"...Transforms/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "743b3fd196e027fadb4ea890cd2289e63bcfd5f5"
Newer
Older
//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveDebugVariables analysis.
//
// Remove all DBG_VALUE instructions referencing virtual registers and replace
// them with a data structure tracking where live user variables are kept - in a
// virtual register or in a stack slot.
//
// Allow the data structure to be updated during register allocation when values
// are moved between registers and stack slots. Finally emit new DBG_VALUE
// instructions after register allocation is complete.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "livedebug"
#include "LiveDebugVariables.h"
#include "VirtRegMap.h"
#include "llvm/Constants.h"
#include "llvm/Metadata.h"
#include "llvm/Value.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
char LiveDebugVariables::ID = 0;
INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars",
"Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars",
"Debug Variable Analysis", false, false)
void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineDominatorTree>();
AU.addRequiredTransitive<LiveIntervals>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(0) {
initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/// Location - All the different places a user value can reside.
/// Note that this includes immediate values that technically aren't locations.
namespace {
struct Location {
/// kind - What kind of location is this?
enum Kind {
locUndef = 0,
locImm = 0x80000000,
locFPImm
};
/// Kind - One of the following:
/// 1. locUndef
/// 2. Register number (physical or virtual), data.SubIdx is the subreg index.
/// 3. ~Frame index, data.Offset is the offset.
/// 4. locImm, data.ImmVal is the constant integer value.
/// 5. locFPImm, data.CFP points to the floating point constant.
unsigned Kind;
/// Data - Extra data about location.
union {
unsigned SubIdx; ///< For virtual registers.
int64_t Offset; ///< For frame indices.
int64_t ImmVal; ///< For locImm.
const ConstantFP *CFP; ///< For locFPImm.
} Data;
Location(const MachineOperand &MO) {
switch(MO.getType()) {
case MachineOperand::MO_Register:
Kind = MO.getReg();
Data.SubIdx = MO.getSubReg();
return;
case MachineOperand::MO_Immediate:
Kind = locImm;
Data.ImmVal = MO.getImm();
return;
case MachineOperand::MO_FPImmediate:
Kind = locFPImm;
Data.CFP = MO.getFPImm();
return;
case MachineOperand::MO_FrameIndex:
Kind = ~MO.getIndex();
// FIXME: MO_FrameIndex should support an offset.
Data.Offset = 0;
return;
default:
Kind = locUndef;
return;
}
}
/// addOperand - Add this location as a machine operand to MI.
MachineInstrBuilder addOperand(MachineInstrBuilder MI) const {
switch (Kind) {
case locImm:
return MI.addImm(Data.ImmVal);
case locFPImm:
return MI.addFPImm(Data.CFP);
default:
if (isFrameIndex())
return MI.addFrameIndex(getFrameIndex());
else
return MI.addReg(Kind); // reg and undef.
}
}
bool operator==(const Location &RHS) const {
if (Kind != RHS.Kind)
return false;
switch (Kind) {
case locUndef:
return true;
case locImm:
return Data.ImmVal == RHS.Data.ImmVal;
case locFPImm:
return Data.CFP == RHS.Data.CFP;
default:
if (isReg())
return Data.SubIdx == RHS.Data.SubIdx;
else
return Data.Offset == RHS.Data.Offset;
}
}
/// isUndef - is this the singleton undef?
bool isUndef() const { return Kind == locUndef; }
/// isReg - is this a register location?
bool isReg() const { return Kind && Kind < locImm; }
/// isFrameIndex - is this a frame index location?
bool isFrameIndex() const { return Kind > locFPImm; }
int getFrameIndex() const { return ~Kind; }
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
void print(raw_ostream&, const TargetRegisterInfo*);
};
}
/// LocMap - Map of where a user value is live, and its location.
typedef IntervalMap<SlotIndex, unsigned, 4> LocMap;
/// UserValue - A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
///
/// UserValues are grouped into equivalence classes for easier searching. Two
/// user values are related if they refer to the same variable, or if they are
/// held by the same virtual register. The equivalence class is the transitive
/// closure of that relation.
namespace {
class UserValue {
const MDNode *variable; ///< The debug info variable we are part of.
unsigned offset; ///< Byte offset into variable.
UserValue *leader; ///< Equivalence class leader.
UserValue *next; ///< Next value in equivalence class, or null.
/// Numbered locations referenced by locmap.
SmallVector<Location, 4> locations;
/// Map of slot indices where this value is live.
LocMap locInts;
Jakob Stoklund Olesen
committed
/// coalesceLocation - After LocNo was changed, check if it has become
/// identical to another location, and coalesce them. This may cause LocNo or
/// a later location to be erased, but no earlier location will be erased.
void coalesceLocation(unsigned LocNo);
/// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo,
LiveIntervals &LIS, const TargetInstrInfo &TII);
/// insertDebugKill - Insert an undef DBG_VALUE into MBB at Idx.
void insertDebugKill(MachineBasicBlock *MBB, SlotIndex Idx,
LiveIntervals &LIS, const TargetInstrInfo &TII);
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
public:
/// UserValue - Create a new UserValue.
UserValue(const MDNode *var, unsigned o, LocMap::Allocator &alloc)
: variable(var), offset(o), leader(this), next(0), locInts(alloc)
{}
/// getLeader - Get the leader of this value's equivalence class.
UserValue *getLeader() {
UserValue *l = leader;
while (l != l->leader)
l = l->leader;
return leader = l;
}
/// getNext - Return the next UserValue in the equivalence class.
UserValue *getNext() const { return next; }
/// match - Does this UserValue match the aprameters?
bool match(const MDNode *Var, unsigned Offset) const {
return Var == variable && Offset == offset;
}
/// merge - Merge equivalence classes.
static UserValue *merge(UserValue *L1, UserValue *L2) {
L2 = L2->getLeader();
if (!L1)
return L2;
L1 = L1->getLeader();
if (L1 == L2)
return L1;
// Splice L2 before L1's members.
UserValue *End = L2;
while (End->next)
End->leader = L1, End = End->next;
End->leader = L1;
End->next = L1->next;
L1->next = L2;
return L1;
}
/// getLocationNo - Return the location number that matches Loc.
unsigned getLocationNo(Location Loc) {
if (Loc.isUndef())
return ~0u;
unsigned n = std::find(locations.begin(), locations.end(), Loc) -
locations.begin();
if (n == locations.size())
locations.push_back(Loc);
return n;
}
/// addDef - Add a definition point to this value.
void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
// Add a singular (Idx,Idx) -> Loc mapping.
LocMap::iterator I = locInts.find(Idx);
if (!I.valid() || I.start() != Idx)
I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO));
}
/// extendDef - Extend the current definition as far as possible down the
/// dominator tree. Stop when meeting an existing def or when leaving the live
/// range of VNI.
/// @param Idx Starting point for the definition.
/// @param LocNo Location number to propagate.
/// @param LI Restrict liveness to where LI has the value VNI. May be null.
/// @param VNI When LI is not null, this is the value to restrict to.
/// @param LIS Live intervals analysis.
/// @param MDT Dominator tree.
void extendDef(SlotIndex Idx, unsigned LocNo,
LiveInterval *LI, const VNInfo *VNI,
LiveIntervals &LIS, MachineDominatorTree &MDT);
/// computeIntervals - Compute the live intervals of all locations after
/// collecting all their def points.
void computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT);
/// renameRegister - Update locations to rewrite OldReg as NewReg:SubIdx.
void renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx,
const TargetRegisterInfo *TRI);
/// rewriteLocations - Rewrite virtual register locations according to the
/// provided virtual register map.
void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI);
/// emitDebugVariables - Recreate DBG_VALUE instruction from data structures.
void emitDebugValues(VirtRegMap *VRM,
LiveIntervals &LIS, const TargetInstrInfo &TRI);
void print(raw_ostream&, const TargetRegisterInfo*);
};
} // namespace
/// LDVImpl - Implementation of the LiveDebugVariables pass.
namespace {
class LDVImpl {
LiveDebugVariables &pass;
LocMap::Allocator allocator;
MachineFunction *MF;
LiveIntervals *LIS;
MachineDominatorTree *MDT;
const TargetRegisterInfo *TRI;
/// userValues - All allocated UserValue instances.
SmallVector<UserValue*, 8> userValues;
/// Map virtual register to eq class leader.
typedef DenseMap<unsigned, UserValue*> VRMap;
Jakob Stoklund Olesen
committed
VRMap virtRegToEqClass;
/// Map user variable to eq class leader.
typedef DenseMap<const MDNode *, UserValue*> UVMap;
UVMap userVarMap;
/// getUserValue - Find or create a UserValue.
UserValue *getUserValue(const MDNode *Var, unsigned Offset);
/// lookupVirtReg - Find the EC leader for VirtReg or null.
UserValue *lookupVirtReg(unsigned VirtReg);
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/// mapVirtReg - Map virtual register to an equivalence class.
void mapVirtReg(unsigned VirtReg, UserValue *EC);
/// handleDebugValue - Add DBG_VALUE instruction to our maps.
/// @param MI DBG_VALUE instruction
/// @param Idx Last valid SLotIndex before instruction.
/// @return True if the DBG_VALUE instruction should be deleted.
bool handleDebugValue(MachineInstr *MI, SlotIndex Idx);
/// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
/// a UserValue def for each instruction.
/// @param mf MachineFunction to be scanned.
/// @return True if any debug values were found.
bool collectDebugValues(MachineFunction &mf);
/// computeIntervals - Compute the live intervals of all user values after
/// collecting all their def points.
void computeIntervals();
public:
LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
bool runOnMachineFunction(MachineFunction &mf);
/// clear - Relase all memory.
void clear() {
DeleteContainerPointers(userValues);
userValues.clear();
Jakob Stoklund Olesen
committed
virtRegToEqClass.clear();
userVarMap.clear();
}
/// renameRegister - Replace all references to OldReg wiht NewReg:SubIdx.
void renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx);
/// emitDebugVariables - Recreate DBG_VALUE instruction from data structures.
void emitDebugValues(VirtRegMap *VRM);
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
void print(raw_ostream&);
};
} // namespace
void Location::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
switch (Kind) {
case locUndef:
OS << "undef";
return;
case locImm:
OS << "int:" << Data.ImmVal;
return;
case locFPImm:
OS << "fp:" << Data.CFP->getValueAPF().convertToDouble();
return;
default:
if (isReg()) {
if (TargetRegisterInfo::isVirtualRegister(Kind)) {
OS << "%reg" << Kind;
if (Data.SubIdx)
OS << ':' << TRI->getSubRegIndexName(Data.SubIdx);
} else
OS << '%' << TRI->getName(Kind);
} else {
OS << "fi#" << ~Kind;
if (Data.Offset)
OS << '+' << Data.Offset;
}
return;
}
}
void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
if (const MDString *MDS = dyn_cast<MDString>(variable->getOperand(2)))
OS << "!\"" << MDS->getString() << "\"\t";
if (offset)
OS << '+' << offset;
for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
OS << " [" << I.start() << ';' << I.stop() << "):";
if (I.value() == ~0u)
OS << "undef";
else
OS << I.value();
}
for (unsigned i = 0, e = locations.size(); i != e; ++i) {
OS << " Loc" << i << '=';
locations[i].print(OS, TRI);
}
OS << '\n';
}
void LDVImpl::print(raw_ostream &OS) {
OS << "********** DEBUG VARIABLES **********\n";
for (unsigned i = 0, e = userValues.size(); i != e; ++i)
userValues[i]->print(OS, TRI);
}
Jakob Stoklund Olesen
committed
void UserValue::coalesceLocation(unsigned LocNo) {
unsigned KeepLoc = std::find(locations.begin(), locations.begin() + LocNo,
locations[LocNo]) - locations.begin();
unsigned EraseLoc = LocNo;
if (KeepLoc == LocNo) {
EraseLoc = std::find(locations.begin() + LocNo + 1, locations.end(),
locations[LocNo]) - locations.begin();
// No matches.
if (EraseLoc == locations.size())
return;
}
assert(KeepLoc < EraseLoc);
locations.erase(locations.begin() + EraseLoc);
// Rewrite values.
for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
unsigned v = I.value();
if (v == EraseLoc)
I.setValue(KeepLoc); // Coalesce when possible.
else if (v > EraseLoc)
I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values.
}
}
UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset) {
UserValue *&Leader = userVarMap[Var];
if (Leader) {
UserValue *UV = Leader->getLeader();
Leader = UV;
for (; UV; UV = UV->getNext())
if (UV->match(Var, Offset))
return UV;
}
UserValue *UV = new UserValue(Var, Offset, allocator);
userValues.push_back(UV);
Leader = UserValue::merge(Leader, UV);
return UV;
}
void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
Jakob Stoklund Olesen
committed
UserValue *&Leader = virtRegToEqClass[VirtReg];
Leader = UserValue::merge(Leader, EC);
}
UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
Jakob Stoklund Olesen
committed
if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
return UV->getLeader();
return 0;
}
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) {
// DBG_VALUE loc, offset, variable
if (MI->getNumOperands() != 3 ||
!MI->getOperand(1).isImm() || !MI->getOperand(2).isMetadata()) {
DEBUG(dbgs() << "Can't handle " << *MI);
return false;
}
// Get or create the UserValue for (variable,offset).
unsigned Offset = MI->getOperand(1).getImm();
const MDNode *Var = MI->getOperand(2).getMetadata();
UserValue *UV = getUserValue(Var, Offset);
// If the location is a virtual register, make sure it is mapped.
if (MI->getOperand(0).isReg()) {
unsigned Reg = MI->getOperand(0).getReg();
if (Reg && TargetRegisterInfo::isVirtualRegister(Reg))
mapVirtReg(Reg, UV);
}
UV->addDef(Idx, MI->getOperand(0));
return true;
}
bool LDVImpl::collectDebugValues(MachineFunction &mf) {
bool Changed = false;
for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
++MFI) {
MachineBasicBlock *MBB = MFI;
for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
MBBI != MBBE;) {
if (!MBBI->isDebugValue()) {
++MBBI;
continue;
}
// DBG_VALUE has no slot index, use the previous instruction instead.
SlotIndex Idx = MBBI == MBB->begin() ?
LIS->getMBBStartIdx(MBB) :
LIS->getInstructionIndex(llvm::prior(MBBI)).getDefIndex();
// Handle consecutive DBG_VALUE instructions with the same slot index.
do {
if (handleDebugValue(MBBI, Idx)) {
MBBI = MBB->erase(MBBI);
Changed = true;
} else
++MBBI;
} while (MBBI != MBBE && MBBI->isDebugValue());
}
}
return Changed;
}
void UserValue::extendDef(SlotIndex Idx, unsigned LocNo,
LiveInterval *LI, const VNInfo *VNI,
LiveIntervals &LIS, MachineDominatorTree &MDT) {
SmallVector<SlotIndex, 16> Todo;
Todo.push_back(Idx);
do {
SlotIndex Start = Todo.pop_back_val();
MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
SlotIndex Stop = LIS.getMBBEndIdx(MBB);
LocMap::iterator I = locInts.find(Idx);
// Limit to VNI's live range.
bool ToEnd = true;
if (LI && VNI) {
LiveRange *Range = LI->getLiveRangeContaining(Start);
if (!Range || Range->valno != VNI)
continue;
if (Range->end < Stop)
Stop = Range->end, ToEnd = false;
}
// There could already be a short def at Start.
if (I.valid() && I.start() <= Start) {
// Stop when meeting a different location or an already extended interval.
Start = Start.getNextSlot();
if (I.value() != LocNo || I.stop() != Start)
continue;
// This is a one-slot placeholder. Just skip it.
++I;
}
// Limited by the next def.
if (I.valid() && I.start() < Stop)
Stop = I.start(), ToEnd = false;
if (Start >= Stop)
continue;
I.insert(Start, Stop, LocNo);
// If we extended to the MBB end, propagate down the dominator tree.
if (!ToEnd)
continue;
const std::vector<MachineDomTreeNode*> &Children =
MDT.getNode(MBB)->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
Todo.push_back(LIS.getMBBStartIdx(Children[i]->getBlock()));
} while (!Todo.empty());
}
void
UserValue::computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT) {
SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs;
// Collect all defs to be extended (Skipping undefs).
for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
if (I.value() != ~0u)
Defs.push_back(std::make_pair(I.start(), I.value()));
for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
SlotIndex Idx = Defs[i].first;
unsigned LocNo = Defs[i].second;
const Location &Loc = locations[LocNo];
// Register locations are constrained to where the register value is live.
if (Loc.isReg() && LIS.hasInterval(Loc.Kind)) {
LiveInterval *LI = &LIS.getInterval(Loc.Kind);
const VNInfo *VNI = LI->getVNInfoAt(Idx);
extendDef(Idx, LocNo, LI, VNI, LIS, MDT);
} else
extendDef(Idx, LocNo, 0, 0, LIS, MDT);
}
// Finally, erase all the undefs.
for (LocMap::iterator I = locInts.begin(); I.valid();)
if (I.value() == ~0u)
I.erase();
else
++I;
}
void LDVImpl::computeIntervals() {
for (unsigned i = 0, e = userValues.size(); i != e; ++i)
userValues[i]->computeIntervals(*LIS, *MDT);
}
bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
LIS = &pass.getAnalysis<LiveIntervals>();
MDT = &pass.getAnalysis<MachineDominatorTree>();
TRI = mf.getTarget().getRegisterInfo();
clear();
DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
<< ((Value*)mf.getFunction())->getName()
<< " **********\n");
bool Changed = collectDebugValues(mf);
computeIntervals();
DEBUG(print(dbgs()));
return Changed;
}
bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
if (!pImpl)
pImpl = new LDVImpl(this);
return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
}
void LiveDebugVariables::releaseMemory() {
if (pImpl)
static_cast<LDVImpl*>(pImpl)->clear();
}
LiveDebugVariables::~LiveDebugVariables() {
if (pImpl)
delete static_cast<LDVImpl*>(pImpl);
void UserValue::
renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx,
const TargetRegisterInfo *TRI) {
Jakob Stoklund Olesen
committed
for (unsigned i = locations.size(); i; --i) {
unsigned LocNo = i - 1;
Location &Loc = locations[LocNo];
if (Loc.Kind != OldReg)
continue;
Loc.Kind = NewReg;
if (SubIdx && Loc.Data.SubIdx)
Loc.Data.SubIdx = TRI->composeSubRegIndices(SubIdx, Loc.Data.SubIdx);
Jakob Stoklund Olesen
committed
coalesceLocation(LocNo);
}
}
void LDVImpl::
renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx) {
UserValue *UV = lookupVirtReg(OldReg);
if (!UV)
return;
if (TargetRegisterInfo::isVirtualRegister(NewReg))
mapVirtReg(NewReg, UV);
Jakob Stoklund Olesen
committed
virtRegToEqClass.erase(OldReg);
do {
UV->renameRegister(OldReg, NewReg, SubIdx, TRI);
UV = UV->getNext();
} while (UV);
}
void LiveDebugVariables::
renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx) {
if (pImpl)
static_cast<LDVImpl*>(pImpl)->renameRegister(OldReg, NewReg, SubIdx);
}
void
UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) {
// Iterate over locations in reverse makes it easier to handle coalescing.
for (unsigned i = locations.size(); i ; --i) {
unsigned LocNo = i-1;
Location &Loc = locations[LocNo];
// Only virtual registers are rewritten.
if (!Loc.isReg() || !TargetRegisterInfo::isVirtualRegister(Loc.Kind))
continue;
unsigned VirtReg = Loc.Kind;
if (VRM.isAssignedReg(VirtReg)) {
unsigned PhysReg = VRM.getPhys(VirtReg);
if (Loc.Data.SubIdx)
PhysReg = TRI.getSubReg(PhysReg, Loc.Data.SubIdx);
Loc.Kind = PhysReg;
Loc.Data.SubIdx = 0;
} else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
Loc.Kind = ~VRM.getStackSlot(VirtReg);
// FIXME: Translate SubIdx to a stackslot offset.
Loc.Data.Offset = 0;
} else {
Loc.Kind = Location::locUndef;
}
Jakob Stoklund Olesen
committed
coalesceLocation(LocNo);
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
}
DEBUG(print(dbgs(), &TRI));
}
/// findInsertLocation - Find an iterator and DebugLoc for inserting a DBG_VALUE
/// instruction.
static MachineBasicBlock::iterator
findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, DebugLoc &DL,
LiveIntervals &LIS) {
SlotIndex Start = LIS.getMBBStartIdx(MBB);
Idx = Idx.getBaseIndex();
// Try to find an insert location by going backwards from Idx.
MachineInstr *MI;
while (!(MI = LIS.getInstructionFromIndex(Idx))) {
// We've reached the beginning of MBB.
if (Idx == Start) {
MachineBasicBlock::iterator I = MBB->SkipPHIsAndLabels(MBB->begin());
if (I != MBB->end())
DL = I->getDebugLoc();
return I;
}
Idx = Idx.getPrevIndex();
}
// We found an instruction. The insert point is after the instr.
DL = MI->getDebugLoc();
return llvm::next(MachineBasicBlock::iterator(MI));
}
void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
unsigned LocNo,
LiveIntervals &LIS,
const TargetInstrInfo &TII) {
DebugLoc DL;
MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, DL, LIS);
Location &Loc = locations[LocNo];
// Frame index locations may require a target callback.
if (Loc.isFrameIndex()) {
MachineInstr *MI = TII.emitFrameIndexDebugValue(*MBB->getParent(),
Loc.getFrameIndex(),
offset, variable, DL);
if (MI) {
MBB->insert(I, MI);
return;
}
}
// This is not a frame index, or the target is happy with a standard FI.
Loc.addOperand(BuildMI(*MBB, I, DL, TII.get(TargetOpcode::DBG_VALUE)))
.addImm(offset).addMetadata(variable);
}
void UserValue::insertDebugKill(MachineBasicBlock *MBB, SlotIndex Idx,
LiveIntervals &LIS, const TargetInstrInfo &TII) {
DebugLoc DL;
MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, DL, LIS);
BuildMI(*MBB, I, DL, TII.get(TargetOpcode::DBG_VALUE)).addReg(0)
.addImm(offset).addMetadata(variable);
}
void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
const TargetInstrInfo &TII) {
MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
SlotIndex Start = I.start();
SlotIndex Stop = I.stop();
unsigned LocNo = I.value();
DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo);
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
insertDebugValue(MBB, Start, LocNo, LIS, TII);
// This interval may span multiple basic blocks.
// Insert a DBG_VALUE into each one.
while(Stop > MBBEnd) {
// Move to the next block.
Start = MBBEnd;
if (++MBB == MFEnd)
break;
MBBEnd = LIS.getMBBEndIdx(MBB);
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
insertDebugValue(MBB, Start, LocNo, LIS, TII);
}
DEBUG(dbgs() << '\n');
if (MBB == MFEnd)
break;
++I;
if (Stop == MBBEnd)
continue;
// The current interval ends before MBB.
// Insert a kill if there is a gap.
if (!I.valid() || I.start() > Stop)
insertDebugKill(MBB, Stop, LIS, TII);
}
}
void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
userValues[i]->rewriteLocations(*VRM, *TRI);
userValues[i]->emitDebugValues(VRM, *LIS, *TII);
}
}
void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
if (pImpl)
static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
}
#ifndef NDEBUG
void LiveDebugVariables::dump() {
if (pImpl)
static_cast<LDVImpl*>(pImpl)->print(dbgs());
}
#endif