Newer
Older
//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the target-independent ELF writer. This file writes out
// the ELF file in the following order:
//
// #1. ELF Header
// #2. '.text' section
// #3. '.data' section
// #4. '.bss' section (conceptual position in file)
// ...
// #X. '.shstrtab' section
// #Y. Section Table
//
// The entries in the section table are laid out as:
// #0. Null entry [required]
// #1. ".text" entry - the program code
// #2. ".data" entry - global variables with initializers. [ if needed ]
// #3. ".bss" entry - global variables without initializers. [ if needed ]
// ...
// #N. ".shstrtab" entry - String table for the section names.
//
// NOTE: This code should eventually be extended to support 64-bit ELF (this
// won't be hard), but we haven't done so yet!
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ELFWriter.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
namespace llvm {
class ELFCodeEmitter : public MachineCodeEmitter {
ELFWriter &EW;
std::vector<unsigned char> &OutputBuffer;
size_t FnStart;
public:
ELFCodeEmitter(ELFWriter &ew) : EW(ew), OutputBuffer(EW.OutputBuffer) {}
void startFunction(MachineFunction &F) {
// Align the output buffer to the appropriate alignment.
unsigned Align = 16; // FIXME: GENERICIZE!!
ELFWriter::ELFSection &TextSection = EW.SectionList.back();
// Upgrade the section alignment if required.
if (TextSection.Align < Align) TextSection.Align = Align;
// Add padding zeros to the end of the buffer to make sure that the
// function will start on the correct byte alignment within the section.
size_t SectionOff = OutputBuffer.size()-TextSection.Offset;
if (SectionOff & (Align-1)) {
// Add padding to get alignment to the correct place.
size_t Pad = Align-(SectionOff & (Align-1));
OutputBuffer.resize(OutputBuffer.size()+Pad);
}
FnStart = OutputBuffer.size();
}
void finishFunction(MachineFunction &F) {}
void emitConstantPool(MachineConstantPool *MCP) {
if (MCP->isEmpty()) return;
assert(0 && "unimp");
}
virtual void emitByte(unsigned char B) {
OutputBuffer.push_back(B);
}
virtual void emitWordAt(unsigned W, unsigned *Ptr) {
assert(0 && "ni");
}
virtual void emitWord(unsigned W) {
assert(0 && "ni");
}
virtual uint64_t getCurrentPCValue() {
return OutputBuffer.size();
}
virtual uint64_t getCurrentPCOffset() {
return OutputBuffer.size()-FnStart;
}
void addRelocation(const MachineRelocation &MR) {
assert(0 && "relo not handled yet!");
}
virtual uint64_t getConstantPoolEntryAddress(unsigned Index) {
assert(0 && "CP not implementated yet!");
}
/// JIT SPECIFIC FUNCTIONS
void startFunctionStub(unsigned StubSize) {
assert(0 && "JIT specific function called!");
abort();
}
void *finishFunctionStub(const Function *F) {
assert(0 && "JIT specific function called!");
abort();
return 0;
}
};
}
ELFWriter::ELFWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) {
e_machine = 0; // e_machine defaults to 'No Machine'
e_flags = 0; // e_flags defaults to 0, no flags.
is64Bit = TM.getTargetData().getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData().isLittleEndian();
// Create the machine code emitter object for this target.
MCE = new ELFCodeEmitter(*this);
}
ELFWriter::~ELFWriter() {
delete MCE;
}
// doInitialization - Emit the file header and all of the global variables for
// the module to the ELF file.
bool ELFWriter::doInitialization(Module &M) {
Mang = new Mangler(M);
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
outbyte(0x7F); // EI_MAG0
outbyte('E'); // EI_MAG1
outbyte('L'); // EI_MAG2
outbyte('F'); // EI_MAG3
outbyte(is64Bit ? 2 : 1); // EI_CLASS
outbyte(isLittleEndian ? 1 : 2); // EI_DATA
outbyte(1); // EI_VERSION
for (unsigned i = OutputBuffer.size(); i != 16; ++i)
outbyte(0); // EI_PAD up to 16 bytes.
// This should change for shared objects.
outhalf(1); // e_type = ET_REL
outhalf(e_machine); // e_machine = whatever the target wants
outword(1); // e_version = 1
outaddr(0); // e_entry = 0 -> no entry point in .o file
outaddr(0); // e_phoff = 0 -> no program header for .o
ELFHeader_e_shoff_Offset = OutputBuffer.size();
outaddr(0); // e_shoff
outword(e_flags); // e_flags = whatever the target wants
assert(!is64Bit && "These sizes need to be adjusted for 64-bit!");
outhalf(52); // e_ehsize = ELF header size
outhalf(0); // e_phentsize = prog header entry size
outhalf(0); // e_phnum = # prog header entries = 0
outhalf(40); // e_shentsize = sect header entry size
ELFHeader_e_shnum_Offset = OutputBuffer.size();
outhalf(0); // e_shnum = # of section header ents
ELFHeader_e_shstrndx_Offset = OutputBuffer.size();
outhalf(0); // e_shstrndx = Section # of '.shstrtab'
// Add the null section.
SectionList.push_back(ELFSection());
// Start up the symbol table. The first entry in the symtab is the null
// entry.
SymbolTable.push_back(ELFSym(0));
SectionList.push_back(ELFSection(".text", OutputBuffer.size()));
void ELFWriter::EmitGlobal(GlobalVariable *GV, ELFSection &DataSection,
ELFSection &BSSSection) {
// If this is an external global, emit it now. TODO: Note that it would be
// better to ignore the symbol here and only add it to the symbol table if
// referenced.
if (!GV->hasInitializer()) {
ELFSym ExternalSym(GV);
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
ExternalSym.SetType(ELFSym::STT_NOTYPE);
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
SymbolTable.push_back(ExternalSym);
return;
}
const Type *GVType = (const Type*)GV->getType();
unsigned Align = TM.getTargetData().getTypeAlignment(GVType);
unsigned Size = TM.getTargetData().getTypeSize(GVType);
// If this global has a zero initializer, it is part of the .bss or common
// section.
if (GV->getInitializer()->isNullValue()) {
// If this global is part of the common block, add it now. Variables are
// part of the common block if they are zero initialized and allowed to be
// merged with other symbols.
if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) {
ELFSym CommonSym(GV);
// Value for common symbols is the alignment required.
CommonSym.Value = Align;
CommonSym.Size = Size;
CommonSym.SetBind(ELFSym::STB_GLOBAL);
CommonSym.SetType(ELFSym::STT_OBJECT);
// TODO SOMEDAY: add ELF visibility.
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
SymbolTable.push_back(CommonSym);
return;
}
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Otherwise, this symbol is part of the .bss section. Emit it now.
// Handle alignment. Ensure section is aligned at least as much as required
// by this symbol.
BSSSection.Align = std::max(BSSSection.Align, Align);
// Within the section, emit enough virtual padding to get us to an alignment
// boundary.
if (Align)
BSSSection.Size = (BSSSection.Size + Align - 1) & ~(Align-1);
ELFSym BSSSym(GV);
BSSSym.Value = BSSSection.Size;
BSSSym.Size = Size;
BSSSym.SetType(ELFSym::STT_OBJECT);
switch (GV->getLinkage()) {
default: // weak/linkonce handled above
assert(0 && "Unexpected linkage type!");
case GlobalValue::AppendingLinkage: // FIXME: This should be improved!
case GlobalValue::ExternalLinkage:
BSSSym.SetBind(ELFSym::STB_GLOBAL);
break;
case GlobalValue::InternalLinkage:
BSSSym.SetBind(ELFSym::STB_LOCAL);
break;
}
// Set the idx of the .bss section
BSSSym.SectionIdx = &BSSSection-&SectionList[0];
SymbolTable.push_back(BSSSym);
// Reserve space in the .bss section for this symbol.
BSSSection.Size += Size;
return;
}
// FIXME: handle .rodata
//assert(!GV->isConstant() && "unimp");
// FIXME: handle .data
//assert(0 && "unimp");
}
bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
// Nothing to do here, this is all done through the MCE object above.
return false;
}
/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
// Okay, the .text section has now been finalized. If it contains nothing, do
// not emit it.
uint64_t TextSize = OutputBuffer.size() - SectionList.back().Offset;
if (TextSize == 0) {
SectionList.pop_back();
} else {
ELFSection &Text = SectionList.back();
Text.Size = TextSize;
Text.Type = ELFSection::SHT_PROGBITS;
Text.Flags = ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC;
}
// Okay, the ELF header and .text sections have been completed, build the
// .data, .bss, and "common" sections next.
SectionList.push_back(ELFSection(".data", OutputBuffer.size()));
SectionList.push_back(ELFSection(".bss"));
ELFSection &DataSection = *(SectionList.end()-2);
ELFSection &BSSSection = SectionList.back();
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I, DataSection, BSSSection);
// Finish up the data section.
DataSection.Type = ELFSection::SHT_PROGBITS;
DataSection.Flags = ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC;
// The BSS Section logically starts at the end of the Data Section (adjusted
// to the required alignment of the BSSSection).
BSSSection.Offset = DataSection.Offset+DataSection.Size;
BSSSection.Type = ELFSection::SHT_NOBITS;
BSSSection.Flags = ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC;
if (BSSSection.Align)
BSSSection.Offset = (BSSSection.Offset+BSSSection.Align-1) &
~(BSSSection.Align-1);
// Emit the symbol table now, if non-empty.
EmitSymbolTable();
// FIXME: Emit the relocations now.
// Emit the string table for the sections in the ELF file we have.
EmitSectionTableStringTable();
// Emit the .o file section table.
EmitSectionTable();
// Emit the .o file to the specified stream.
O.write((char*)&OutputBuffer[0], OutputBuffer.size());
// Free the output buffer.
std::vector<unsigned char>().swap(OutputBuffer);
// Release the name mangler object.
delete Mang; Mang = 0;
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
/// table for it and then the symbol table itself.
void ELFWriter::EmitSymbolTable() {
if (SymbolTable.size() == 1) return; // Only the null entry.
// FIXME: compact all local symbols to the start of the symtab.
unsigned FirstNonLocalSymbol = 1;
SectionList.push_back(ELFSection(".strtab", OutputBuffer.size()));
ELFSection &StrTab = SectionList.back();
StrTab.Type = ELFSection::SHT_STRTAB;
StrTab.Align = 1;
// Set the zero'th symbol to a null byte, as required.
outbyte(0);
SymbolTable[0].NameIdx = 0;
unsigned Index = 1;
for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
// Use the name mangler to uniquify the LLVM symbol.
std::string Name = Mang->getValueName(SymbolTable[i].GV);
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
if (Name.empty()) {
SymbolTable[i].NameIdx = 0;
} else {
SymbolTable[i].NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
OutputBuffer.insert(OutputBuffer.end(), Name.begin(), Name.end());
// Add a null terminator.
OutputBuffer.push_back(0);
// Keep track of the number of bytes emitted to this section.
Index += Name.size()+1;
}
}
StrTab.Size = OutputBuffer.size()-StrTab.Offset;
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
assert(!is64Bit && "Should this be 8 byte aligned for 64-bit?"
" (check .Align below also)");
align(4);
SectionList.push_back(ELFSection(".symtab", OutputBuffer.size()));
ELFSection &SymTab = SectionList.back();
SymTab.Type = ELFSection::SHT_SYMTAB;
SymTab.Align = 4; // FIXME: check for ELF64
SymTab.Link = SectionList.size()-2; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
SymTab.EntSize = 16; // Size of each symtab entry. FIXME: wrong for ELF64
assert(!is64Bit && "check this!");
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) {
ELFSym &Sym = SymbolTable[i];
outword(Sym.NameIdx);
outaddr(Sym.Value);
outword(Sym.Size);
outbyte(Sym.Info);
outbyte(Sym.Other);
outhalf(Sym.SectionIdx);
}
SymTab.Size = OutputBuffer.size()-SymTab.Offset;
}
/// EmitSectionTableStringTable - This method adds and emits a section for the
/// ELF Section Table string table: the string table that holds all of the
/// section names.
void ELFWriter::EmitSectionTableStringTable() {
// First step: add the section for the string table to the list of sections:
SectionList.push_back(ELFSection(".shstrtab", OutputBuffer.size()));
SectionList.back().Type = ELFSection::SHT_STRTAB;
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Now that we know which section number is the .shstrtab section, update the
// e_shstrndx entry in the ELF header.
fixhalf(SectionList.size()-1, ELFHeader_e_shstrndx_Offset);
// Set the NameIdx of each section in the string table and emit the bytes for
// the string table.
unsigned Index = 0;
for (unsigned i = 0, e = SectionList.size(); i != e; ++i) {
// Set the index into the table. Note if we have lots of entries with
// common suffixes, we could memoize them here if we cared.
SectionList[i].NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
OutputBuffer.insert(OutputBuffer.end(), SectionList[i].Name.begin(),
SectionList[i].Name.end());
// Add a null terminator.
OutputBuffer.push_back(0);
// Keep track of the number of bytes emitted to this section.
Index += SectionList[i].Name.size()+1;
}
// Set the size of .shstrtab now that we know what it is.
SectionList.back().Size = Index;
}
/// EmitSectionTable - Now that we have emitted the entire contents of the file
/// (all of the sections), emit the section table which informs the reader where
/// the boundaries are.
void ELFWriter::EmitSectionTable() {
// Now that all of the sections have been emitted, set the e_shnum entry in
// the ELF header.
fixhalf(SectionList.size(), ELFHeader_e_shnum_Offset);
// Now that we know the offset in the file of the section table (which we emit
// next), update the e_shoff address in the ELF header.
fixaddr(OutputBuffer.size(), ELFHeader_e_shoff_Offset);
// Emit all of the section table entries.
for (unsigned i = 0, e = SectionList.size(); i != e; ++i) {
const ELFSection &S = SectionList[i];
outword(S.NameIdx); // sh_name - Symbol table name idx
outword(S.Type); // sh_type - Section contents & semantics
outword(S.Flags); // sh_flags - Section flags.
outaddr(S.Addr); // sh_addr - The mem address this section appears in.
outaddr(S.Offset); // sh_offset - The offset from the start of the file.
outword(S.Size); // sh_size - The section size.
outword(S.Link); // sh_link - Section header table index link.
outword(S.Info); // sh_info - Auxillary information.
outword(S.Align); // sh_addralign - Alignment of section.
outword(S.EntSize); // sh_entsize - Size of each entry in the section.
}
// Release the memory allocated for the section list.
std::vector<ELFSection>().swap(SectionList);
}