- Apr 06, 2004
-
-
Chris Lattner authored
comparing a long against zero got us this: sub %ESP, 8 mov DWORD PTR [%ESP + 4], %ESI mov DWORD PTR [%ESP], %EDI mov %EAX, DWORD PTR [%ESP + 12] mov %EDX, DWORD PTR [%ESP + 16] mov %ECX, 0 mov %ESI, 0 mov %EDI, %EAX xor %EDI, %ECX mov %ECX, %EDX xor %ECX, %ESI or %EDI, %ECX sete %CL test %CL, %CL je .LBB2 # PC rel: F Now it gets us this: mov %EAX, DWORD PTR [%ESP + 4] mov %EDX, DWORD PTR [%ESP + 8] mov %ECX, %EAX or %ECX, %EDX sete %CL test %CL, %CL je .LBB2 # PC rel: F llvm-svn: 12696
-
Chris Lattner authored
example, multiplying X*(1 + (1LL << 32)) now produces: test: mov %ECX, DWORD PTR [%ESP + 4] mov %EDX, DWORD PTR [%ESP + 8] mov %EAX, %ECX add %EDX, %ECX ret [[[Note to Alkis: why isn't linear scan generating this code?? This might be a problem with your intervals being too conservative: test: mov %EAX, DWORD PTR [%ESP + 4] mov %EDX, DWORD PTR [%ESP + 8] add %EDX, %EAX ret end note]]] Whereas GCC produces this: T: sub %esp, 12 mov %edx, DWORD PTR [%esp+16] mov DWORD PTR [%esp+8], %edi mov %ecx, DWORD PTR [%esp+20] xor %edi, %edi mov DWORD PTR [%esp], %ebx mov %ebx, %edi mov %eax, %edx mov DWORD PTR [%esp+4], %esi add %ebx, %edx mov %edi, DWORD PTR [%esp+8] lea %edx, [%ecx+%ebx] mov %esi, DWORD PTR [%esp+4] mov %ebx, DWORD PTR [%esp] add %esp, 12 ret I'm not sure example what GCC is smoking here, but it looks like it has just confused itself with a bunch of stack slots or something. The intel compiler is better, but still not good: T: movl 4(%esp), %edx #2.11 movl 8(%esp), %eax #2.11 lea (%eax,%edx), %ecx #3.12 movl $1, %eax #3.12 mull %edx #3.12 addl %ecx, %edx #3.12 ret #3.12 llvm-svn: 12693
-
Chris Lattner authored
long %test(long %X) { %Y = mul long %X, 123 ret long %Y } we used to generate: test: sub %ESP, 12 mov DWORD PTR [%ESP + 8], %ESI mov DWORD PTR [%ESP + 4], %EDI mov DWORD PTR [%ESP], %EBX mov %ECX, DWORD PTR [%ESP + 16] mov %ESI, DWORD PTR [%ESP + 20] mov %EDI, 123 mov %EBX, 0 mov %EAX, %ECX mul %EDI imul %ESI, %EDI add %ESI, %EDX imul %ECX, %EBX add %ESI, %ECX mov %EDX, %ESI mov %EBX, DWORD PTR [%ESP] mov %EDI, DWORD PTR [%ESP + 4] mov %ESI, DWORD PTR [%ESP + 8] add %ESP, 12 ret Now we emit: test: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, DWORD PTR [%ESP + 8] mov %EDX, 123 mul %EDX imul %ECX, %ECX, 123 add %ECX, %EDX mov %EDX, %ECX ret Which, incidently, is substantially nicer than what GCC manages: T: sub %esp, 8 mov %eax, 123 mov DWORD PTR [%esp], %ebx mov %ebx, DWORD PTR [%esp+16] mov DWORD PTR [%esp+4], %esi mov %esi, DWORD PTR [%esp+12] imul %ecx, %ebx, 123 mov %ebx, DWORD PTR [%esp] mul %esi mov %esi, DWORD PTR [%esp+4] add %esp, 8 lea %edx, [%ecx+%edx] ret llvm-svn: 12692
-
Chris Lattner authored
On this testcase: long %test(long %X) { %Y = shr long %X, ubyte 32 ret long %Y } instead of: t: mov %EAX, DWORD PTR [%ESP + 4] mov %EAX, DWORD PTR [%ESP + 8] sar %EAX, 0 mov %EDX, 0 ret we now emit: test: mov %EAX, DWORD PTR [%ESP + 4] mov %EAX, DWORD PTR [%ESP + 8] mov %EDX, 0 ret llvm-svn: 12688
-
Chris Lattner authored
llvm-svn: 12687
-
Chris Lattner authored
For example, on this instruction: call void %test(long 1234) Instead of this: mov %EAX, 1234 mov %ECX, 0 mov DWORD PTR [%ESP], %EAX mov DWORD PTR [%ESP + 4], %ECX call test We now emit this: mov DWORD PTR [%ESP], 1234 mov DWORD PTR [%ESP + 4], 0 call test llvm-svn: 12686
-
Chris Lattner authored
of the words of the constant is zeros. For example: Y = and long X, 1234 now generates: Yl = and Xl, 1234 Yh = 0 instead of: Yl = and Xl, 1234 Yh = and Xh, 0 llvm-svn: 12685
-
Chris Lattner authored
llvm-svn: 12684
-
Chris Lattner authored
This allows us to handle code like 'add long %X, 123456789012' more efficiently. llvm-svn: 12683
-
Chris Lattner authored
long %test(long %X) { %Y = sub long 0, %X ret long %Y } We used to generate: test: sub %ESP, 4 mov DWORD PTR [%ESP], %ESI mov %ECX, DWORD PTR [%ESP + 8] mov %ESI, DWORD PTR [%ESP + 12] mov %EAX, 0 mov %EDX, 0 sub %EAX, %ECX sbb %EDX, %ESI mov %ESI, DWORD PTR [%ESP] add %ESP, 4 ret Now we generate: test: mov %EAX, DWORD PTR [%ESP + 4] mov %EDX, DWORD PTR [%ESP + 8] neg %EAX adc %EDX, 0 neg %EDX ret llvm-svn: 12681
-
Chris Lattner authored
llvm-svn: 12680
-
Chris Lattner authored
* In promote32, if we can just promote a constant value, do so instead of promoting a constant dynamically. * In visitReturn inst, actually USE the promote32 argument that takes a Value* The end result of this is that we now generate this: test: mov %EAX, 0 ret instead of... test: mov %AX, 0 movzx %EAX, %AX ret for: ushort %test() { ret ushort 0 } llvm-svn: 12679
-
- Apr 05, 2004
-
-
Chris Lattner authored
types and can have arbitrary 32- and 64-bit integer types indexing into sequential types. llvm-svn: 12653
-
- Apr 02, 2004
-
-
Alkis Evlogimenos authored
llvm-svn: 12615
-
Alkis Evlogimenos authored
llvm-svn: 12610
-
- Apr 01, 2004
-
-
Chris Lattner authored
llvm-svn: 12579
-
Chris Lattner authored
the X86 does not support a full set of fp cmove instructions, so we can't always fold the condition into the select. :( Yuck. llvm-svn: 12577
-
- Mar 31, 2004
-
-
Chris Lattner authored
using our broad selection of movcc instructions. :) llvm-svn: 12560
-
- Mar 30, 2004
-
-
Chris Lattner authored
folding compares into the select yet. llvm-svn: 12553
-
Chris Lattner authored
an incoming value from a block, the selector would evaluate the constant at the TOP of the block instead of at the end of the block. This made the live range for the constant span the entire block, increasing register pressure needlessly. llvm-svn: 12542
-
- Mar 18, 2004
-
-
Chris Lattner authored
llvm-svn: 12500
-
Chris Lattner authored
folding load instructions into other instructions across free instruction boundaries. Perhaps this will also fix the other strange failures? llvm-svn: 12494
-
- Mar 13, 2004
-
-
Chris Lattner authored
llvm-svn: 12357
-
Chris Lattner authored
Intrinsic::va*. This avoid conflicting with macros in the stdlib.h file. llvm-svn: 12356
-
- Mar 08, 2004
-
-
Chris Lattner authored
testcase like this: int %test(int* %P, int %A) { %Pv = load int* %P %B = add int %A, %Pv ret int %B } We now generate: test: mov %ECX, DWORD PTR [%ESP + 4] mov %EAX, DWORD PTR [%ESP + 8] add %EAX, DWORD PTR [%ECX] ret Instead of: test: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, DWORD PTR [%ESP + 8] mov %EAX, DWORD PTR [%EAX] add %EAX, %ECX ret ... saving one instruction, and often a register. Note that there are a lot of other instructions that could use this, but they aren't handled. I'm not really interested in adding them, but mul/div and all of the FP instructions could be supported as well if someone wanted to add them. llvm-svn: 12204
-
Chris Lattner authored
llvm-svn: 12203
-
- Mar 02, 2004
-
-
Misha Brukman authored
llvm-svn: 12064
-
- Mar 01, 2004
-
-
Chris Lattner authored
of generating this code: mov %EAX, 4 mov DWORD PTR [%ESP], %EAX mov %AX, 123 movsx %EAX, %AX mov DWORD PTR [%ESP + 4], %EAX call Y we now generate: mov DWORD PTR [%ESP], 4 mov DWORD PTR [%ESP + 4], 123 call Y Which hurts the eyes less. :) Considering that register pressure around call sites is already high (with all of the callee clobber registers n stuff), this may help a lot. llvm-svn: 12028
-
Chris Lattner authored
to function calls, we would emit dead code, like this: int Y(int, short, double); int X() { Y(4, 123, 4); } --- Old X: sub %ESP, 20 mov %EAX, 4 mov DWORD PTR [%ESP], %EAX *** mov %AX, 123 mov %AX, 123 movsx %EAX, %AX mov DWORD PTR [%ESP + 4], %EAX fld QWORD PTR [.CPIX_0] fstp QWORD PTR [%ESP + 8] call Y mov %EAX, 0 # IMPLICIT_USE %EAX %ESP add %ESP, 20 ret Now we emit: X: sub %ESP, 20 mov %EAX, 4 mov DWORD PTR [%ESP], %EAX mov %AX, 123 movsx %EAX, %AX mov DWORD PTR [%ESP + 4], %EAX fld QWORD PTR [.CPIX_0] fstp QWORD PTR [%ESP + 8] call Y mov %EAX, 0 # IMPLICIT_USE %EAX %ESP add %ESP, 20 ret Next up, eliminate the mov AX and movsx entirely! llvm-svn: 12026
-
- Feb 29, 2004
-
-
Alkis Evlogimenos authored
their names more decriptive. A name consists of the base name, a default operand size followed by a character per operand with an optional special size. For example: ADD8rr -> add, 8-bit register, 8-bit register IMUL16rmi -> imul, 16-bit register, 16-bit memory, 16-bit immediate IMUL16rmi8 -> imul, 16-bit register, 16-bit memory, 8-bit immediate MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory llvm-svn: 11995
-
Chris Lattner authored
Replace uses of addZImm with addImm. llvm-svn: 11992
-
Chris Lattner authored
block loops. llvm-svn: 11990
-
Chris Lattner authored
llvm-svn: 11984
-
Alkis Evlogimenos authored
to denote this fact. llvm-svn: 11972
-
Alkis Evlogimenos authored
denote this fact. llvm-svn: 11971
-
- Feb 27, 2004
-
-
Alkis Evlogimenos authored
consistent with the rest and also pepare for the addition of their memory operand variants. llvm-svn: 11902
-
- Feb 26, 2004
-
-
Alkis Evlogimenos authored
MRegisterInfo::is{Physical,Virtual}Register. Apply appropriate fixes to relevant files. llvm-svn: 11882
-
Chris Lattner authored
bugs. Thanks Brian! llvm-svn: 11859
-
- Feb 25, 2004
-
-
Chris Lattner authored
scaled indexes. This allows us to compile GEP's like this: int* %test([10 x { int, { int } }]* %X, int %Idx) { %Idx = cast int %Idx to long %X = getelementptr [10 x { int, { int } }]* %X, long 0, long %Idx, ubyte 1, ubyte 0 ret int* %X } Into a single address computation: test: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, DWORD PTR [%ESP + 8] lea %EAX, DWORD PTR [%EAX + 8*%ECX + 4] ret Before it generated: test: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, DWORD PTR [%ESP + 8] shl %ECX, 3 add %EAX, %ECX lea %EAX, DWORD PTR [%EAX + 4] ret This is useful for things like int/float/double arrays, as the indexing can be folded into the loads&stores, reducing register pressure and decreasing the pressure on the decode unit. With these changes, I expect our performance on 256.bzip2 and gzip to improve a lot. On bzip2 for example, we go from this: 10665 asm-printer - Number of machine instrs printed 40 ra-local - Number of loads/stores folded into instructions 1708 ra-local - Number of loads added 1532 ra-local - Number of stores added 1354 twoaddressinstruction - Number of instructions added 1354 twoaddressinstruction - Number of two-address instructions 2794 x86-peephole - Number of peephole optimization performed to this: 9873 asm-printer - Number of machine instrs printed 41 ra-local - Number of loads/stores folded into instructions 1710 ra-local - Number of loads added 1521 ra-local - Number of stores added 789 twoaddressinstruction - Number of instructions added 789 twoaddressinstruction - Number of two-address instructions 2142 x86-peephole - Number of peephole optimization performed ... and these types of instructions are often in tight loops. Linear scan is also helped, but not as much. It goes from: 8787 asm-printer - Number of machine instrs printed 2389 liveintervals - Number of identity moves eliminated after coalescing 2288 liveintervals - Number of interval joins performed 3522 liveintervals - Number of intervals after coalescing 5810 liveintervals - Number of original intervals 700 spiller - Number of loads added 487 spiller - Number of stores added 303 spiller - Number of register spills 1354 twoaddressinstruction - Number of instructions added 1354 twoaddressinstruction - Number of two-address instructions 363 x86-peephole - Number of peephole optimization performed to: 7982 asm-printer - Number of machine instrs printed 1759 liveintervals - Number of identity moves eliminated after coalescing 1658 liveintervals - Number of interval joins performed 3282 liveintervals - Number of intervals after coalescing 4940 liveintervals - Number of original intervals 635 spiller - Number of loads added 452 spiller - Number of stores added 288 spiller - Number of register spills 789 twoaddressinstruction - Number of instructions added 789 twoaddressinstruction - Number of two-address instructions 258 x86-peephole - Number of peephole optimization performed Though I'm not complaining about the drop in the number of intervals. :) llvm-svn: 11820
-
Chris Lattner authored
to do analysis. *** FOLD getelementptr instructions into loads and stores when possible, making use of some of the crazy X86 addressing modes. For example, the following C++ program fragment: struct complex { double re, im; complex(double r, double i) : re(r), im(i) {} }; inline complex operator+(const complex& a, const complex& b) { return complex(a.re+b.re, a.im+b.im); } complex addone(const complex& arg) { return arg + complex(1,0); } Used to be compiled to: _Z6addoneRK7complex: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, DWORD PTR [%ESP + 8] *** mov %EDX, %ECX fld QWORD PTR [%EDX] fld1 faddp %ST(1) *** add %ECX, 8 fld QWORD PTR [%ECX] fldz faddp %ST(1) *** mov %ECX, %EAX fxch %ST(1) fstp QWORD PTR [%ECX] *** add %EAX, 8 fstp QWORD PTR [%EAX] ret Now it is compiled to: _Z6addoneRK7complex: mov %EAX, DWORD PTR [%ESP + 4] mov %ECX, DWORD PTR [%ESP + 8] fld QWORD PTR [%ECX] fld1 faddp %ST(1) fld QWORD PTR [%ECX + 8] fldz faddp %ST(1) fxch %ST(1) fstp QWORD PTR [%EAX] fstp QWORD PTR [%EAX + 8] ret Other programs should see similar improvements, across the board. Note that in addition to reducing instruction count, this also reduces register pressure a lot, always a good thing on X86. :) llvm-svn: 11819
-