Newer
Older
Alkis Evlogimenos
committed
//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "LiveIntervals.h"
#include "llvm/Analysis/LoopInfo.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
#include "Support/CommandLine.h"
Alkis Evlogimenos
committed
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include "VirtRegMap.h"
Alkis Evlogimenos
committed
#include <cmath>
Alkis Evlogimenos
committed
#include <iostream>
#include <limits>
Alkis Evlogimenos
committed
using namespace llvm;
namespace {
RegisterAnalysis<LiveIntervals> X("liveintervals",
"Live Interval Analysis");
Statistic<> numIntervals
("liveintervals", "Number of original intervals");
Statistic<> numIntervalsAfter
("liveintervals", "Number of intervals after coalescing");
Statistic<> numJoins
("liveintervals", "Number of interval joins performed");
Statistic<> numPeep
("liveintervals", "Number of identity moves eliminated after coalescing");
Statistic<> numFolded
("liveintervals", "Number of loads/stores folded into instructions");
cl::opt<bool>
join("join-liveintervals",
cl::desc("Join compatible live intervals"),
cl::init(true));
Alkis Evlogimenos
committed
};
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
{
Alkis Evlogimenos
committed
AU.addPreserved<LiveVariables>();
Alkis Evlogimenos
committed
AU.addRequired<LiveVariables>();
Alkis Evlogimenos
committed
AU.addPreservedID(PHIEliminationID);
Alkis Evlogimenos
committed
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addRequired<LoopInfo>();
Alkis Evlogimenos
committed
MachineFunctionPass::getAnalysisUsage(AU);
}
void LiveIntervals::releaseMemory()
{
mbbi2mbbMap_.clear();
mi2iMap_.clear();
r2iMap_.clear();
r2rMap_.clear();
intervals_.clear();
}
Alkis Evlogimenos
committed
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
lv_ = &getAnalysis<LiveVariables>();
// number MachineInstrs
unsigned miIndex = 0;
for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
mbb != mbbEnd; ++mbb) {
const std::pair<MachineBasicBlock*, unsigned>& entry =
lv_->getMachineBasicBlockInfo(mbb);
Alkis Evlogimenos
committed
bool inserted = mbbi2mbbMap_.insert(std::make_pair(entry.second,
entry.first)).second;
assert(inserted && "multiple index -> MachineBasicBlock");
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
Alkis Evlogimenos
committed
assert(inserted && "multiple MachineInstr -> index mappings");
i2miMap_.push_back(mi);
Alkis Evlogimenos
committed
}
}
computeIntervals();
numIntervals += intervals_.size();
// join intervals if requested
if (join) joinIntervals();
numIntervalsAfter += intervals_.size();
// perform a final pass over the instructions and compute spill
// weights, coalesce virtual registers and remove identity moves
const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
const TargetInstrInfo& tii = tm_->getInstrInfo();
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
mii != mie; ) {
for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
const MachineOperand& mop = mii->getOperand(i);
if (mop.isRegister() && mop.getReg()) {
// replace register with representative register
unsigned reg = rep(mop.getReg());
mii->SetMachineOperandReg(i, reg);
if (MRegisterInfo::isVirtualRegister(reg)) {
Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
assert(r2iit != r2iMap_.end());
r2iit->second->weight += pow(10.0F, loopDepth);
}
}
}
// if the move is now an identity move delete it
unsigned srcReg, dstReg;
if (tii.isMoveInstr(*mii, srcReg, dstReg) && srcReg == dstReg) {
// remove index -> MachineInstr and
// MachineInstr -> index mappings
Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
if (mi2i != mi2iMap_.end()) {
i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
mi2iMap_.erase(mi2i);
}
mii = mbbi->erase(mii);
++numPeep;
}
}
}
DEBUG(std::cerr << "********** INTERVALS **********\n");
DEBUG(std::copy(intervals_.begin(), intervals_.end(),
std::ostream_iterator<Interval>(std::cerr, "\n")));
DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
std::cerr << mbbi->getBasicBlock()->getName() << ":\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
std::cerr << getInstructionIndex(mii) << '\t';
mii->print(std::cerr, *tm_);
Alkis Evlogimenos
committed
return true;
}
void LiveIntervals::updateSpilledInterval(Interval& li,
VirtRegMap& vrm,
int slot)
{
assert(li.weight != std::numeric_limits<float>::infinity() &&
"attempt to spill already spilled interval!");
Interval::Ranges oldRanges;
swap(oldRanges, li.ranges);
DEBUG(std::cerr << "\t\t\t\tupdating interval: " << li);
for (Interval::Ranges::iterator i = oldRanges.begin(), e = oldRanges.end();
i != e; ++i) {
unsigned index = getBaseIndex(i->first);
unsigned end = getBaseIndex(i->second-1) + InstrSlots::NUM;
for (; index < end; index += InstrSlots::NUM) {
// skip deleted instructions
while (!getInstructionFromIndex(index)) index += InstrSlots::NUM;
MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
for_operand:
for (unsigned i = 0; i < mi->getNumOperands(); ++i) {
MachineOperand& mop = mi->getOperand(i);
if (mop.isRegister() && mop.getReg() == li.reg) {
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
MachineInstr* old = mi;
if (mri_->foldMemoryOperand(mi, i, slot)) {
lv_->instructionChanged(old, mi);
vrm.virtFolded(li.reg, old, mi);
mi2iMap_.erase(old);
i2miMap_[index/InstrSlots::NUM] = mi;
mi2iMap_[mi] = index;
++numFolded;
goto for_operand;
}
else {
// This is tricky. We need to add information in
// the interval about the spill code so we have to
// use our extra load/store slots.
//
// If we have a use we are going to have a load so
// we start the interval from the load slot
// onwards. Otherwise we start from the def slot.
unsigned start = (mop.isUse() ?
getLoadIndex(index) :
getDefIndex(index));
// If we have a def we are going to have a store
// right after it so we end the interval after the
// use of the next instruction. Otherwise we end
// after the use of this instruction.
unsigned end = 1 + (mop.isDef() ?
getUseIndex(index+InstrSlots::NUM) :
getUseIndex(index));
li.addRange(start, end);
}
}
}
}
}
// the new spill weight is now infinity as it cannot be spilled again
li.weight = std::numeric_limits<float>::infinity();
DEBUG(std::cerr << "\t\t\t\tupdated interval: " << li << '\n');
Alkis Evlogimenos
committed
void LiveIntervals::printRegName(unsigned reg) const
{
if (MRegisterInfo::isPhysicalRegister(reg))
Alkis Evlogimenos
committed
std::cerr << mri_->getName(reg);
else
Alkis Evlogimenos
committed
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
DEBUG(std::cerr << "\t\tregister: "; printRegName(reg));
Alkis Evlogimenos
committed
LiveVariables::VarInfo& vi = lv_->getVarInfo(reg);
Interval* interval = 0;
Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
if (r2iit == r2iMap_.end() || r2iit->first != reg) {
Alkis Evlogimenos
committed
// add new interval
intervals_.push_back(Interval(reg));
// update interval index for this register
r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
interval = &intervals_.back();
Alkis Evlogimenos
committed
// iterate over all of the blocks that the variable is
// completely live in, adding them to the live
// interval. obviously we only need to do this once.
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
if (vi.AliveBlocks[i]) {
MachineBasicBlock* mbb = lv_->getIndexMachineBasicBlock(i);
if (!mbb->empty()) {
interval->addRange(
getInstructionIndex(&mbb->front()),
getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
Alkis Evlogimenos
committed
}
else {
interval = &*r2iit->second;
}
Alkis Evlogimenos
committed
unsigned baseIndex = getInstructionIndex(mi);
bool killedInDefiningBasicBlock = false;
for (int i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineBasicBlock* killerBlock = vi.Kills[i].first;
MachineInstr* killerInstr = vi.Kills[i].second;
unsigned start = (mbb == killerBlock ?
getInstructionIndex(&killerBlock->front()));
unsigned end = (killerInstr == mi ?
// dead
start + 1 :
// killed
getUseIndex(getInstructionIndex(killerInstr))+1);
// we do not want to add invalid ranges. these can happen when
// a variable has its latest use and is redefined later on in
// the same basic block (common with variables introduced by
// PHI elimination)
if (start < end) {
killedInDefiningBasicBlock |= mbb == killerBlock;
interval->addRange(start, end);
}
Alkis Evlogimenos
committed
if (!killedInDefiningBasicBlock) {
unsigned end = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
interval->addRange(getDefIndex(baseIndex), end);
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
DEBUG(std::cerr << "\t\tregister: "; printRegName(reg));
typedef LiveVariables::killed_iterator KillIter;
Alkis Evlogimenos
committed
MachineBasicBlock::iterator e = mbb->end();
unsigned baseIndex = getInstructionIndex(mi);
unsigned start = getDefIndex(baseIndex);
unsigned end = start;
Alkis Evlogimenos
committed
// a variable can be dead by the instruction defining it
for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
ki != ke; ++ki) {
if (reg == ki->second) {
DEBUG(std::cerr << " dead");
end = getDefIndex(start) + 1;
goto exit;
}
}
Alkis Evlogimenos
committed
// a variable can only be killed by subsequent instructions
do {
++mi;
for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
Alkis Evlogimenos
committed
ki != ke; ++ki) {
if (reg == ki->second) {
DEBUG(std::cerr << " killed");
end = getUseIndex(baseIndex) + 1;
Alkis Evlogimenos
committed
goto exit;
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
}
} while (mi != e);
Alkis Evlogimenos
committed
exit:
assert(start < end && "did not find end of interval?");
Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
if (r2iit != r2iMap_.end() && r2iit->first == reg) {
r2iit->second->addRange(start, end);
Alkis Evlogimenos
committed
}
else {
intervals_.push_back(Interval(reg));
// update interval index for this register
r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
intervals_.back().addRange(start, end);
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
unsigned reg)
{
if (MRegisterInfo::isPhysicalRegister(reg)) {
if (lv_->getAllocatablePhysicalRegisters()[reg]) {
Alkis Evlogimenos
committed
handlePhysicalRegisterDef(mbb, mi, reg);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
handlePhysicalRegisterDef(mbb, mi, *as);
Alkis Evlogimenos
committed
}
}
else {
handleVirtualRegisterDef(mbb, mi, reg);
}
}
Alkis Evlogimenos
committed
unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
{
Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
return (it == mi2iMap_.end() ?
std::numeric_limits<unsigned>::max() :
it->second);
}
MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const
{
index /= InstrSlots::NUM; // convert index to vector index
assert(index < i2miMap_.size() &&
"index does not correspond to an instruction");
return i2miMap_[index];
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
/// computeIntervals - computes the live intervals for virtual
Alkis Evlogimenos
committed
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
Alkis Evlogimenos
committed
/// which a variable is live
void LiveIntervals::computeIntervals()
{
DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
DEBUG(std::cerr << "********** Function: "
<< mf_->getFunction()->getName() << '\n');
Alkis Evlogimenos
committed
for (MbbIndex2MbbMap::iterator
it = mbbi2mbbMap_.begin(), itEnd = mbbi2mbbMap_.end();
it != itEnd; ++it) {
MachineBasicBlock* mbb = it->second;
DEBUG(std::cerr << mbb->getBasicBlock()->getName() << ":\n");
Alkis Evlogimenos
committed
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
const TargetInstrDescriptor& tid =
tm_->getInstrInfo().get(mi->getOpcode());
DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
mi->print(std::cerr, *tm_));
Alkis Evlogimenos
committed
// handle implicit defs
for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
handleRegisterDef(mbb, mi, *id);
Alkis Evlogimenos
committed
// handle explicit defs
for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
MachineOperand& mop = mi->getOperand(i);
// handle register defs - build intervals
if (mop.isRegister() && mop.getReg() && mop.isDef())
handleRegisterDef(mbb, mi, mop.getReg());
Alkis Evlogimenos
committed
}
}
}
}
Alkis Evlogimenos
committed
unsigned LiveIntervals::rep(unsigned reg)
{
Reg2RegMap::iterator it = r2rMap_.find(reg);
if (it != r2rMap_.end())
return it->second = rep(it->second);
return reg;
}
void LiveIntervals::joinIntervals()
DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
const TargetInstrInfo& tii = tm_->getInstrInfo();
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
DEBUG(std::cerr << mbb->getBasicBlock()->getName() << ":\n");
for (MachineBasicBlock::iterator mi = mbb->begin(), mie = mbb->end();
mi != mie; ++mi) {
const TargetInstrDescriptor& tid =
tm_->getInstrInfo().get(mi->getOpcode());
DEBUG(std::cerr << getInstructionIndex(mi) << '\t';
mi->print(std::cerr, *tm_););
// we only join virtual registers with allocatable
// physical registers since we do not have liveness information
// on not allocatable physical registers
unsigned regA, regB;
if (tii.isMoveInstr(*mi, regA, regB) &&
(MRegisterInfo::isVirtualRegister(regA) ||
lv_->getAllocatablePhysicalRegisters()[regA]) &&
(MRegisterInfo::isVirtualRegister(regB) ||
lv_->getAllocatablePhysicalRegisters()[regB])) {
// get representative registers
regA = rep(regA);
regB = rep(regB);
// if they are already joined we continue
continue;
Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA);
assert(r2iA != r2iMap_.end());
Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB);
assert(r2iB != r2iMap_.end());
Intervals::iterator intA = r2iA->second;
Intervals::iterator intB = r2iB->second;
// both A and B are virtual registers
if (MRegisterInfo::isVirtualRegister(intA->reg) &&
MRegisterInfo::isVirtualRegister(intB->reg)) {
const TargetRegisterClass *rcA, *rcB;
rcA = mf_->getSSARegMap()->getRegClass(intA->reg);
rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
assert(rcA == rcB && "registers must be of the same class");
// if their intervals do not overlap we join them
if (!intB->overlaps(*intA)) {
intA->join(*intB);
r2iB->second = r2iA->second;
r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
intervals_.erase(intB);
}
}
else if (MRegisterInfo::isPhysicalRegister(intA->reg) ^
MRegisterInfo::isPhysicalRegister(intB->reg)) {
if (MRegisterInfo::isPhysicalRegister(intB->reg)) {
std::swap(regA, regB);
std::swap(intA, intB);
std::swap(r2iA, r2iB);
}
assert(MRegisterInfo::isPhysicalRegister(intA->reg) &&
MRegisterInfo::isVirtualRegister(intB->reg) &&
"A must be physical and B must be virtual");
if (!intA->overlaps(*intB) &&
!overlapsAliases(*intA, *intB)) {
intA->join(*intB);
r2iB->second = r2iA->second;
r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
intervals_.erase(intB);
}
}
}
}
}
}
bool LiveIntervals::overlapsAliases(const Interval& lhs,
const Interval& rhs) const
{
assert(MRegisterInfo::isPhysicalRegister(lhs.reg) &&
"first interval must describe a physical register");
for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
assert(r2i != r2iMap_.end() && "alias does not have interval?");
if (rhs.overlaps(*r2i->second))
return true;
}
return false;
}
LiveIntervals::Interval::Interval(unsigned r)
: reg(r),
weight((MRegisterInfo::isPhysicalRegister(r) ?
std::numeric_limits<float>::infinity() : 0.0F))
bool LiveIntervals::Interval::spilled() const
{
return (weight == std::numeric_limits<float>::infinity() &&
MRegisterInfo::isVirtualRegister(reg));
}
// An example for liveAt():
//
// this = [1,4), liveAt(0) will return false. The instruction defining
// this spans slots [0,3]. The interval belongs to an spilled
// definition of the variable it represents. This is because slot 1 is
// used (def slot) and spans up to slot 3 (store slot).
//
bool LiveIntervals::Interval::liveAt(unsigned index) const
{
Range dummy(index, index+1);
Ranges::const_iterator r = std::upper_bound(ranges.begin(),
ranges.end(),
dummy);
if (r == ranges.begin())
return false;
--r;
return index >= r->first && index < r->second;
}
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live intervals should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
bool LiveIntervals::Interval::overlaps(const Interval& other) const
{
Ranges::const_iterator i = ranges.begin();
Ranges::const_iterator ie = ranges.end();
Ranges::const_iterator j = other.ranges.begin();
Ranges::const_iterator je = other.ranges.end();
if (i->first < j->first) {
i = std::upper_bound(i, ie, *j);
if (i != ranges.begin()) --i;
}
else if (j->first < i->first) {
j = std::upper_bound(j, je, *i);
if (j != other.ranges.begin()) --j;
}
while (i != ie && j != je) {
if (i->first == j->first) {
return true;
}
else {
if (i->first > j->first) {
swap(i, j);
swap(ie, je);
}
assert(i->first < j->first);
if (i->second > j->first) {
return true;
}
else {
++i;
}
}
}
return false;
}
void LiveIntervals::Interval::addRange(unsigned start, unsigned end)
{
assert(start < end && "Invalid range to add!");
DEBUG(std::cerr << " +[" << start << ',' << end << ")");
//assert(start < end && "invalid range?");
Range range = std::make_pair(start, end);
Ranges::iterator it =
ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
range);
it = mergeRangesForward(it);
it = mergeRangesBackward(it);
}
void LiveIntervals::Interval::join(const LiveIntervals::Interval& other)
{
DEBUG(std::cerr << "\t\tjoining " << *this << " with " << other << '\n');
Ranges::iterator cur = ranges.begin();
for (Ranges::const_iterator i = other.ranges.begin(),
e = other.ranges.end(); i != e; ++i) {
cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i);
cur = mergeRangesForward(cur);
cur = mergeRangesBackward(cur);
}
weight += other.weight;
++numJoins;
}
LiveIntervals::Interval::Ranges::iterator
LiveIntervals::Interval::mergeRangesForward(Ranges::iterator it)
{
Ranges::iterator n;
while ((n = next(it)) != ranges.end()) {
if (n->first > it->second)
break;
it->second = std::max(it->second, n->second);
n = ranges.erase(n);
}
return it;
}
LiveIntervals::Interval::Ranges::iterator
LiveIntervals::Interval::mergeRangesBackward(Ranges::iterator it)
{
while (it != ranges.begin()) {
Ranges::iterator p = prior(it);
if (it->first > p->second)
break;
it->first = std::min(it->first, p->first);
it->second = std::max(it->second, p->second);
it = ranges.erase(p);
}
return it;
}
Alkis Evlogimenos
committed
std::ostream& llvm::operator<<(std::ostream& os,
const LiveIntervals::Interval& li)
{
os << "%reg" << li.reg << ',' << li.weight << " = ";
if (li.empty())
return os << "EMPTY";
Alkis Evlogimenos
committed
for (LiveIntervals::Interval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
os << "[" << i->first << "," << i->second << ")";
Alkis Evlogimenos
committed
}
return os;
}