"llvm/lib/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "3ce57c6baf0961108f76d3d377ff554b765b848e"
Newer
Older
Alkis Evlogimenos
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include <iostream>
using namespace llvm;
namespace {
Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
class RA : public MachineFunctionPass {
public:
typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
private:
MachineFunction* mf_;
const TargetMachine* tm_;
const MRegisterInfo* mri_;
MachineBasicBlock* currentMbb_;
MachineBasicBlock::iterator currentInstr_;
typedef LiveIntervals::Intervals Intervals;
const Intervals* li_;
IntervalPtrs active_, inactive_;
typedef std::vector<unsigned> Regs;
Regs tempUseOperands_;
Regs tempDefOperands_;
Regs reserved_;
typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
MachineBasicBlockPtrs mbbs_;
typedef std::vector<unsigned> Phys2VirtMap;
Phys2VirtMap p2vMap_;
typedef std::map<unsigned, unsigned> Virt2PhysMap;
Virt2PhysMap v2pMap_;
typedef std::map<unsigned, int> Virt2StackSlotMap;
Virt2StackSlotMap v2ssMap_;
int instrAdded_;
public:
virtual const char* getPassName() const {
return "Linear Scan Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addRequired<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// runOnMachineFunction - register allocate the whole function
bool runOnMachineFunction(MachineFunction&);
/// processActiveIntervals - expire old intervals and move
/// non-overlapping ones to the incative list
void processActiveIntervals(Intervals::const_iterator cur);
/// processInactiveIntervals - expire old intervals and move
/// overlapping ones to the active list
void processInactiveIntervals(Intervals::const_iterator cur);
/// assignStackSlotAtInterval - choose and spill
/// interval. Currently we spill the interval with the last
/// end point in the active and inactive lists and the current
/// interval
void assignStackSlotAtInterval(Intervals::const_iterator cur);
///
/// register handling helpers
///
/// reservePhysReg - reserves a physical register and spills
/// any value assigned to it if any
void reservePhysReg(unsigned reg);
/// clearReservedPhysReg - marks pysical register as free for
/// use
void clearReservedPhysReg(unsigned reg);
/// physRegAvailable - returns true if the specifed physical
/// register is available
bool physRegAvailable(unsigned physReg);
/// getFreePhysReg - return a free physical register for this
/// virtual register if we have one, otherwise return 0
unsigned getFreePhysReg(unsigned virtReg);
/// tempPhysRegAvailable - returns true if the specifed
/// temporary physical register is available
bool tempPhysRegAvailable(unsigned physReg);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this register class if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this virtual register if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(unsigned virtReg) {
const TargetRegisterClass* rc =
mf_->getSSARegMap()->getRegClass(virtReg);
return getFreeTempPhysReg(rc);
}
/// assignVirt2PhysReg - assigns the free physical register to
/// the virtual register passed as arguments
void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
/// clearVirtReg - free the physical register associated with this
/// virtual register and disassociate virtual->physical and
/// physical->virtual mappings
void clearVirtReg(unsigned virtReg);
/// assignVirt2StackSlot - assigns this virtual register to a
/// stack slot
void assignVirt2StackSlot(unsigned virtReg);
/// getStackSlot - returns the offset of the specified
/// register on the stack
int getStackSlot(unsigned virtReg);
Alkis Evlogimenos
committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/// spillVirtReg - spills the virtual register
void spillVirtReg(unsigned virtReg);
/// loadPhysReg - loads to the physical register the value of
/// the virtual register specifed. Virtual register must have
/// an assigned stack slot
void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
void printVirt2PhysMap() const {
std::cerr << "allocated registers:\n";
for (Virt2PhysMap::const_iterator
i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
std::cerr << '[' << i->first << ','
<< mri_->getName(i->second) << "]\n";
}
std::cerr << '\n';
}
void printIntervals(const char* const str,
RA::IntervalPtrs::const_iterator i,
RA::IntervalPtrs::const_iterator e) const {
if (str) std::cerr << str << " intervals:\n";
for (; i != e; ++i) {
std::cerr << "\t\t" << **i << " -> ";
if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
std::cerr << mri_->getName((*i)->reg);
}
else {
std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
}
std::cerr << '\n';
}
}
};
}
bool RA::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
li_ = &getAnalysis<LiveIntervals>().getIntervals();
active_.clear();
inactive_.clear();
mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
p2vMap_.clear();
v2pMap_.clear();
v2ssMap_.clear();
DEBUG(
for (MachineBasicBlockPtrs::iterator
mbbi = mbbs_.begin(), mbbe = mbbs_.end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = *mbbi;
std::cerr << mbb->getBasicBlock()->getName() << '\n';
for (MachineBasicBlock::iterator
ii = mbb->begin(), ie = mbb->end();
ii != ie; ++ii) {
MachineInstr* instr = *ii;
std::cerr << i++ << "\t";
instr->print(std::cerr, *tm_);
}
}
);
Alkis Evlogimenos
committed
// FIXME: this will work only for the X86 backend. I need to
// device an algorthm to select the minimal (considering register
// aliasing) number of temp registers to reserve so that we have 2
// registers for each register class available.
// reserve R32: EDI, EBX,
// R16: DI, BX,
// R8: BH, BL
Alkis Evlogimenos
committed
// RFP: FP5, FP6
reserved_.push_back(19); /* EDI */
reserved_.push_back(17); /* EBX */
reserved_.push_back(12); /* DI */
reserved_.push_back( 7); /* BX */
reserved_.push_back( 4); /* BH */
reserved_.push_back( 5); /* BL */
Alkis Evlogimenos
committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
reserved_.push_back(28); /* FP5 */
reserved_.push_back(29); /* FP6 */
// liner scan algorithm
for (Intervals::const_iterator
i = li_->begin(), e = li_->end(); i != e; ++i) {
DEBUG(std::cerr << "processing current interval: " << *i << '\n');
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
processActiveIntervals(i);
// processInactiveIntervals(i);
// if this register is preallocated, look for an interval that
// overlaps with it and assign it to a memory location
if (i->reg < MRegisterInfo::FirstVirtualRegister) {
reservePhysReg(i->reg);
active_.push_back(&*i);
}
// otherwise we are allocating a virtual register. try to find
// a free physical register or spill an interval in order to
// assign it one (we could spill the current though).
else {
unsigned physReg = getFreePhysReg(i->reg);
if (!physReg) {
assignStackSlotAtInterval(i);
}
else {
assignVirt2PhysReg(i->reg, physReg);
active_.push_back(&*i);
}
}
}
// expire any remaining active intervals
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
unsigned reg = (*i)->reg;
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg < MRegisterInfo::FirstVirtualRegister) {
clearReservedPhysReg(reg);
}
else {
p2vMap_[v2pMap_[reg]] = 0;
}
// remove interval from active
}
Alkis Evlogimenos
committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
DEBUG(std::cerr << "finished register allocation\n");
DEBUG(printVirt2PhysMap());
DEBUG(std::cerr << "Rewrite machine code:\n");
for (MachineBasicBlockPtrs::iterator
mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
instrAdded_ = 0;
currentMbb_ = *mbbi;
for (currentInstr_ = currentMbb_->begin();
currentInstr_ != currentMbb_->end(); ++currentInstr_) {
DEBUG(std::cerr << "\tinstruction: ";
(*currentInstr_)->print(std::cerr, *tm_););
// use our current mapping and actually replace and
// virtual register with its allocated physical registers
DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
"physical registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
// if this virtual registers lives on the stack,
// load it to a temporary physical register
if (physReg) {
DEBUG(std::cerr << "\t\t\t%reg" << virtReg
<< " -> " << mri_->getName(physReg) << '\n');
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
}
DEBUG(std::cerr << "\t\tloading temporarily used operands to "
"registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister() && op.isUse()) {
Alkis Evlogimenos
committed
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
if (!physReg) {
physReg = getFreeTempPhysReg(virtReg);
}
loadVirt2PhysReg(virtReg, physReg);
tempUseOperands_.push_back(virtReg);
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
clearVirtReg(tempUseOperands_[i]);
}
tempUseOperands_.clear();
DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
"registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister() && op.isDef()) {
Alkis Evlogimenos
committed
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
if (!physReg) {
physReg = getFreeTempPhysReg(virtReg);
}
if (op.isUse()) { // def and use
Alkis Evlogimenos
committed
loadVirt2PhysReg(virtReg, physReg);
}
else {
assignVirt2PhysReg(virtReg, physReg);
}
tempDefOperands_.push_back(virtReg);
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
// if the instruction is a two address instruction and the
// source operands are not identical we need to insert
// extra instructions.
unsigned opcode = (*currentInstr_)->getOpcode();
if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
(*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
(*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
assert((*currentInstr_)->getOperand(1).isRegister() &&
(*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
(*currentInstr_)->getOperand(1).isUse() &&
Alkis Evlogimenos
committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"Two address instruction invalid");
unsigned regA =
(*currentInstr_)->getOperand(0).getAllocatedRegNum();
unsigned regB =
(*currentInstr_)->getOperand(1).getAllocatedRegNum();
unsigned regC =
((*currentInstr_)->getNumOperands() > 2 &&
(*currentInstr_)->getOperand(2).isRegister()) ?
(*currentInstr_)->getOperand(2).getAllocatedRegNum() :
0;
const TargetRegisterClass* rc = mri_->getRegClass(regA);
// special case: "a = b op a". If b is a temporary
// reserved register rewrite as: "b = b op a; a = b"
// otherwise use a temporary reserved register t and
// rewrite as: "t = b; t = t op a; a = t"
if (regC && regA == regC) {
// b is a temp reserved register
if (find(reserved_.begin(), reserved_.end(),
regB) != reserved_.end()) {
(*currentInstr_)->SetMachineOperandReg(0, regB);
++currentInstr_;
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
regA,
regB,
rc);
--currentInstr_;
}
// b is just a normal register
else {
unsigned tempReg = getFreeTempPhysReg(rc);
assert (tempReg &&
"no free temp reserved physical register?");
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
tempReg,
regB,
rc);
(*currentInstr_)->SetMachineOperandReg(0, tempReg);
(*currentInstr_)->SetMachineOperandReg(1, tempReg);
++currentInstr_;
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
regA,
tempReg,
rc);
--currentInstr_;
}
}
// "a = b op c" gets rewritten to "a = b; a = a op c"
else {
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
regA,
regB,
rc);
(*currentInstr_)->SetMachineOperandReg(1, regA);
}
}
DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
"of this instruction:\n");
++currentInstr_; // we want to insert after this instruction
for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
spillVirtReg(tempDefOperands_[i]);
}
--currentInstr_; // restore currentInstr_ iterator
tempDefOperands_.clear();
Alkis Evlogimenos
committed
}
for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
assert(p2vMap_[i] != i &&
"reserved physical registers at end of basic block?");
}
}
return true;
}
void RA::processActiveIntervals(Intervals::const_iterator cur)
{
DEBUG(std::cerr << "\tprocessing active intervals:\n");
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals. we expire earlier because this if
// an interval expires this is going to be the last use. in
// this case we can reuse the register for a def in the same
// instruction
if ((*i)->expiredAt(cur->start() + 1)) {
Alkis Evlogimenos
committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg < MRegisterInfo::FirstVirtualRegister) {
clearReservedPhysReg(reg);
}
else {
p2vMap_[v2pMap_[reg]] = 0;
}
// remove interval from active
i = active_.erase(i);
}
// move not active intervals to inactive list
// else if (!(*i)->overlaps(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
// unmarkReg(virtReg);
// // add interval to inactive
// inactive_.push_back(*i);
// // remove interval from active
// i = active_.erase(i);
// }
else {
++i;
}
}
}
void RA::processInactiveIntervals(Intervals::const_iterator cur)
{
// DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
// for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
// unsigned virtReg = (*i)->reg;
// // remove expired intervals
// if ((*i)->expired(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
// freePhysReg(virtReg);
// // remove from inactive
// i = inactive_.erase(i);
// }
// // move re-activated intervals in active list
// else if ((*i)->overlaps(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
// markReg(virtReg);
// // add to active
// active_.push_back(*i);
// // remove from inactive
// i = inactive_.erase(i);
// }
// else {
// ++i;
// }
// }
}
void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
{
DEBUG(std::cerr << "\t\tassigning stack slot at interval "
<< *cur << ":\n");
assert(!active_.empty() &&
"active set cannot be empty when choosing a register to spill");
const TargetRegisterClass* rcCur =
mf_->getSSARegMap()->getRegClass(cur->reg);
// find the interval for a virtual register that ends last in
// active and belongs to the same register class as the current
// interval
IntervalPtrs::iterator lastEndActive = active_.begin();
for (IntervalPtrs::iterator e = active_.end();
lastEndActive != e; ++lastEndActive) {
if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
if (rcCur == rc) {
break;
}
}
}
for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
i != e; ++i) {
if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*i)->reg]);
if (rcCur == rc &&
(*lastEndActive)->end() < (*i)->end()) {
lastEndActive = i;
}
}
}
// find the interval for a virtual register that ends last in
// inactive and belongs to the same register class as the current
// interval
IntervalPtrs::iterator lastEndInactive = inactive_.begin();
for (IntervalPtrs::iterator e = inactive_.end();
lastEndInactive != e; ++lastEndInactive) {
if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
if (rcCur == rc) {
break;
}
}
}
for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
i != e; ++i) {
if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*i)->reg]);
if (rcCur == rc &&
(*lastEndInactive)->end() < (*i)->end()) {
lastEndInactive = i;
}
}
}
unsigned lastEndActiveInactive = 0;
if (lastEndActive != active_.end() &&
lastEndActiveInactive < (*lastEndActive)->end()) {
lastEndActiveInactive = (*lastEndActive)->end();
}
if (lastEndInactive != inactive_.end() &&
lastEndActiveInactive < (*lastEndInactive)->end()) {
lastEndActiveInactive = (*lastEndInactive)->end();
}
if (lastEndActiveInactive > cur->end()) {
if (lastEndInactive == inactive_.end() ||
(*lastEndActive)->end() > (*lastEndInactive)->end()) {
assignVirt2StackSlot((*lastEndActive)->reg);
active_.erase(lastEndActive);
}
else {
assignVirt2StackSlot((*lastEndInactive)->reg);
inactive_.erase(lastEndInactive);
}
unsigned physReg = getFreePhysReg(cur->reg);
assert(physReg && "no free physical register after spill?");
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(&*cur);
}
else {
assignVirt2StackSlot(cur->reg);
}
}
void RA::reservePhysReg(unsigned physReg)
{
DEBUG(std::cerr << "\t\t\treserving physical register: "
Alkis Evlogimenos
committed
<< mri_->getName(physReg) << '\n');
// if this register holds a value spill it
unsigned virtReg = p2vMap_[physReg];
if (virtReg != 0) {
assert(virtReg != physReg && "reserving an already reserved phus reg?");
// remove interval from active
for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
if ((*i)->reg == virtReg) {
active_.erase(i);
break;
}
}
assignVirt2StackSlot(virtReg);
Alkis Evlogimenos
committed
}
p2vMap_[physReg] = physReg; // this denotes a reserved physical register
// if it also aliases any other registers with values spill them too
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
unsigned virtReg = p2vMap_[*as];
if (virtReg != 0 && virtReg != *as) {
// remove interval from active
for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
if ((*i)->reg == virtReg) {
active_.erase(i);
break;
}
}
assignVirt2StackSlot(virtReg);
}
}
Alkis Evlogimenos
committed
}
void RA::clearReservedPhysReg(unsigned physReg)
{
DEBUG(std::cerr << "\t\t\tclearing reserved physical register: "
Alkis Evlogimenos
committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
<< mri_->getName(physReg) << '\n');
assert(p2vMap_[physReg] == physReg &&
"attempt to clear a non reserved physical register");
p2vMap_[physReg] = 0;
}
bool RA::physRegAvailable(unsigned physReg)
{
if (p2vMap_[physReg]) {
return false;
}
// if it aliases other registers it is still not free
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
if (p2vMap_[*as]) {
return false;
}
}
// if it is one of the reserved registers it is still not free
if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
return false;
}
return true;
}
unsigned RA::getFreePhysReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\tgetting free physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
for (; reg != regEnd; ++reg) {
if (physRegAvailable(*reg)) {
assert(*reg != 0 && "Cannot use register!");
DEBUG(std::cerr << mri_->getName(*reg) << '\n');
return *reg; // Found an unused register!
}
}
DEBUG(std::cerr << "no free register\n");
return 0;
}
bool RA::tempPhysRegAvailable(unsigned physReg)
{
assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
&& "cannot call this method with a non reserved temp register");
if (p2vMap_[physReg]) {
return false;
}
// if it aliases other registers it is still not free
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
if (p2vMap_[*as]) {
return false;
}
}
return true;
}
unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
{
DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
for (Regs::const_iterator
reg = reserved_.begin(), regEnd = reserved_.end();
reg != regEnd; ++reg) {
if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
assert(*reg != 0 && "Cannot use register!");
DEBUG(std::cerr << mri_->getName(*reg) << '\n');
return *reg; // Found an unused register!
}
}
assert(0 && "no free temporary physical register?");
return 0;
}
void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
assert((physRegAvailable(physReg) ||
find(reserved_.begin(),
reserved_.end(),
physReg) != reserved_.end()) &&
"attempt to allocate to a not available physical register");
v2pMap_[virtReg] = physReg;
p2vMap_[physReg] = virtReg;
}
void RA::clearVirtReg(unsigned virtReg)
{
Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
assert(it != v2pMap_.end() &&
"attempting to clear a not allocated virtual register");
unsigned physReg = it->second;
p2vMap_[physReg] = 0;
v2pMap_[virtReg] = 0; // this marks that this virtual register
// lives on the stack
DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
<< "\n");
}
void RA::assignVirt2StackSlot(unsigned virtReg)
{
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
assert(inserted &&
"attempt to assign stack slot to already assigned register?");
// if the virtual register was previously assigned clear the mapping
// and free the virtual register
if (v2pMap_.find(virtReg) != v2pMap_.end()) {
clearVirtReg(virtReg);
}
else {
v2pMap_[virtReg] = 0; // this marks that this virtual register
// lives on the stack
}
Alkis Evlogimenos
committed
}
int RA::getStackSlot(unsigned virtReg)
Alkis Evlogimenos
committed
{
// use lower_bound so that we can do a possibly O(1) insert later
// if necessary
Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
assert(it != v2ssMap_.end() &&
"attempt to get stack slot on register that does not live on the stack");
return it->second;
Alkis Evlogimenos
committed
}
void RA::spillVirtReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = getStackSlot(virtReg);
Alkis Evlogimenos
committed
DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
++numSpilled;
instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
v2pMap_[virtReg], frameIndex, rc);
clearVirtReg(virtReg);
}
void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = getStackSlot(virtReg);
Alkis Evlogimenos
committed
DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
physReg, frameIndex, rc);
assignVirt2PhysReg(virtReg, physReg);
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
return new RA();
}