Skip to content
X86ISelLowering.cpp 160 KiB
Newer Older
    Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
    Chain = Value.getValue(1);
    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Evan Cheng's avatar
Evan Cheng committed

  // Build the FP_TO_INT*_IN_MEM
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Value);
  Ops.push_back(StackSlot);
  SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size());

  // Load the result.
  return DAG.getLoad(Op.getValueType(), FIST, StackSlot,
                     DAG.getSrcValue(NULL));
}

SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
  MVT::ValueType VT = Op.getValueType();
  const Type *OpNTy =  MVT::getTypeForValueType(VT);
  std::vector<Constant*> CV;
  if (VT == MVT::f64) {
    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
  } else {
    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
  }
  Constant *CS = ConstantStruct::get(CV);
  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
Evan Cheng's avatar
Evan Cheng committed
  std::vector<MVT::ValueType> Tys;
  Tys.push_back(VT);
  Tys.push_back(MVT::Other);
  SmallVector<SDOperand, 3> Ops;
  Ops.push_back(DAG.getEntryNode());
  Ops.push_back(CPIdx);
  Ops.push_back(DAG.getSrcValue(NULL));
  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
}

SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
  MVT::ValueType VT = Op.getValueType();
  const Type *OpNTy =  MVT::getTypeForValueType(VT);
  std::vector<Constant*> CV;
  if (VT == MVT::f64) {
    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
  } else {
    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
    CV.push_back(ConstantFP::get(OpNTy, 0.0));
  }
  Constant *CS = ConstantStruct::get(CV);
  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
Evan Cheng's avatar
Evan Cheng committed
  std::vector<MVT::ValueType> Tys;
  Tys.push_back(VT);
  Tys.push_back(MVT::Other);
  SmallVector<SDOperand, 3> Ops;
  Ops.push_back(DAG.getEntryNode());
  Ops.push_back(CPIdx);
  Ops.push_back(DAG.getSrcValue(NULL));
  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
}

SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
  SDOperand Cond;
  SDOperand CC = Op.getOperand(2);
  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
  bool Flip;
  unsigned X86CC;
  if (translateX86CC(CC, isFP, X86CC, Flip)) {
    if (Flip)
      Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
                         Op.getOperand(1), Op.getOperand(0));
    else
      Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
                         Op.getOperand(0), Op.getOperand(1));
    return DAG.getNode(X86ISD::SETCC, MVT::i8, 
                       DAG.getConstant(X86CC, MVT::i8), Cond);
  } else {
    assert(isFP && "Illegal integer SetCC!");

    Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
                       Op.getOperand(0), Op.getOperand(1));
    std::vector<MVT::ValueType> Tys;
    std::vector<SDOperand> Ops;
    switch (SetCCOpcode) {
Evan Cheng's avatar
Evan Cheng committed
      default: assert(false && "Illegal floating point SetCC!");
      case ISD::SETOEQ: {  // !PF & ZF
        Tys.push_back(MVT::i8);
        Tys.push_back(MVT::Flag);
        Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8));
        Ops.push_back(Cond);
        SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, &Ops[0], Ops.size());
Evan Cheng's avatar
Evan Cheng committed
        SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
                                     DAG.getConstant(X86ISD::COND_E, MVT::i8),
                                     Tmp1.getValue(1));
        return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
      }
      case ISD::SETUNE: {  // PF | !ZF
        Tys.push_back(MVT::i8);
        Tys.push_back(MVT::Flag);
        Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8));
        Ops.push_back(Cond);
        SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, &Ops[0], Ops.size());
Evan Cheng's avatar
Evan Cheng committed
        SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
                                     DAG.getConstant(X86ISD::COND_NE, MVT::i8),
                                     Tmp1.getValue(1));
        return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
      }
    }
SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
  MVT::ValueType VT = Op.getValueType();
  bool isFPStack = MVT::isFloatingPoint(VT) && !X86ScalarSSE;
  bool addTest   = false;
  SDOperand Op0 = Op.getOperand(0);
  SDOperand Cond, CC;
  if (Op0.getOpcode() == ISD::SETCC)
    Op0 = LowerOperation(Op0, DAG);

  if (Op0.getOpcode() == X86ISD::SETCC) {
    // If condition flag is set by a X86ISD::CMP, then make a copy of it
    // (since flag operand cannot be shared). If the X86ISD::SETCC does not
    // have another use it will be eliminated.
    // If the X86ISD::SETCC has more than one use, then it's probably better
    // to use a test instead of duplicating the X86ISD::CMP (for register
    // pressure reason).
    unsigned CmpOpc = Op0.getOperand(1).getOpcode();
    if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI ||
        CmpOpc == X86ISD::UCOMI) {
      if (!Op0.hasOneUse()) {
        std::vector<MVT::ValueType> Tys;
        for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i)
          Tys.push_back(Op0.Val->getValueType(i));
        std::vector<SDOperand> Ops;
        for (unsigned i = 0; i < Op0.getNumOperands(); ++i)
          Ops.push_back(Op0.getOperand(i));
        Op0 = DAG.getNode(X86ISD::SETCC, Tys, &Ops[0], Ops.size());
      }

      CC   = Op0.getOperand(0);
      Cond = Op0.getOperand(1);
      // Make a copy as flag result cannot be used by more than one.
      Cond = DAG.getNode(CmpOpc, MVT::Flag,
                         Cond.getOperand(0), Cond.getOperand(1));
      addTest =
        isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
    } else
      addTest = true;
  if (addTest) {
    CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
    Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Op0,
                       DAG.getConstant(0, MVT::i8));
  std::vector<MVT::ValueType> Tys;
  Tys.push_back(Op.getValueType());
  Tys.push_back(MVT::Flag);
  std::vector<SDOperand> Ops;
  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
  // condition is true.
  Ops.push_back(Op.getOperand(2));
  Ops.push_back(Op.getOperand(1));
  Ops.push_back(CC);
  Ops.push_back(Cond);
  return DAG.getNode(X86ISD::CMOV, Tys, &Ops[0], Ops.size());
SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
  bool addTest = false;
  SDOperand Cond  = Op.getOperand(1);
  SDOperand Dest  = Op.getOperand(2);
  SDOperand CC;
  if (Cond.getOpcode() == ISD::SETCC)
    Cond = LowerOperation(Cond, DAG);

  if (Cond.getOpcode() == X86ISD::SETCC) {
    // If condition flag is set by a X86ISD::CMP, then make a copy of it
    // (since flag operand cannot be shared). If the X86ISD::SETCC does not
    // have another use it will be eliminated.
    // If the X86ISD::SETCC has more than one use, then it's probably better
    // to use a test instead of duplicating the X86ISD::CMP (for register
    // pressure reason).
    unsigned CmpOpc = Cond.getOperand(1).getOpcode();
    if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI ||
        CmpOpc == X86ISD::UCOMI) {
      if (!Cond.hasOneUse()) {
        std::vector<MVT::ValueType> Tys;
        for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i)
          Tys.push_back(Cond.Val->getValueType(i));
        std::vector<SDOperand> Ops;
        for (unsigned i = 0; i < Cond.getNumOperands(); ++i)
          Ops.push_back(Cond.getOperand(i));
        Cond = DAG.getNode(X86ISD::SETCC, Tys, &Ops[0], Ops.size());
      }

      CC   = Cond.getOperand(0);
      Cond = Cond.getOperand(1);
      // Make a copy as flag result cannot be used by more than one.
      Cond = DAG.getNode(CmpOpc, MVT::Flag,
                         Cond.getOperand(0), Cond.getOperand(1));
    } else
      addTest = true;
  if (addTest) {
    CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
    Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, Cond,
                       DAG.getConstant(0, MVT::i8));
  }
  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
                     Op.getOperand(0), Op.getOperand(2), CC, Cond);
}
SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
                                 DAG.getTargetJumpTable(JT->getIndex(),
                                                        getPointerTy()));
  if (Subtarget->isTargetDarwin()) {
    // With PIC, the address is actually $g + Offset.
    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
      Result = DAG.getNode(ISD::ADD, getPointerTy(),
                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
                           Result);    
SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
  if (CallingConv == CallingConv::Fast && EnableFastCC)
    return LowerFastCCCallTo(Op, DAG);
  else
    return LowerCCCCallTo(Op, DAG);
}

SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
  SDOperand Copy;
  switch(Op.getNumOperands()) {
    default:
      assert(0 && "Do not know how to return this many arguments!");
      abort();
      return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
                        DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
      
      if (MVT::isVector(ArgVT)) {
        // Integer or FP vector result -> XMM0.
        if (DAG.getMachineFunction().liveout_empty())
          DAG.getMachineFunction().addLiveOut(X86::XMM0);
        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1),
                                SDOperand());
      } else if (MVT::isInteger(ArgVT)) {
        // Integer result -> EAX
        if (DAG.getMachineFunction().liveout_empty())
          DAG.getMachineFunction().addLiveOut(X86::EAX);

        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1),
                                SDOperand());
      } else if (!X86ScalarSSE) {
        // FP return with fp-stack value.
        if (DAG.getMachineFunction().liveout_empty())
          DAG.getMachineFunction().addLiveOut(X86::ST0);

        std::vector<MVT::ValueType> Tys;
        Tys.push_back(MVT::Other);
        Tys.push_back(MVT::Flag);
        std::vector<SDOperand> Ops;
        Ops.push_back(Op.getOperand(0));
        Ops.push_back(Op.getOperand(1));
        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
        // FP return with ScalarSSE (return on fp-stack).
        if (DAG.getMachineFunction().liveout_empty())
          DAG.getMachineFunction().addLiveOut(X86::ST0);

        SDOperand MemLoc;
        SDOperand Chain = Op.getOperand(0);
        if (Value.getOpcode() == ISD::LOAD &&
            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
          Chain  = Value.getOperand(0);
          MemLoc = Value.getOperand(1);
        } else {
          // Spill the value to memory and reload it into top of stack.
          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
          MachineFunction &MF = DAG.getMachineFunction();
          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
          Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), 
                              Value, MemLoc, DAG.getSrcValue(0));
        }
        std::vector<MVT::ValueType> Tys;
        Tys.push_back(MVT::f64);
        Tys.push_back(MVT::Other);
        std::vector<SDOperand> Ops;
        Ops.push_back(Chain);
        Ops.push_back(DAG.getValueType(ArgVT));
        Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
        Tys.clear();
        Tys.push_back(MVT::Other);
        Tys.push_back(MVT::Flag);
        Ops.clear();
        Ops.push_back(Copy.getValue(1));
        Ops.push_back(Copy);
        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
      if (DAG.getMachineFunction().liveout_empty()) {
        DAG.getMachineFunction().addLiveOut(X86::EAX);
        DAG.getMachineFunction().addLiveOut(X86::EDX);
      }

      Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(3), 
                              SDOperand());
      Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1));
      break;
  }
  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
                   Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
                     Copy.getValue(1));
}
SDOperand
X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  const Function* Fn = MF.getFunction();
  if (Fn->hasExternalLinkage() &&
      Subtarget->TargetType == X86Subtarget::isCygwin &&
      Fn->getName() == "main")
    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);

  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
  if (CC == CallingConv::Fast && EnableFastCC)
    return LowerFastCCArguments(Op, DAG);
  else
    return LowerCCCArguments(Op, DAG);
SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
  SDOperand InFlag(0, 0);
  SDOperand Chain = Op.getOperand(0);
  unsigned Align =
    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
  if (Align == 0) Align = 1;

  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
  // If not DWORD aligned, call memset if size is less than the threshold.
  // It knows how to align to the right boundary first.
  if ((Align & 3) != 0 ||
      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
    MVT::ValueType IntPtr = getPointerTy();
    const Type *IntPtrTy = getTargetData()->getIntPtrType();
    std::vector<std::pair<SDOperand, const Type*> > Args;
    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
    // Extend the ubyte argument to be an int value for the call.
    SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
    Args.push_back(std::make_pair(Val, IntPtrTy));
    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
    std::pair<SDOperand,SDOperand> CallResult =
      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
    return CallResult.second;
  }

  MVT::ValueType AVT;
  SDOperand Count;
  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
  unsigned BytesLeft = 0;
  bool TwoRepStos = false;
  if (ValC) {
    unsigned ValReg;
    unsigned Val = ValC->getValue() & 255;

    // If the value is a constant, then we can potentially use larger sets.
    switch (Align & 3) {
      case 2:   // WORD aligned
        AVT = MVT::i16;
        Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
        BytesLeft = I->getValue() % 2;
        Val    = (Val << 8) | Val;
        ValReg = X86::AX;
        break;
      case 0:   // DWORD aligned
        AVT = MVT::i32;
        if (I) {
          Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
          BytesLeft = I->getValue() % 4;
          Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3),
                              DAG.getConstant(2, MVT::i8));
          TwoRepStos = true;
        Val = (Val << 8)  | Val;
        Val = (Val << 16) | Val;
        ValReg = X86::EAX;
        break;
      default:  // Byte aligned
        AVT = MVT::i8;
        Count = Op.getOperand(3);
        ValReg = X86::AL;
        break;
    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
                              InFlag);
    InFlag = Chain.getValue(1);
  } else {
    AVT = MVT::i8;
    Count  = Op.getOperand(3);
    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
    InFlag = Chain.getValue(1);
  Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
  InFlag = Chain.getValue(1);
  Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
  InFlag = Chain.getValue(1);
  std::vector<MVT::ValueType> Tys;
  Tys.push_back(MVT::Other);
  Tys.push_back(MVT::Flag);
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(DAG.getValueType(AVT));
  Ops.push_back(InFlag);
  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
  if (TwoRepStos) {
    InFlag = Chain.getValue(1);
    Count = Op.getOperand(3);
    MVT::ValueType CVT = Count.getValueType();
    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
                                 DAG.getConstant(3, CVT));
    Chain  = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag);
    InFlag = Chain.getValue(1);
    Tys.clear();
    Tys.push_back(MVT::Other);
    Tys.push_back(MVT::Flag);
    Ops.clear();
    Ops.push_back(Chain);
    Ops.push_back(DAG.getValueType(MVT::i8));
    Ops.push_back(InFlag);
    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
  } else if (BytesLeft) {
    // Issue stores for the last 1 - 3 bytes.
    SDOperand Value;
    unsigned Val = ValC->getValue() & 255;
    unsigned Offset = I->getValue() - BytesLeft;
    SDOperand DstAddr = Op.getOperand(1);
    MVT::ValueType AddrVT = DstAddr.getValueType();
    if (BytesLeft >= 2) {
      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
                          DAG.getNode(ISD::ADD, AddrVT, DstAddr,
                                      DAG.getConstant(Offset, AddrVT)),
                          DAG.getSrcValue(NULL));
      BytesLeft -= 2;
      Offset += 2;
    }

    if (BytesLeft == 1) {
      Value = DAG.getConstant(Val, MVT::i8);
      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
                          DAG.getNode(ISD::ADD, AddrVT, DstAddr,
                                      DAG.getConstant(Offset, AddrVT)),
                          DAG.getSrcValue(NULL));
    }
  }

  return Chain;
}
SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
  SDOperand Chain = Op.getOperand(0);
  unsigned Align =
    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
  if (Align == 0) Align = 1;

  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
  // If not DWORD aligned, call memcpy if size is less than the threshold.
  // It knows how to align to the right boundary first.
  if ((Align & 3) != 0 ||
      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
    MVT::ValueType IntPtr = getPointerTy();
    const Type *IntPtrTy = getTargetData()->getIntPtrType();
    std::vector<std::pair<SDOperand, const Type*> > Args;
    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
    Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
    std::pair<SDOperand,SDOperand> CallResult =
      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
    return CallResult.second;
  }

  MVT::ValueType AVT;
  SDOperand Count;
  unsigned BytesLeft = 0;
  bool TwoRepMovs = false;
  switch (Align & 3) {
    case 2:   // WORD aligned
      AVT = MVT::i16;
      Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
      BytesLeft = I->getValue() % 2;
      break;
    case 0:   // DWORD aligned
      AVT = MVT::i32;
      if (I) {
        Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
        BytesLeft = I->getValue() % 4;
      } else {
        Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3),
                            DAG.getConstant(2, MVT::i8));
        TwoRepMovs = true;
      break;
    default:  // Byte aligned
      AVT = MVT::i8;
      Count = Op.getOperand(3);
      break;
  }
  SDOperand InFlag(0, 0);
  Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
  InFlag = Chain.getValue(1);
  Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
  InFlag = Chain.getValue(1);
  Chain  = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag);
  InFlag = Chain.getValue(1);
  std::vector<MVT::ValueType> Tys;
  Tys.push_back(MVT::Other);
  Tys.push_back(MVT::Flag);
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(DAG.getValueType(AVT));
  Ops.push_back(InFlag);
  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
  if (TwoRepMovs) {
    InFlag = Chain.getValue(1);
    Count = Op.getOperand(3);
    MVT::ValueType CVT = Count.getValueType();
    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
                                 DAG.getConstant(3, CVT));
    Chain  = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag);
    InFlag = Chain.getValue(1);
    Tys.clear();
    Tys.push_back(MVT::Other);
    Tys.push_back(MVT::Flag);
    Ops.clear();
    Ops.push_back(Chain);
    Ops.push_back(DAG.getValueType(MVT::i8));
    Ops.push_back(InFlag);
    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
  } else if (BytesLeft) {
    // Issue loads and stores for the last 1 - 3 bytes.
    unsigned Offset = I->getValue() - BytesLeft;
    SDOperand DstAddr = Op.getOperand(1);
    MVT::ValueType DstVT = DstAddr.getValueType();
    SDOperand SrcAddr = Op.getOperand(2);
    MVT::ValueType SrcVT = SrcAddr.getValueType();
    SDOperand Value;
    if (BytesLeft >= 2) {
      Value = DAG.getLoad(MVT::i16, Chain,
                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
                                      DAG.getConstant(Offset, SrcVT)),
                          DAG.getSrcValue(NULL));
      Chain = Value.getValue(1);
      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
                          DAG.getNode(ISD::ADD, DstVT, DstAddr,
                                      DAG.getConstant(Offset, DstVT)),
                          DAG.getSrcValue(NULL));
      BytesLeft -= 2;
      Offset += 2;
    }

    if (BytesLeft == 1) {
      Value = DAG.getLoad(MVT::i8, Chain,
                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
                                      DAG.getConstant(Offset, SrcVT)),
                          DAG.getSrcValue(NULL));
      Chain = Value.getValue(1);
      Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
                          DAG.getNode(ISD::ADD, DstVT, DstAddr,
                                      DAG.getConstant(Offset, DstVT)),
                          DAG.getSrcValue(NULL));
SDOperand
X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
  std::vector<MVT::ValueType> Tys;
  Tys.push_back(MVT::Other);
  Tys.push_back(MVT::Flag);
  std::vector<SDOperand> Ops;
  Ops.push_back(Op.getOperand(0));
  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
  Ops.clear();
  Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)));
  Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX, 
                                   MVT::i32, Ops[0].getValue(2)));
  Ops.push_back(Ops[1].getValue(1));
  Tys[0] = Tys[1] = MVT::i32;
  Tys.push_back(MVT::Other);
  return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
}

SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
  // vastart just stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  // FIXME: Replace MVT::i32 with PointerTy
  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
  return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, 
                     Op.getOperand(1), Op.getOperand(2));
}

SDOperand
X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
  switch (IntNo) {
  default: return SDOperand();    // Don't custom lower most intrinsics.
    // Comparison intrinsics.
  case Intrinsic::x86_sse_comieq_ss:
  case Intrinsic::x86_sse_comilt_ss:
  case Intrinsic::x86_sse_comile_ss:
  case Intrinsic::x86_sse_comigt_ss:
  case Intrinsic::x86_sse_comige_ss:
  case Intrinsic::x86_sse_comineq_ss:
  case Intrinsic::x86_sse_ucomieq_ss:
  case Intrinsic::x86_sse_ucomilt_ss:
  case Intrinsic::x86_sse_ucomile_ss:
  case Intrinsic::x86_sse_ucomigt_ss:
  case Intrinsic::x86_sse_ucomige_ss:
  case Intrinsic::x86_sse_ucomineq_ss:
  case Intrinsic::x86_sse2_comieq_sd:
  case Intrinsic::x86_sse2_comilt_sd:
  case Intrinsic::x86_sse2_comile_sd:
  case Intrinsic::x86_sse2_comigt_sd:
  case Intrinsic::x86_sse2_comige_sd:
  case Intrinsic::x86_sse2_comineq_sd:
  case Intrinsic::x86_sse2_ucomieq_sd:
  case Intrinsic::x86_sse2_ucomilt_sd:
  case Intrinsic::x86_sse2_ucomile_sd:
  case Intrinsic::x86_sse2_ucomigt_sd:
  case Intrinsic::x86_sse2_ucomige_sd:
  case Intrinsic::x86_sse2_ucomineq_sd: {
    unsigned Opc = 0;
    ISD::CondCode CC = ISD::SETCC_INVALID;
    switch (IntNo) {
    default: break;
    case Intrinsic::x86_sse_comieq_ss: 
    case Intrinsic::x86_sse2_comieq_sd: 
      Opc = X86ISD::COMI;
      CC = ISD::SETEQ;
      break;
    case Intrinsic::x86_sse_comilt_ss:
    case Intrinsic::x86_sse2_comilt_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETLT;
      break;
    case Intrinsic::x86_sse_comile_ss:
    case Intrinsic::x86_sse2_comile_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETLE;
      break;
    case Intrinsic::x86_sse_comigt_ss:
    case Intrinsic::x86_sse2_comigt_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETGT;
      break;
    case Intrinsic::x86_sse_comige_ss:
    case Intrinsic::x86_sse2_comige_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETGE;
      break;
    case Intrinsic::x86_sse_comineq_ss:
    case Intrinsic::x86_sse2_comineq_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETNE;
      break;
    case Intrinsic::x86_sse_ucomieq_ss:
    case Intrinsic::x86_sse2_ucomieq_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETEQ;
      break;
    case Intrinsic::x86_sse_ucomilt_ss:
    case Intrinsic::x86_sse2_ucomilt_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETLT;
      break;
    case Intrinsic::x86_sse_ucomile_ss:
    case Intrinsic::x86_sse2_ucomile_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETLE;
      break;
    case Intrinsic::x86_sse_ucomigt_ss:
    case Intrinsic::x86_sse2_ucomigt_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETGT;
      break;
    case Intrinsic::x86_sse_ucomige_ss:
    case Intrinsic::x86_sse2_ucomige_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETGE;
      break;
    case Intrinsic::x86_sse_ucomineq_ss:
    case Intrinsic::x86_sse2_ucomineq_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETNE;
      break;
    bool Flip;
    unsigned X86CC;
    translateX86CC(CC, true, X86CC, Flip);
    SDOperand Cond = DAG.getNode(Opc, MVT::Flag, Op.getOperand(Flip?2:1),
                                 Op.getOperand(Flip?1:2));
    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, 
                                  DAG.getConstant(X86CC, MVT::i8), Cond);
    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
  }
}

/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  switch (Op.getOpcode()) {
  default: assert(0 && "Should not custom lower this!");
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
  case ISD::SHL_PARTS:
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
  case ISD::FABS:               return LowerFABS(Op, DAG);
  case ISD::FNEG:               return LowerFNEG(Op, DAG);
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
  case ISD::SELECT:             return LowerSELECT(Op, DAG);
  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
  case ISD::CALL:               return LowerCALL(Op, DAG);
  case ISD::RET:                return LowerRET(Op, DAG);
  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
  case ISD::VASTART:            return LowerVASTART(Op, DAG);
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);

const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
  default: return NULL;
  case X86ISD::SHLD:               return "X86ISD::SHLD";
  case X86ISD::SHRD:               return "X86ISD::SHRD";
  case X86ISD::FAND:               return "X86ISD::FAND";
  case X86ISD::FXOR:               return "X86ISD::FXOR";
  case X86ISD::FILD:               return "X86ISD::FILD";
  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
  case X86ISD::FLD:                return "X86ISD::FLD";
Evan Cheng's avatar
Evan Cheng committed
  case X86ISD::FST:                return "X86ISD::FST";
  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
  case X86ISD::CALL:               return "X86ISD::CALL";
  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
  case X86ISD::CMP:                return "X86ISD::CMP";
  case X86ISD::COMI:               return "X86ISD::COMI";
  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
  case X86ISD::SETCC:              return "X86ISD::SETCC";
  case X86ISD::CMOV:               return "X86ISD::CMOV";
  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
Evan Cheng's avatar
Evan Cheng committed
  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
Evan Cheng's avatar
Evan Cheng committed
  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
/// isLegalAddressImmediate - Return true if the integer value or
/// GlobalValue can be used as the offset of the target addressing mode.
bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
  // X86 allows a sign-extended 32-bit immediate field.
  return (V > -(1LL << 32) && V < (1LL << 32)-1);
}

bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
  // GV is 64-bit but displacement field is 32-bit unless we are in small code
  // model. Mac OS X happens to support only small PIC code model.
  // FIXME: better support for other OS's.
  if (Subtarget->is64Bit() && !Subtarget->isTargetDarwin())
    return false;
  if (Subtarget->isTargetDarwin()) {
    Reloc::Model RModel = getTargetMachine().getRelocationModel();
    if (RModel == Reloc::Static)
      return true;
    else if (RModel == Reloc::DynamicNoPIC)
      return !DarwinGVRequiresExtraLoad(GV);
    else
      return false;
  } else
    return true;
}

/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
  // Only do shuffles on 128-bit vector types for now.
  if (MVT::getSizeInBits(VT) == 64) return false;
  return (Mask.Val->getNumOperands() <= 4 ||
          isSplatMask(Mask.Val)  ||
          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
          X86::isUNPCKLMask(Mask.Val) ||
          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
          X86::isUNPCKHMask(Mask.Val));
}

bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
                                               MVT::ValueType EVT,
                                               SelectionDAG &DAG) const {
  unsigned NumElts = BVOps.size();
  // Only do shuffles on 128-bit vector types for now.
  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
  if (NumElts == 2) return true;
  if (NumElts == 4) {
    return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) ||
            isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
  }
  return false;
}

//===----------------------------------------------------------------------===//
//                           X86 Scheduler Hooks
//===----------------------------------------------------------------------===//

MachineBasicBlock *
X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
                                           MachineBasicBlock *BB) {
  switch (MI->getOpcode()) {
  default: assert(false && "Unexpected instr type to insert");
  case X86::CMOV_FR32:
  case X86::CMOV_FR64:
  case X86::CMOV_V4F32:
  case X86::CMOV_V2F64:
  case X86::CMOV_V2I64: {
    // To "insert" a SELECT_CC instruction, we actually have to insert the
    // diamond control-flow pattern.  The incoming instruction knows the
    // destination vreg to set, the condition code register to branch on, the
    // true/false values to select between, and a branch opcode to use.
    const BasicBlock *LLVM_BB = BB->getBasicBlock();
    ilist<MachineBasicBlock>::iterator It = BB;
    ++It;
  
    //  thisMBB:
    //  ...
    //   TrueVal = ...
    //   cmpTY ccX, r1, r2
    //   bCC copy1MBB
    //   fallthrough --> copy0MBB
    MachineBasicBlock *thisMBB = BB;
    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
    unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue());
    BuildMI(BB, Opc, 1).addMBB(sinkMBB);
    MachineFunction *F = BB->getParent();
    F->getBasicBlockList().insert(It, copy0MBB);
    F->getBasicBlockList().insert(It, sinkMBB);
    // Update machine-CFG edges by first adding all successors of the current
    // block to the new block which will contain the Phi node for the select.
    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), 
        e = BB->succ_end(); i != e; ++i)
      sinkMBB->addSuccessor(*i);
    // Next, remove all successors of the current block, and add the true
    // and fallthrough blocks as its successors.
    while(!BB->succ_empty())
      BB->removeSuccessor(BB->succ_begin());
    BB->addSuccessor(copy0MBB);
    BB->addSuccessor(sinkMBB);
  
    //  copy0MBB:
    //   %FalseValue = ...
    //   # fallthrough to sinkMBB
    BB = copy0MBB;
  
    // Update machine-CFG edges
    BB->addSuccessor(sinkMBB);
  
    //  sinkMBB:
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
    //  ...
    BB = sinkMBB;
    BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg())
      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);

    delete MI;   // The pseudo instruction is gone now.
    return BB;
  }

  case X86::FP_TO_INT16_IN_MEM:
  case X86::FP_TO_INT32_IN_MEM:
  case X86::FP_TO_INT64_IN_MEM: {
    // Change the floating point control register to use "round towards zero"
    // mode when truncating to an integer value.
    MachineFunction *F = BB->getParent();
    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
    addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);

    // Load the old value of the high byte of the control word...
    unsigned OldCW =
      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
    addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);

    // Set the high part to be round to zero...
    addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);

    // Reload the modified control word now...
    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);

    // Restore the memory image of control word to original value
    addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);

    // Get the X86 opcode to use.
    unsigned Opc;
    switch (MI->getOpcode()) {
    default: assert(0 && "illegal opcode!");
    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
    }

    X86AddressMode AM;
    MachineOperand &Op = MI->getOperand(0);
    if (Op.isRegister()) {
      AM.BaseType = X86AddressMode::RegBase;
      AM.Base.Reg = Op.getReg();
    } else {
      AM.BaseType = X86AddressMode::FrameIndexBase;
      AM.Base.FrameIndex = Op.getFrameIndex();
    }
    Op = MI->getOperand(1);
    if (Op.isImmediate())
      AM.Scale = Op.getImmedValue();
    Op = MI->getOperand(2);
    if (Op.isImmediate())
      AM.IndexReg = Op.getImmedValue();
    Op = MI->getOperand(3);
    if (Op.isGlobalAddress()) {
      AM.GV = Op.getGlobal();
    } else {
      AM.Disp = Op.getImmedValue();