Newer
Older
//== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines BasicConstraintManager, a class that tracks simple
// equality and inequality constraints on symbolic values of GRState.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRState.h"
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace {
typedef llvm::ImmutableMap<SymbolID,GRState::IntSetTy> ConstNotEqTy;
typedef llvm::ImmutableMap<SymbolID,const llvm::APSInt*> ConstEqTy;
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// BasicConstraintManager only tracks equality and inequality constraints of
// constants and integer variables.
class VISIBILITY_HIDDEN BasicConstraintManager : public ConstraintManager {
GRStateManager& StateMgr;
public:
BasicConstraintManager(GRStateManager& statemgr) : StateMgr(statemgr) {}
virtual const GRState* Assume(const GRState* St, RVal Cond,
bool Assumption, bool& isFeasible);
const GRState* Assume(const GRState* St, LVal Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, LVal Cond,bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, NonLVal Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, NonLVal Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible);
const GRState* AssumeSymNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AddEQ(const GRState* St, SymbolID sym, const llvm::APSInt& V);
const GRState* AddNE(const GRState* St, SymbolID sym, const llvm::APSInt& V);
const llvm::APSInt* getSymVal(const GRState* St, SymbolID sym);
bool isNotEqual(const GRState* St, SymbolID sym, const llvm::APSInt& V) const;
bool isEqual(const GRState* St, SymbolID sym, const llvm::APSInt& V) const;
const GRState* RemoveDeadBindings(const GRState* St,
StoreManager::LiveSymbolsTy& LSymbols,
StoreManager::DeadSymbolsTy& DSymbols);
void print(const GRState* St, std::ostream& Out,
const char* nl, const char *sep);
};
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
} // end anonymous namespace
ConstraintManager* clang::CreateBasicConstraintManager(GRStateManager& StateMgr)
{
return new BasicConstraintManager(StateMgr);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, RVal Cond,
bool Assumption, bool& isFeasible) {
if (Cond.isUnknown()) {
isFeasible = true;
return St;
}
if (isa<NonLVal>(Cond))
return Assume(St, cast<NonLVal>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<LVal>(Cond), Assumption, isFeasible);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
// TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
return St;
}
const GRState* BasicConstraintManager::AssumeAux(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LVal.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
Ted Kremenek
committed
case lval::MemRegionKind:
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
isFeasible = Assumption;
return St;
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
} // end switch
}
const GRState*
BasicConstraintManager::Assume(const GRState* St, NonLVal Cond, bool Assumption,
bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
// TF->EvalAssume() does nothing now.
return St;
}
const GRState*
BasicConstraintManager::AssumeAux(const GRState* St,NonLVal Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
SymbolManager& SymMgr = StateMgr.getSymbolManager();
switch (Cond.getSubKind()) {
default:
assert(false && "'Assume' not implemented for this NonLVal");
case nonlval::SymbolValKind: {
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonlval::LValAsIntegerKind:
return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
Assumption, isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GT:
if (Assumption)
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LT:
if (Assumption)
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = (*X != V);
return St;
}
// Second, determine if sym != V.
if (isNotEqual(St, sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return AddNE(St, sym, V);
}
const GRState*
BasicConstraintManager::AssumeSymEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (isNotEqual(St, sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return AddEQ(St, sym, V);
}
// These logic will be handled in another ConstraintManager.
const GRState*
BasicConstraintManager::AssumeSymLT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x < y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
BasicConstraintManager::AssumeSymGT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x > y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
BasicConstraintManager::AssumeSymGE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// Reject a path if the value of sym is a constant X and !(X >= V).
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = *X >= V;
return St;
}
isFeasible = !isNotEqual(St, sym, V) ||
(V != llvm::APSInt::getMaxValue(V.getBitWidth(), V.isSigned()));
return St;
}
const GRState*
BasicConstraintManager::AssumeSymLE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X <= V).
if (const llvm::APSInt* X = getSymVal(St, sym)) {
isFeasible = *X <= V;
return St;
}
isFeasible = !isNotEqual(St, sym, V) ||
(V != llvm::APSInt::getMinValue(V.getBitWidth(), V.isSigned()));
return St;
}
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
static int ConstEqTyIndex = 0;
static int ConstNotEqTyIndex = 0;
namespace clang {
template<>
struct GRStateTrait<ConstNotEqTy> : public GRStatePartialTrait<ConstNotEqTy> {
static inline void* GDMIndex() { return &ConstNotEqTyIndex; }
};
template<>
struct GRStateTrait<ConstEqTy> : public GRStatePartialTrait<ConstEqTy> {
static inline void* GDMIndex() { return &ConstEqTyIndex; }
};
}
const GRState* BasicConstraintManager::AddEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
GRStateRef state(St, StateMgr);
return state.set<ConstEqTy>(sym, &V);
}
const GRState* BasicConstraintManager::AddNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V) {
GRState::IntSetTy::Factory ISetFactory(StateMgr.getAllocator());
GRStateRef state(St, StateMgr);
// First, retrieve the NE-set associated with the given symbol.
ConstNotEqTy::data_type* T = state.get<ConstNotEqTy>(sym);
GRState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet();
// Now add V to the NE set.
S = ISetFactory.Add(S, &V);
// Create a new state with the old binding replaced.
return state.set<ConstNotEqTy>(sym, S);
}
const llvm::APSInt* BasicConstraintManager::getSymVal(const GRState* St,
SymbolID sym) {
const ConstEqTy::data_type* T = St->get<ConstEqTy>(sym);
return T ? *T : NULL;
}
bool BasicConstraintManager::isNotEqual(const GRState* St, SymbolID sym,
const llvm::APSInt& V) const {
// Retrieve the NE-set associated with the given symbol.
const ConstNotEqTy::data_type* T = St->get<ConstNotEqTy>(sym);
// See if V is present in the NE-set.
return T ? T->contains(&V) : false;
}
bool BasicConstraintManager::isEqual(const GRState* St, SymbolID sym,
const llvm::APSInt& V) const {
// Retrieve the EQ-set associated with the given symbol.
const ConstEqTy::data_type* T = St->get<ConstEqTy>(sym);
// See if V is present in the EQ-set.
return T ? **T == V : false;
}
const GRState* BasicConstraintManager::RemoveDeadBindings(const GRState* St,
StoreManager::LiveSymbolsTy& LSymbols,
StoreManager::DeadSymbolsTy& DSymbols) {
GRStateRef state(St, StateMgr);
ConstEqTy CE = state.get<ConstEqTy>();
ConstEqTy::Factory& CEFactory = state.get_context<ConstEqTy>();
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
SymbolID sym = I.getKey();
if (!LSymbols.count(sym)) {
DSymbols.insert(sym);
CE = CEFactory.Remove(CE, sym);
}
}
state = state.set<ConstEqTy>(CE);
ConstNotEqTy CNE = state.get<ConstNotEqTy>();
ConstNotEqTy::Factory& CNEFactory = state.get_context<ConstNotEqTy>();
for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
SymbolID sym = I.getKey();
if (!LSymbols.count(sym)) {
DSymbols.insert(sym);
CNE = CNEFactory.Remove(CNE, sym);
}
}
return state.set<ConstNotEqTy>(CNE);
}
void BasicConstraintManager::print(const GRState* St, std::ostream& Out,
const char* nl, const char *sep) {
// Print equality constraints.
ConstEqTy CE = St->get<ConstEqTy>();
if (!CE.isEmpty()) {
Out << nl << sep << "'==' constraints:";
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
Out << nl << " $" << I.getKey();
llvm::raw_os_ostream OS(Out);
OS << " : " << *I.getData();
}
}
// Print != constraints.
ConstNotEqTy CNE = St->get<ConstNotEqTy>();
if (!CNE.isEmpty()) {
Out << nl << sep << "'!=' constraints:";
for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
Out << nl << " $" << I.getKey() << " : ";
bool isFirst = true;
GRState::IntSetTy::iterator J = I.getData().begin(),
EJ = I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << *J;
}
}
}