Newer
Older
//===- ARMRegisterInfo.cpp - ARM Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the "Instituto Nokia de Tecnologia" and
// is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM implementation of the MRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLocation.h"
Rafael Espindola
committed
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <iostream>
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
unsigned ARMRegisterInfo::getRegisterNumbering(unsigned RegEnum) {
using namespace ARM;
switch (RegEnum) {
case R0: case S0: case D0: return 0;
case R1: case S1: case D1: return 1;
case R2: case S2: case D2: return 2;
case R3: case S3: case D3: return 3;
case R4: case S4: case D4: return 4;
case R5: case S5: case D5: return 5;
case R6: case S6: case D6: return 6;
case R7: case S7: case D7: return 7;
case R8: case S8: case D8: return 8;
case R9: case S9: case D9: return 9;
case R10: case S10: case D10: return 10;
case R11: case S11: case D11: return 11;
case R12: case S12: case D12: return 12;
case SP: case S13: case D13: return 13;
case LR: case S14: case D14: return 14;
case PC: case S15: case D15: return 15;
case S16: return 16;
case S17: return 17;
case S18: return 18;
case S19: return 19;
case S20: return 20;
case S21: return 21;
case S22: return 22;
case S23: return 23;
case S24: return 24;
case S25: return 25;
case S26: return 26;
case S27: return 27;
case S28: return 28;
case S29: return 29;
case S30: return 30;
case S31: return 31;
default:
std::cerr << "Unknown ARM register!\n";
abort();
}
}
ARMRegisterInfo::ARMRegisterInfo(const TargetInstrInfo &tii,
const ARMSubtarget &sti)
: ARMGenRegisterInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
TII(tii), STI(sti),
FramePtr(STI.useThumbBacktraces() ? ARM::R7 : ARM::R11) {
}
bool ARMRegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (!AFI->isThumbFunction() || CSI.empty())
return false;
MachineInstrBuilder MIB = BuildMI(MBB, MI, TII.get(ARM::tPUSH));
for (unsigned i = CSI.size(); i != 0; --i)
MIB.addReg(CSI[i-1].getReg());
return true;
}
bool ARMRegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (!AFI->isThumbFunction() || CSI.empty())
return false;
bool isVarArg = AFI->getVarArgsRegSaveSize() > 0;
MachineInstr *PopMI = new MachineInstr(TII.get(ARM::tPOP));
MBB.insert(MI, PopMI);
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
if (Reg == ARM::LR) {
// Special epilogue for vararg functions. See emitEpilogue
if (isVarArg)
continue;
Reg = ARM::PC;
PopMI->setInstrDescriptor(TII.get(ARM::tPOP_RET));
MBB.erase(MI);
}
PopMI->addRegOperand(Reg, true);
}
return true;
}
void ARMRegisterInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, int FI,
const TargetRegisterClass *RC) const {
if (RC == ARM::GPRRegisterClass) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (AFI->isThumbFunction())
BuildMI(MBB, I, TII.get(ARM::tSTRspi)).addReg(SrcReg)
.addFrameIndex(FI).addImm(0);
else
BuildMI(MBB, I, TII.get(ARM::STR)).addReg(SrcReg)
.addFrameIndex(FI).addReg(0).addImm(0);
} else if (RC == ARM::DPRRegisterClass) {
BuildMI(MBB, I, TII.get(ARM::FSTD)).addReg(SrcReg)
.addFrameIndex(FI).addImm(0);
} else {
assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
BuildMI(MBB, I, TII.get(ARM::FSTS)).addReg(SrcReg)
.addFrameIndex(FI).addImm(0);
}
}
void ARMRegisterInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
const TargetRegisterClass *RC) const {
if (RC == ARM::GPRRegisterClass) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (AFI->isThumbFunction())
BuildMI(MBB, I, TII.get(ARM::tLDRspi), DestReg)
.addFrameIndex(FI).addImm(0);
else
BuildMI(MBB, I, TII.get(ARM::LDR), DestReg)
.addFrameIndex(FI).addReg(0).addImm(0);
} else if (RC == ARM::DPRRegisterClass) {
BuildMI(MBB, I, TII.get(ARM::FLDD), DestReg)
.addFrameIndex(FI).addImm(0);
} else {
assert(RC == ARM::SPRRegisterClass && "Unknown regclass!");
BuildMI(MBB, I, TII.get(ARM::FLDS), DestReg)
.addFrameIndex(FI).addImm(0);
}
}
void ARMRegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *RC) const {
if (RC == ARM::GPRRegisterClass) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
BuildMI(MBB, I, TII.get(AFI->isThumbFunction() ? ARM::tMOVrr : ARM::MOVrr),
DestReg).addReg(SrcReg);
} else if (RC == ARM::SPRRegisterClass)
BuildMI(MBB, I, TII.get(ARM::FCPYS), DestReg).addReg(SrcReg);
BuildMI(MBB, I, TII.get(ARM::FCPYD), DestReg).addReg(SrcReg);
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
MachineInstr *ARMRegisterInfo::foldMemoryOperand(MachineInstr *MI,
unsigned OpNum, int FI) const {
unsigned Opc = MI->getOpcode();
MachineInstr *NewMI = NULL;
switch (Opc) {
default: break;
case ARM::MOVrr: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
NewMI = BuildMI(TII.get(ARM::STR)).addReg(SrcReg).addFrameIndex(FI)
.addReg(0).addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
NewMI = BuildMI(TII.get(ARM::LDR), DstReg).addFrameIndex(FI).addReg(0)
.addImm(0);
}
break;
}
case ARM::tMOVrr: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
NewMI = BuildMI(TII.get(ARM::tSTRspi)).addReg(SrcReg).addFrameIndex(FI)
.addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
NewMI = BuildMI(TII.get(ARM::tLDRspi), DstReg).addFrameIndex(FI)
.addImm(0);
}
break;
}
case ARM::FCPYS: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
NewMI = BuildMI(TII.get(ARM::FSTS)).addReg(SrcReg).addFrameIndex(FI)
.addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
NewMI = BuildMI(TII.get(ARM::FLDS), DstReg).addFrameIndex(FI).addImm(0);
}
break;
}
case ARM::FCPYD: {
if (OpNum == 0) { // move -> store
unsigned SrcReg = MI->getOperand(1).getReg();
NewMI = BuildMI(TII.get(ARM::FSTD)).addReg(SrcReg).addFrameIndex(FI)
.addImm(0);
} else { // move -> load
unsigned DstReg = MI->getOperand(0).getReg();
NewMI = BuildMI(TII.get(ARM::FLDD), DstReg).addFrameIndex(FI).addImm(0);
}
break;
}
}
if (NewMI)
NewMI->copyKillDeadInfo(MI);
return NewMI;
const unsigned* ARMRegisterInfo::getCalleeSavedRegs() const {
static const unsigned CalleeSavedRegs[] = {
ARM::LR, ARM::R11, ARM::R10, ARM::R9, ARM::R8,
ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
static const unsigned DarwinCalleeSavedRegs[] = {
ARM::LR, ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::R11, ARM::R10, ARM::R9, ARM::R8,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
};
return STI.isTargetDarwin() ? DarwinCalleeSavedRegs : CalleeSavedRegs;
}
const TargetRegisterClass* const *
ARMRegisterInfo::getCalleeSavedRegClasses() const {
static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
&ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
0
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
///
bool ARMRegisterInfo::hasFP(const MachineFunction &MF) const {
return NoFramePointerElim || MF.getFrameInfo()->hasVarSizedObjects();
}
/// emitARMRegPlusImmediate - Emits a series of instructions to materialize
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/// a destreg = basereg + immediate in ARM code.
static
void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, const TargetInstrInfo &TII) {
bool isSub = NumBytes < 0;
if (isSub) NumBytes = -NumBytes;
while (NumBytes) {
unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
assert(ThisVal && "Didn't extract field correctly");
// We will handle these bits from offset, clear them.
NumBytes &= ~ThisVal;
// Get the properly encoded SOImmVal field.
int SOImmVal = ARM_AM::getSOImmVal(ThisVal);
assert(SOImmVal != -1 && "Bit extraction didn't work?");
// Build the new ADD / SUB.
BuildMI(MBB, MBBI, TII.get(isSub ? ARM::SUBri : ARM::ADDri), DestReg)
.addReg(BaseReg).addImm(SOImmVal);
BaseReg = DestReg;
}
}
/// isLowRegister - Returns true if the register is low register r0-r7.
///
static bool isLowRegister(unsigned Reg) {
using namespace ARM;
switch (Reg) {
case R0: case R1: case R2: case R3:
case R4: case R5: case R6: case R7:
return true;
default:
return false;
}
}
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/// calcNumMI - Returns the number of instructions required to materialize
/// the specific add / sub r, c instruction.
static unsigned calcNumMI(int Opc, int ExtraOpc, unsigned Bytes,
unsigned NumBits, unsigned Scale) {
unsigned NumMIs = 0;
unsigned Chunk = ((1 << NumBits) - 1) * Scale;
if (Opc == ARM::tADDrSPi) {
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
NumMIs++;
NumBits = 8;
Scale = 1;
Chunk = ((1 << NumBits) - 1) * Scale;
}
NumMIs += Bytes / Chunk;
if ((Bytes % Chunk) != 0)
NumMIs++;
if (ExtraOpc)
NumMIs++;
return NumMIs;
}
/// emitThumbRegPlusConstPool - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in Thumb code. Load the immediate from a
/// constpool entry.
static
void emitThumbRegPlusConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, const TargetInstrInfo &TII) {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
bool isHigh = !isLowRegister(DestReg) || !isLowRegister(BaseReg);
bool isSub = false;
// Subtract doesn't have high register version. Load the negative value
// if either base or dest register is a high register.
if (NumBytes < 0 && !isHigh) {
isSub = true;
NumBytes = -NumBytes;
}
Constant *C = ConstantInt::get(Type::Int32Ty, NumBytes);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 2);
unsigned LdReg = DestReg;
if (DestReg == ARM::SP) {
assert(BaseReg == ARM::SP && "Unexpected!");
LdReg = ARM::R3;
BuildMI(MBB, MBBI, TII.get(ARM::tMOVrr), ARM::R12).addReg(ARM::R3);
}
// Load the constant.
BuildMI(MBB, MBBI, TII.get(ARM::tLDRpci), LdReg).addConstantPoolIndex(Idx);
// Emit add / sub.
int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr);
const MachineInstrBuilder MIB = BuildMI(MBB, MBBI, TII.get(Opc), DestReg);
if (DestReg == ARM::SP)
MIB.addReg(BaseReg).addReg(LdReg);
else
MIB.addReg(LdReg).addReg(BaseReg);
if (DestReg == ARM::SP)
BuildMI(MBB, MBBI, TII.get(ARM::tMOVrr), ARM::R3).addReg(ARM::R12);
}
/// emitThumbRegPlusImmediate - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in Thumb code.
static
void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, const TargetInstrInfo &TII) {
bool isSub = NumBytes < 0;
unsigned Bytes = (unsigned)NumBytes;
if (isSub) Bytes = -NumBytes;
bool isMul4 = (Bytes & 3) == 0;
bool isTwoAddr = false;
bool DstNeBase = false;
int Opc = 0;
int ExtraOpc = 0;
if (DestReg == BaseReg && BaseReg == ARM::SP) {
assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
NumBits = 7;
Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
isTwoAddr = true;
} else if (!isSub && BaseReg == ARM::SP) {
// r1 = add sp, 403
// =>
// r1 = add sp, 100 * 4
// r1 = add r1, 3
if (!isMul4) {
Bytes &= ~3;
ExtraOpc = ARM::tADDi3;
}
NumBits = 8;
// sp = sub sp, c
// r1 = sub sp, c
// r8 = sub sp, c
if (DestReg != BaseReg)
DstNeBase = true;
NumBits = 8;
Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
isTwoAddr = true;
}
unsigned NumMIs = calcNumMI(Opc, ExtraOpc, Bytes, NumBits, Scale);
unsigned Threshold = (DestReg == ARM::SP) ? 4 : 3;
if (NumMIs > Threshold) {
// This will expand into too many instructions. Load the immediate from a
// constpool entry.
emitThumbRegPlusConstPool(MBB, MBBI, DestReg, BaseReg, NumBytes, TII);
return;
}
if (DstNeBase) {
if (isLowRegister(DestReg) && isLowRegister(BaseReg)) {
// If both are low registers, emit DestReg = add BaseReg, max(Imm, 7)
unsigned Chunk = (1 << 3) - 1;
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
BuildMI(MBB, MBBI, TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3), DestReg)
.addReg(BaseReg).addImm(ThisVal);
} else {
BuildMI(MBB, MBBI, TII.get(ARM::tMOVrr), DestReg).addReg(BaseReg);
}
BaseReg = DestReg;
}
unsigned Chunk = ((1 << NumBits) - 1) * Scale;
while (Bytes) {
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
// Build the new tADD / tSUB.
if (isTwoAddr)
BuildMI(MBB, MBBI, TII.get(Opc), DestReg).addReg(DestReg).addImm(ThisVal);
else {
BuildMI(MBB, MBBI, TII.get(Opc), DestReg).addReg(BaseReg).addImm(ThisVal);
BaseReg = DestReg;
if (Opc == ARM::tADDrSPi) {
// r4 = add sp, imm
// r4 = add r4, imm
// ...
NumBits = 8;
Scale = 1;
Chunk = ((1 << NumBits) - 1) * Scale;
Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
isTwoAddr = true;
}
}
}
if (ExtraOpc)
BuildMI(MBB, MBBI, TII.get(ExtraOpc), DestReg).addReg(DestReg)
.addImm(((unsigned)NumBytes) & 3);
}
static
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
int NumBytes, bool isThumb, const TargetInstrInfo &TII) {
if (isThumb)
emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII);
else
emitARMRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII);
}
void ARMRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
Rafael Espindola
committed
MachineInstr *Old = I;
unsigned Amount = Old->getOperand(0).getImmedValue();
if (Amount != 0) {
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
Rafael Espindola
committed
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
// Replace the pseudo instruction with a new instruction...
Rafael Espindola
committed
if (Old->getOpcode() == ARM::ADJCALLSTACKDOWN) {
emitSPUpdate(MBB, I, -Amount, AFI->isThumbFunction(), TII);
Rafael Espindola
committed
} else {
assert(Old->getOpcode() == ARM::ADJCALLSTACKUP);
emitSPUpdate(MBB, I, Amount, AFI->isThumbFunction(), TII);
Rafael Espindola
committed
}
}
/// emitThumbConstant - Emit a series of instructions to materialize a
/// constant.
static void emitThumbConstant(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, int Imm,
const TargetInstrInfo &TII) {
bool isSub = Imm < 0;
if (isSub) Imm = -Imm;
int Chunk = (1 << 8) - 1;
int ThisVal = (Imm > Chunk) ? Chunk : Imm;
Imm -= ThisVal;
BuildMI(MBB, MBBI, TII.get(ARM::tMOVri8), DestReg).addImm(ThisVal);
if (Imm > 0)
emitThumbRegPlusImmediate(MBB, MBBI, DestReg, DestReg, Imm, TII);
if (isSub)
BuildMI(MBB, MBBI, TII.get(ARM::tNEG), DestReg).addReg(DestReg);
}
void ARMRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{
unsigned i = 0;
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
while (!MI.getOperand(i).isFrameIndex()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
unsigned FrameReg = ARM::SP;
int FrameIndex = MI.getOperand(i).getFrameIndex();
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
MF.getFrameInfo()->getStackSize();
if (AFI->isGPRCalleeSavedArea1Frame(FrameIndex))
Offset -= AFI->getGPRCalleeSavedArea1Offset();
else if (AFI->isGPRCalleeSavedArea2Frame(FrameIndex))
Offset -= AFI->getGPRCalleeSavedArea2Offset();
else if (AFI->isDPRCalleeSavedAreaFrame(FrameIndex))
Offset -= AFI->getDPRCalleeSavedAreaOffset();
// There is alloca()'s in this function, must reference off the frame
// pointer instead.
FrameReg = getFrameRegister(MF);
Lauro Ramos Venancio
committed
Offset -= AFI->getFramePtrSpillOffset();
}
unsigned Opcode = MI.getOpcode();
const TargetInstrDescriptor &Desc = TII.get(Opcode);
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
bool isSub = false;
if (Opcode == ARM::ADDri) {
Offset += MI.getOperand(i+1).getImm();
if (Offset == 0) {
// Turn it into a move.
MI.setInstrDescriptor(TII.get(ARM::MOVrr));
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.RemoveOperand(i+1);
return;
} else if (Offset < 0) {
Offset = -Offset;
isSub = true;
MI.setInstrDescriptor(TII.get(ARM::SUBri));
}
// Common case: small offset, fits into instruction.
int ImmedOffset = ARM_AM::getSOImmVal(Offset);
if (ImmedOffset != -1) {
// Replace the FrameIndex with sp / fp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(ImmedOffset);
return;
}
// Otherwise, we fallback to common code below to form the imm offset with
// a sequence of ADDri instructions. First though, pull as much of the imm
// into this ADDri as possible.
unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, (32-RotAmt) & 31);
// We will handle these bits from offset, clear them.
Offset &= ~ThisImmVal;
// Get the properly encoded SOImmVal field.
int ThisSOImmVal = ARM_AM::getSOImmVal(ThisImmVal);
assert(ThisSOImmVal != -1 && "Bit extraction didn't work?");
MI.getOperand(i+1).ChangeToImmediate(ThisSOImmVal);
} else if (Opcode == ARM::tADDrSPi) {
Offset += MI.getOperand(i+1).getImm();
assert((Offset & 3) == 0 &&
"Thumb add/sub sp, #imm immediate must be multiple of 4!");
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
Offset >>= 2;
if (Offset == 0) {
// Turn it into a move.
MI.setInstrDescriptor(TII.get(ARM::tMOVrr));
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.RemoveOperand(i+1);
return;
}
// Common case: small offset, fits into instruction.
if ((Offset & ~255U) == 0) {
// Replace the FrameIndex with sp / fp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(Offset);
return;
}
unsigned DestReg = MI.getOperand(0).getReg();
if (Offset > 0) {
// Translate r0 = add sp, imm to
// r0 = add sp, 255*4
// r0 = add r0, (imm - 255*4)
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(255);
Offset = (Offset - 255) << 2;
MachineBasicBlock::iterator NII = next(II);
emitThumbRegPlusImmediate(MBB, NII, DestReg, DestReg, Offset, TII);
} else {
// Translate r0 = add sp, -imm to
// r0 = -imm (this is then translated into a series of instructons)
// r0 = add r0, sp
Offset <<= 2;
emitThumbConstant(MBB, II, DestReg, Offset, TII);
MI.setInstrDescriptor(TII.get(ARM::tADDhirr));
MI.getOperand(i).ChangeToRegister(DestReg, false);
MI.getOperand(i+1).ChangeToRegister(FrameReg, false);
}
return;
} else {
unsigned ImmIdx = 0;
int InstrOffs = 0;
unsigned NumBits = 0;
unsigned Scale = 1;
switch (AddrMode) {
case ARMII::AddrMode2: {
ImmIdx = i+2;
InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 12;
break;
}
case ARMII::AddrMode3: {
ImmIdx = i+2;
InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 8;
break;
}
case ARMII::AddrMode5: {
ImmIdx = i+1;
InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 8;
Scale = 4;
break;
}
case ARMII::AddrModeTs: {
ImmIdx = i+1;
InstrOffs = MI.getOperand(ImmIdx).getImm();
NumBits = 8;
Scale = 4;
break;
}
default:
std::cerr << "Unsupported addressing mode!\n";
abort();
break;
}
assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
if (Offset < 0) {
Offset = -Offset;
isSub = true;
}
MachineOperand &ImmOp = MI.getOperand(ImmIdx);
int ImmedOffset = Offset / Scale;
unsigned Mask = (1 << NumBits) - 1;
if ((unsigned)Offset <= Mask * Scale) {
// Replace the FrameIndex with sp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
if (isSub)
ImmedOffset |= 1 << NumBits;
ImmOp.ChangeToImmediate(ImmedOffset);
return;
}
// Otherwise, it didn't fit. Pull in what we can to simplify the immediate.
if (AddrMode == ARMII::AddrModeTs) {
// Thumb tLDRspi, tSTRspi. These will change to instructions that use a
// different base register.
NumBits = 5;
Mask = (1 << NumBits) - 1;
}
ImmedOffset = ImmedOffset & Mask;
if (isSub)
ImmedOffset |= 1 << NumBits;
ImmOp.ChangeToImmediate(ImmedOffset);
Offset &= ~(Mask*Scale);
}
// If we get here, the immediate doesn't fit into the instruction. We folded
// as much as possible above, handle the rest, providing a register that is
// SP+LargeImm.
assert(Offset && "This code isn't needed if offset already handled!");
if (isThumb) {
if (TII.isLoad(Opcode)) {
// Use the destination register to materialize sp + offset.
unsigned TmpReg = MI.getOperand(0).getReg();
emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg,
isSub ? -Offset : Offset, TII);
MI.setInstrDescriptor(TII.get(ARM::tLDR));
MI.getOperand(i).ChangeToRegister(TmpReg, false);
MI.addRegOperand(0, false); // tLDR has an extra register operand.
} else if (TII.isStore(Opcode)) {
// FIXME! This is horrific!!! We need register scavenging.
// Our temporary workaround has marked r3 unavailable. Of course, r3 is
// also a ABI register so it's possible that is is the register that is
// being storing here. If that's the case, we do the following:
// r12 = r2
// Use r2 to materialize sp + offset
// str r12, r2
// r2 = r12
unsigned ValReg = MI.getOperand(0).getReg();
BuildMI(MBB, II, TII.get(ARM::tMOVrr), ARM::R12).addReg(ARM::R2);
TmpReg = ARM::R2;
}
emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg,
isSub ? -Offset : Offset, TII);
MI.setInstrDescriptor(TII.get(ARM::tSTR));
MI.getOperand(i).ChangeToRegister(TmpReg, false);
MI.addRegOperand(0, false); // tSTR has an extra register operand.
if (ValReg == ARM::R3)
BuildMI(MBB, II, TII.get(ARM::tMOVrr), ARM::R2).addReg(ARM::R12);
} else
assert(false && "Unexpected opcode!");
// Insert a set of r12 with the full address: r12 = sp + offset
// If the offset we have is too large to fit into the instruction, we need
// to form it with a series of ADDri's. Do this by taking 8-bit chunks
// out of 'Offset'.
emitARMRegPlusImmediate(MBB, II, ARM::R12, FrameReg,
isSub ? -Offset : Offset, TII);
MI.getOperand(i).ChangeToRegister(ARM::R12, false);
processFunctionBeforeCalleeSavedScan(MachineFunction &MF) const {
// This tells PEI to spill the FP as if it is any other callee-save register
// to take advantage the eliminateFrameIndex machinery. This also ensures it
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
// to combine multiple loads / stores.
bool CS1Spilled = false;
bool LRSpilled = false;
unsigned NumGPRSpills = 0;
SmallVector<unsigned, 4> UnspilledCS1GPRs;
SmallVector<unsigned, 4> UnspilledCS2GPRs;
// Don't spill FP if the frame can be eliminated. This is determined
// by scanning the callee-save registers to see if any is used.
const unsigned *CSRegs = getCalleeSavedRegs();
const TargetRegisterClass* const *CSRegClasses = getCalleeSavedRegClasses();
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
bool Spilled = false;
if (MF.isPhysRegUsed(Reg)) {
Spilled = true;
CanEliminateFrame = false;
} else {
// Check alias registers too.
for (const unsigned *Aliases = getAliasSet(Reg); *Aliases; ++Aliases) {
if (MF.isPhysRegUsed(*Aliases)) {
Spilled = true;
CanEliminateFrame = false;
if (CSRegClasses[i] == &ARM::GPRRegClass) {
if (Spilled) {
NumGPRSpills++;
if (!STI.isTargetDarwin()) {
if (Reg == ARM::LR)
LRSpilled = true;
else
CS1Spilled = true;
continue;
}
// Keep track if LR and any of R4, R5, R6, and R7 is spilled.
switch (Reg) {
case ARM::LR:
LRSpilled = true;
// Fallthrough
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
CS1Spilled = true;
break;
default:
break;
}
} else {
if (!STI.isTargetDarwin()) {
UnspilledCS1GPRs.push_back(Reg);
continue;
}
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
UnspilledCS1GPRs.push_back(Reg);
break;
default:
UnspilledCS2GPRs.push_back(Reg);
break;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool ForceLRSpill = false;
if (!LRSpilled && AFI->isThumbFunction()) {
unsigned FnSize = ARM::GetFunctionSize(MF);
// Force LR spill if the Thumb function size is > 2048. This enables the
// use of BL to implement far jump. If it turns out that it's not needed
// the branch fix up path will undo it.
if (FnSize >= (1 << 11)) {
CanEliminateFrame = false;
ForceLRSpill = true;
}
}
if (!CanEliminateFrame || hasFP(MF)) {
// If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
// Spill LR as well so we can fold BX_RET to the registers restore (LDM).
if (!LRSpilled && CS1Spilled) {
MF.changePhyRegUsed(ARM::LR, true);
NumGPRSpills++;
UnspilledCS1GPRs.erase(std::find(UnspilledCS1GPRs.begin(),
UnspilledCS1GPRs.end(), (unsigned)ARM::LR));
ForceLRSpill = false;
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if (STI.isTargetDarwin() || hasFP(MF)) {
MF.changePhyRegUsed(FramePtr, true);
NumGPRSpills++;
}
// If stack and double are 8-byte aligned and we are spilling an odd number
// of GPRs. Spill one extra callee save GPR so we won't have to pad between
// the integer and double callee save areas.
unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment();
if (TargetAlign == 8 && (NumGPRSpills & 1)) {
if (CS1Spilled && !UnspilledCS1GPRs.empty())
MF.changePhyRegUsed(UnspilledCS1GPRs.front(), true);
else if (!UnspilledCS2GPRs.empty())
MF.changePhyRegUsed(UnspilledCS2GPRs.front(), true);
}
}
if (ForceLRSpill) {
MF.changePhyRegUsed(ARM::LR, true);
AFI->setLRIsForceSpilled(true);
}
}
/// Move iterator pass the next bunch of callee save load / store ops for
/// the particular spill area (1: integer area 1, 2: integer area 2,
/// 3: fp area, 0: don't care).
static void movePastCSLoadStoreOps(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
int Opc, unsigned Area,
const ARMSubtarget &STI) {
while (MBBI != MBB.end() &&
MBBI->getOpcode() == Opc && MBBI->getOperand(1).isFrameIndex()) {
if (Area != 0) {
bool Done = false;
unsigned Category = 0;
switch (MBBI->getOperand(0).getReg()) {
case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7:
case ARM::LR:
Category = 1;
break;
case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11:
case ARM::D8: case ARM::D9: case ARM::D10: case ARM::D11:
case ARM::D12: case ARM::D13: case ARM::D14: case ARM::D15:
Category = 3;
break;
default:
Done = true;
break;
}
if (Done || Category != Area)
break;
}
++MBBI;
}
}
void ARMRegisterInfo::emitPrologue(MachineFunction &MF) const {
Rafael Espindola
committed
MachineBasicBlock &MBB = MF.front();
Rafael Espindola
committed
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
unsigned NumBytes = MFI->getStackSize();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
Rafael Espindola
committed
if (isThumb) {
// Thumb add/sub sp, imm8 instructions implicitly multiply the offset by 4.
NumBytes = (NumBytes + 3) & ~3;
MFI->setStackSize(NumBytes);
}
// Determine the sizes of each callee-save spill areas and record which frame
// belongs to which callee-save spill areas.
unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
int FramePtrSpillFI = 0;
if (!AFI->hasStackFrame()) {
if (NumBytes != 0)
emitSPUpdate(MBB, MBBI, -NumBytes, isThumb, TII);
return;
}
if (VARegSaveSize)
emitSPUpdate(MBB, MBBI, -VARegSaveSize, isThumb, TII);
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
int FI = CSI[i].getFrameIdx();
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
if (Reg == FramePtr)