- Dec 15, 2014
-
-
Elena Demikhovsky authored
- by Ella Bolshinsky The alias analysis is used define whether the given instruction is a barrier for store sinking. For 2 identical stores, following instructions are checked in the both basic blocks, to determine whether they are sinking barriers. http://reviews.llvm.org/D6420 llvm-svn: 224247
-
- Dec 09, 2014
-
-
Duncan P. N. Exon Smith authored
Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
-
- Dec 03, 2014
-
-
Peter Collingbourne authored
Patch by Ben Gamari! This redefines the `prefix` attribute introduced previously and introduces a `prologue` attribute. There are a two primary usecases that these attributes aim to serve, 1. Function prologue sigils 2. Function hot-patching: Enable the user to insert `nop` operations at the beginning of the function which can later be safely replaced with a call to some instrumentation facility 3. Runtime metadata: Allow a compiler to insert data for use by the runtime during execution. GHC is one example of a compiler that needs this functionality for its tables-next-to-code functionality. Previously `prefix` served cases (1) and (2) quite well by allowing the user to introduce arbitrary data at the entrypoint but before the function body. Case (3), however, was poorly handled by this approach as it required that prefix data was valid executable code. Here we redefine the notion of prefix data to instead be data which occurs immediately before the function entrypoint (i.e. the symbol address). Since prefix data now occurs before the function entrypoint, there is no need for the data to be valid code. The previous notion of prefix data now goes under the name "prologue data" to emphasize its duality with the function epilogue. The intention here is to handle cases (1) and (2) with prologue data and case (3) with prefix data. References ---------- This idea arose out of discussions[1] with Reid Kleckner in response to a proposal to introduce the notion of symbol offsets to enable handling of case (3). [1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html Test Plan: testsuite Differential Revision: http://reviews.llvm.org/D6454 llvm-svn: 223189
-
- Nov 21, 2014
-
-
Roman Divacky authored
llvm-svn: 222562
-
- Nov 19, 2014
-
-
David Blaikie authored
This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... llvm-svn: 222334
-
- Oct 28, 2014
-
-
NAKAMURA Takumi authored
llvm-svn: 220773
-
NAKAMURA Takumi authored
llvm-svn: 220771
-
- Oct 26, 2014
-
-
Arnold Schwaighofer authored
We used to always vectorize (slp and loop vectorize) in the LTO pass pipeline. r220345 changed it so that we used the PassManager's fields 'LoopVectorize' and 'SLPVectorize' out of the desire to be able to disable vectorization using the cl::opt flags 'vectorize-loops'/'slp-vectorize' which the before mentioned fields default to. Unfortunately, this turns off vectorization because those fields default to false. This commit adds flags to the LTO library to disable lto vectorization which reconciles the desire to optionally disable vectorization during LTO and the desired behavior of defaulting to enabled vectorization. We really want tools to set PassManager flags directly to enable/disable vectorization and not go the route via cl::opt flags *in* PassManagerBuilder.cpp. llvm-svn: 220652
-
- Oct 24, 2014
-
-
Nick Lewycky authored
llvm-svn: 220537
-
- Oct 22, 2014
-
-
JF Bastien authored
Summary: Patches 202051 and 208013 added calls to LTO's PassManager which unconditionally add LoopVectorizePass and SLPVectorizerPass instead of following the logic in PassManagerBuilder::populateModulePassManager and honoring the -vectorize-loops -run-slp-after-loop-vectorization flags. Reviewers: nadav, aschwaighofer, yijiang Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D5884 llvm-svn: 220345
-
- Oct 14, 2014
-
-
Chandler Carruth authored
the IR going into it and to clean up the IR produced by the vectorizers. Note that these are *off by default* right now while folks collect data on whether the performance tradeoff is reasonable. In a build of the 'opt' binary, I see about 2% compile time regression due to this change on average. This is in my mind essentially the worst expected case: very little of the opt binary is going to *benefit* from these extra passes. I've seen several benchmarks improve in performance my small amounts due to running these passes, and there are certain (rare) cases where these passes make a huge difference by either enabling the vectorizer at all or by hoisting runtime checks out of the outer loop. My primary motivation is to prevent people from seeing runtime check overhead in benchmarks where the existing passes and optimizers would be able to eliminate that. I've chosen the sequence of passes based on the kinds of things that seem likely to be relevant for the code at each stage: rotaing loops for the vectorizer, finding correlated values, loop invariants, and unswitching opportunities from any runtime checks, and cleaning up commonalities exposed by the SLP vectorizer. I'll be pinging existing threads where some of these issues have come up and will start new threads to get folks to benchmark and collect data on whether this is the right tradeoff or we should do something else. llvm-svn: 219644
-
- Oct 08, 2014
-
-
David Majnemer authored
A function with discardable linkage cannot be discarded if its a member of a COMDAT group without considering all the other COMDAT members as well. This sort of thing is already handled by GlobalOpt/GlobalDCE. This fixes PR21206. llvm-svn: 219335
-
David Majnemer authored
A linkonce_odr member of a COMDAT shouldn't be dropped if we need to keep the entire COMDAT group. This fixes PR21191. llvm-svn: 219283
-
- Oct 07, 2014
-
-
David Blaikie authored
DebugInfo+DeadArgElimination: Ensure llvm::Function*s from debug info are updated even when DAE removes both varargs and non-varargs arguments on the same function. After some stellar (& inspired) help from Reid Kleckner providing a test case for some rather unstable undefined behavior showing up as assertions produced by r214761, I was able to fix this issue in DAE involving the application of both varargs removal, followed by normal argument removal. Indeed I introduced this same bug into ArgumentPromotion (r212128) by copying the code from DAE, and when I fixed the bug in ArgPromo (r213805) and commented in that patch that I didn't need to address the same issue in DAE because it was a single pass. Turns out it's two pass, one for the varargs and one for the normal arguments, so the same fix is needed (at least during varargs removal). So here it is. (the observable/net effect of this bug, even when it didn't result in assertion failure, is that debug info would describe the DAE'd function in the abstract, but wouldn't provide high/low_pc, variable locations, line table, etc (it would appear as though the function had been entirely optimized away), see the original PR14016 for details of the general problem) I'm not recommitting the assertion just yet, as there's been another regression of it since I last tried. It might just be a few test cases weren't adequately updated after Adrian or Duncan's recent schema changes. llvm-svn: 219210
-
David Majnemer authored
If we require a single member of a comdat, require all of the other members as well. This fixes PR20981. llvm-svn: 219191
-
David Blaikie authored
llvm-svn: 219167
-
- Oct 03, 2014
-
-
Duncan P. N. Exon Smith authored
This reverts commit r218918, effectively reapplying r218914 after fixing an Ocaml bindings test and an Asan crash. The root cause of the latter was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a PR to investigate who requires the loose check (and why). Original commit message follows. -- This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 219010
-
Benjamin Kramer authored
llvm-svn: 218999
-
Duncan P. N. Exon Smith authored
This reverts commit r218914 while I investigate some bots. llvm-svn: 218918
-
- Oct 02, 2014
-
-
Duncan P. N. Exon Smith authored
This patch addresses the first stage of PR17891 by folding constant arguments together into a single MDString. Integers are stringified and a `\0` character is used as a separator. Part of PR17891. Note: I've attached my testcases upgrade scripts to the PR. If I've just broken your out-of-tree testcases, they might help. llvm-svn: 218914
-
- Sep 13, 2014
-
-
Nick Lewycky authored
llvm-svn: 217731
-
- Sep 10, 2014
-
-
Rafael Espindola authored
With this a DataLayoutPass can be reused for multiple modules. Once we have doInitialization/doFinalization, it doesn't seem necessary to pass a Module to the constructor. Overall this change seems in line with the idea of making DataLayout a required part of Module. With it the only way of having a DataLayout used is to add it to the Module. llvm-svn: 217548
-
Gerolf Hoflehner authored
llvm-svn: 217539
-
Gerolf Hoflehner authored
llvm-svn: 217538
-
Stepan Dyatkovskiy authored
It's supposed to store additional pass information for current function here. That was the reason for name change. llvm-svn: 217483
-
- Sep 07, 2014
-
-
Hal Finkel authored
This adds a ScalarEvolution-powered transformation that updates load, store and memory intrinsic pointer alignments based on invariant((a+q) & b == 0) expressions. Many of the simple cases we can get with ValueTracking, but we still need something like this for the more complicated cases (such as those with an offset) that require some algebra. Note that gcc's __builtin_assume_aligned's optional third argument provides exactly for this kind of 'misalignment' offset for which this kind of logic is necessary. The primary motivation is to fixup alignments for vector loads/stores after vectorization (and unrolling). This pass is added to the optimization pipeline just after the SLP vectorizer runs (which, admittedly, does not preserve SE, although I imagine it could). Regardless, I actually don't think that the preservation matters too much in this case: SE computes lazily, and this pass won't issue any SE queries unless there are any assume intrinsics, so there should be no real additional cost in the common case (SLP does preserve DT and LoopInfo). llvm-svn: 217344
-
Hal Finkel authored
This adds an immutable pass, AssumptionTracker, which keeps a cache of @llvm.assume call instructions within a module. It uses callback value handles to keep stale functions and intrinsics out of the map, and it relies on any code that creates new @llvm.assume calls to notify it of the new instructions. The benefit is that code needing to find @llvm.assume intrinsics can do so directly, without scanning the function, thus allowing the cost of @llvm.assume handling to be negligible when none are present. The current design is intended to be lightweight. We don't keep track of anything until we need a list of assumptions in some function. The first time this happens, we scan the function. After that, we add/remove @llvm.assume calls from the cache in response to registration calls and ValueHandle callbacks. There are no new direct test cases for this pass, but because it calls it validation function upon module finalization, we'll pick up detectable inconsistencies from the other tests that touch @llvm.assume calls. This pass will be used by follow-up commits that make use of @llvm.assume. llvm-svn: 217334
-
- Sep 04, 2014
-
-
James Molloy authored
After some time maturing, hopefully the flags themselves will be removed. llvm-svn: 217144
-
- Sep 03, 2014
-
-
Hal Finkel authored
Add -use-cfl-aa (and -use-cfl-aa-in-codegen) to add CFL AA in the default pass managers (for easy testing). llvm-svn: 216978
-
- Sep 01, 2014
-
-
Hal Finkel authored
This feeds AA through the IFI structure into the inliner so that AddAliasScopeMetadata can use AA->getModRefBehavior to figure out which functions only access their arguments (instead of just hard-coding some knowledge of memory intrinsics). Most of the information is only available from BasicAA; this is important for preserving alias scoping information for target-specific intrinsics when doing the noalias parameter attribute to metadata conversion. llvm-svn: 216866
-
- Aug 29, 2014
-
-
Reid Kleckner authored
Don't promote byval pointer arguments when when their size in bits is not equal to their alloc size in bits. This can happen for x86_fp80, where the size in bits is 80 but the alloca size in bits in 128. Promoting these types can break passing unions of x86_fp80s and other types. Patch by Thomas Jablin! Reviewed By: rnk Differential Revision: http://reviews.llvm.org/D5057 llvm-svn: 216693
-
- Aug 27, 2014
-
-
Craig Topper authored
Simplify creation of a bunch of ArrayRefs by using None, makeArrayRef or just letting them be implicitly created. llvm-svn: 216525
-
- Aug 26, 2014
-
-
Reid Kleckner authored
Also clean up and beef up this grep test for the feature. llvm-svn: 216425
-
Reid Kleckner authored
Adding, removing, or changing non-pack parameters can change the ABI classification of pack parameters. Clang and other frontends encode the classification in the IR of the call site, but the callee side determines it dynamically based on the number of registers consumed so far. Changing the prototype affects the number of registers consumed would break such code. Dead argument elimination performs a similar task and already has a similar check to avoid this problem. Patch by Thomas Jablin! llvm-svn: 216421
-
- Aug 25, 2014
-
-
Bruno Cardoso Lopes authored
GlobalDCE deletes global vars and updates their initializers to nullptr while leaving underlying constants to be cleaned up later by its uses. The clean up may never happen, fix this by forcing it every time it's safe to destroy constants. Final patch by Rafael Espindola http://reviews.llvm.org/D4931 <rdar://problem/17523868> llvm-svn: 216390
-
Stepan Dyatkovskiy authored
cmpAPFloat has been renamed to cmpAPFloats (multiple form). llvm-svn: 216376
-
Stepan Dyatkovskiy authored
cmpAPInt has been renamed to cmpAPInts (multiple form). llvm-svn: 216375
-
Stepan Dyatkovskiy authored
cmpType has been renamed to cmpTypes (multiple form). llvm-svn: 216374
-
Stepan Dyatkovskiy authored
cmpGEP has been renamed to cmpGEPs (multiple form). llvm-svn: 216373
-
Craig Topper authored
llvm-svn: 216351
-