cases where we believe this to be true for C/C++ code: functions local to a translation unit, and functions with an inline definition in every translation unit which uses them. These are represented as internal linkage and linkonce-odr (resp.) in LLVM. I enabled this logic for linkonce-odr in r152737. Unfortunately, when I did that, I also introduced a subtle bug. There was an implicit assumption that the last caller of the function within the TU was the last caller of the function in the program. We want to bonus the last caller of the function in the program by a huge amount for inlining because inlining that callsite has very little cost. Unfortunately, the last caller in the TU of a linkonce-odr function is *not* the last caller in the program, and so we don't want to apply this bonus. If we do, we can apply it to one callsite *per-TU*. Because of the way deferred inlining works, when it sees this bonus applied to one callsite in the TU for 'B', it decides that inlining 'B' is of the *utmost* importance just so we can get that final bonus. It then proceeds to essentially force deferred inlining regardless of the actual cost tradeoff. The result? PR12345: code bloat, code bloat, code bloat. Another result is getting *damn* lucky on a few benchmarks, and the over-inlining exposing critically important optimizations. I would very much like a list of benchmarks that regress after this change goes in, with bitcode before and after. This will help me greatly understand what opportunities the current cost analysis is missing. Initial benchmark numbers look very good. WebKit files that exhibited the worst of PR12345 went from growing to shrinking compared to Clang with r152737 reverted. - Bootstrapped Clang is 3% smaller with this change. - Bootstrapped Clang -O0 over a single-source-file of lib/Lex is 4% faster with this change. Please let me know about any other performance impact you see. Thanks to Nico for reporting and urging me to actually fix, Richard Smith, Duncan Sands, Manuel Klimek, and Benjamin Kramer for talking through the issues today. llvm-svn: 153506
-
- Mar 25, 2012
-
-
Chandler Carruth authored
to instead rely on much more generic and powerful instruction simplification in the function cloner (and thus inliner). This teaches the pruning function cloner to use instsimplify rather than just the constant folder to fold values during cloning. This can simplify a large number of things that constant folding alone cannot begin to touch. For example, it will realize that 'or' and 'and' instructions with certain constant operands actually become constants regardless of what their other operand is. It also can thread back through the caller to perform simplifications that are only possible by looking up a few levels. In particular, GEPs and pointer testing tend to fold much more heavily with this change. This should (in some cases) have a positive impact on compile times with optimizations on because the inliner itself will simply avoid cloning a great deal of code. It already attempted to prune proven-dead code, but now it will be use the stronger simplifications to prove more code dead. llvm-svn: 153403
-