Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
Poison Values
-------------
Poison values are similar to :ref:`undef values <undefvalues>`, however
they also represent the fact that an instruction or constant expression
which cannot evoke side effects has nevertheless detected a condition
which results in undefined behavior.
There is currently no way of representing a poison value in the IR; they
only exist when produced by operations such as :ref:`add <i_add>` with
the ``nsw`` flag.
Poison value behavior is defined in terms of value *dependence*:
- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
their dynamic predecessor basic block.
- Function arguments depend on the corresponding actual argument values
in the dynamic callers of their functions.
- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
instructions that dynamically transfer control back to them.
- :ref:`Invoke <i_invoke>` instructions depend on the
:ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
call instructions that dynamically transfer control back to them.
- Non-volatile loads and stores depend on the most recent stores to all
of the referenced memory addresses, following the order in the IR
(including loads and stores implied by intrinsics such as
:ref:`@llvm.memcpy <int_memcpy>`.)
- An instruction with externally visible side effects depends on the
most recent preceding instruction with externally visible side
effects, following the order in the IR. (This includes :ref:`volatile
operations <volatile>`.)
- An instruction *control-depends* on a :ref:`terminator
instruction <terminators>` if the terminator instruction has
multiple successors and the instruction is always executed when
control transfers to one of the successors, and may not be executed
when control is transferred to another.
- Additionally, an instruction also *control-depends* on a terminator
instruction if the set of instructions it otherwise depends on would
be different if the terminator had transferred control to a different
successor.
- Dependence is transitive.
Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
with the additional affect that any instruction which has a *dependence*
on a poison value has undefined behavior.
Here are some examples:
.. code-block:: llvm
entry:
%poison = sub nuw i32 0, 1 ; Results in a poison value.
%still_poison = and i32 %poison, 0 ; 0, but also poison.
%poison_yet_again = getelementptr i32* @h, i32 %still_poison
store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
store i32 %poison, i32* @g ; Poison value stored to memory.
%poison2 = load i32* @g ; Poison value loaded back from memory.
store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
%narrowaddr = bitcast i32* @g to i16*
%wideaddr = bitcast i32* @g to i64*
%poison3 = load i16* %narrowaddr ; Returns a poison value.
%poison4 = load i64* %wideaddr ; Returns a poison value.
%cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
br i1 %cmp, label %true, label %end ; Branch to either destination.
true:
store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
; it has undefined behavior.
br label %end
end:
%p = phi i32 [ 0, %entry ], [ 1, %true ]
; Both edges into this PHI are
; control-dependent on %cmp, so this
; always results in a poison value.
store volatile i32 0, i32* @g ; This would depend on the store in %true
; if %cmp is true, or the store in %entry
; otherwise, so this is undefined behavior.
br i1 %cmp, label %second_true, label %second_end
; The same branch again, but this time the
; true block doesn't have side effects.
second_true:
; No side effects!
ret void
second_end:
store volatile i32 0, i32* @g ; This time, the instruction always depends
; on the store in %end. Also, it is
; control-equivalent to %end, so this is
; well-defined (ignoring earlier undefined
; behavior in this example).
.. _blockaddress:
Addresses of Basic Blocks
-------------------------
``blockaddress(@function, %block)``
The '``blockaddress``' constant computes the address of the specified
basic block in the specified function, and always has an ``i8*`` type.
Taking the address of the entry block is illegal.
This value only has defined behavior when used as an operand to the
':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
against null. Pointer equality tests between labels addresses results in
undefined behavior --- though, again, comparison against null is ok, and
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
no label is equal to the null pointer. This may be passed around as an
opaque pointer sized value as long as the bits are not inspected. This
allows ``ptrtoint`` and arithmetic to be performed on these values so
long as the original value is reconstituted before the ``indirectbr``
instruction.
Finally, some targets may provide defined semantics when using the value
as the operand to an inline assembly, but that is target specific.
Constant Expressions
--------------------
Constant expressions are used to allow expressions involving other
constants to be used as constants. Constant expressions may be of any
:ref:`first class <t_firstclass>` type and may involve any LLVM operation
that does not have side effects (e.g. load and call are not supported).
The following is the syntax for constant expressions:
``trunc (CST to TYPE)``
Truncate a constant to another type. The bit size of CST must be
larger than the bit size of TYPE. Both types must be integers.
``zext (CST to TYPE)``
Zero extend a constant to another type. The bit size of CST must be
smaller than the bit size of TYPE. Both types must be integers.
``sext (CST to TYPE)``
Sign extend a constant to another type. The bit size of CST must be
smaller than the bit size of TYPE. Both types must be integers.
``fptrunc (CST to TYPE)``
Truncate a floating point constant to another floating point type.
The size of CST must be larger than the size of TYPE. Both types
must be floating point.
``fpext (CST to TYPE)``
Floating point extend a constant to another type. The size of CST
must be smaller or equal to the size of TYPE. Both types must be
floating point.
``fptoui (CST to TYPE)``
Convert a floating point constant to the corresponding unsigned
integer constant. TYPE must be a scalar or vector integer type. CST
must be of scalar or vector floating point type. Both CST and TYPE
must be scalars, or vectors of the same number of elements. If the
value won't fit in the integer type, the results are undefined.
``fptosi (CST to TYPE)``
Convert a floating point constant to the corresponding signed
integer constant. TYPE must be a scalar or vector integer type. CST
must be of scalar or vector floating point type. Both CST and TYPE
must be scalars, or vectors of the same number of elements. If the
value won't fit in the integer type, the results are undefined.
``uitofp (CST to TYPE)``
Convert an unsigned integer constant to the corresponding floating
point constant. TYPE must be a scalar or vector floating point type.
CST must be of scalar or vector integer type. Both CST and TYPE must
be scalars, or vectors of the same number of elements. If the value
won't fit in the floating point type, the results are undefined.
``sitofp (CST to TYPE)``
Convert a signed integer constant to the corresponding floating
point constant. TYPE must be a scalar or vector floating point type.
CST must be of scalar or vector integer type. Both CST and TYPE must
be scalars, or vectors of the same number of elements. If the value
won't fit in the floating point type, the results are undefined.
``ptrtoint (CST to TYPE)``
Convert a pointer typed constant to the corresponding integer
constant ``TYPE`` must be an integer type. ``CST`` must be of
pointer type. The ``CST`` value is zero extended, truncated, or
unchanged to make it fit in ``TYPE``.
``inttoptr (CST to TYPE)``
Convert an integer constant to a pointer constant. TYPE must be a
pointer type. CST must be of integer type. The CST value is zero
extended, truncated, or unchanged to make it fit in a pointer size.
This one is *really* dangerous!
``bitcast (CST to TYPE)``
Convert a constant, CST, to another TYPE. The constraints of the
operands are the same as those for the :ref:`bitcast
instruction <i_bitcast>`.
``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
Perform the :ref:`getelementptr operation <i_getelementptr>` on
constants. As with the :ref:`getelementptr <i_getelementptr>`
instruction, the index list may have zero or more indexes, which are
required to make sense for the type of "CSTPTR".
``select (COND, VAL1, VAL2)``
Perform the :ref:`select operation <i_select>` on constants.
``icmp COND (VAL1, VAL2)``
Performs the :ref:`icmp operation <i_icmp>` on constants.
``fcmp COND (VAL1, VAL2)``
Performs the :ref:`fcmp operation <i_fcmp>` on constants.
``extractelement (VAL, IDX)``
Perform the :ref:`extractelement operation <i_extractelement>` on
constants.
``insertelement (VAL, ELT, IDX)``
Perform the :ref:`insertelement operation <i_insertelement>` on
constants.
``shufflevector (VEC1, VEC2, IDXMASK)``
Perform the :ref:`shufflevector operation <i_shufflevector>` on
constants.
``extractvalue (VAL, IDX0, IDX1, ...)``
Perform the :ref:`extractvalue operation <i_extractvalue>` on
constants. The index list is interpreted in a similar manner as
indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
least one index value must be specified.
``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
The index list is interpreted in a similar manner as indices in a
':ref:`getelementptr <i_getelementptr>`' operation. At least one index
value must be specified.
``OPCODE (LHS, RHS)``
Perform the specified operation of the LHS and RHS constants. OPCODE
may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
binary <bitwiseops>` operations. The constraints on operands are
the same as those for the corresponding instruction (e.g. no bitwise
operations on floating point values are allowed).
Other Values
============
Inline Assembler Expressions
----------------------------
LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
Inline Assembly <moduleasm>`) through the use of a special value. This
value represents the inline assembler as a string (containing the
instructions to emit), a list of operand constraints (stored as a
string), a flag that indicates whether or not the inline asm expression
has side effects, and a flag indicating whether the function containing
the asm needs to align its stack conservatively. An example inline
assembler expression is:
.. code-block:: llvm
i32 (i32) asm "bswap $0", "=r,r"
Inline assembler expressions may **only** be used as the callee operand
of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
Thus, typically we have:
.. code-block:: llvm
%X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
Inline asms with side effects not visible in the constraint list must be
marked as having side effects. This is done through the use of the
'``sideeffect``' keyword, like so:
.. code-block:: llvm
call void asm sideeffect "eieio", ""()
In some cases inline asms will contain code that will not work unless
the stack is aligned in some way, such as calls or SSE instructions on
x86, yet will not contain code that does that alignment within the asm.
The compiler should make conservative assumptions about what the asm
might contain and should generate its usual stack alignment code in the
prologue if the '``alignstack``' keyword is present:
.. code-block:: llvm
call void asm alignstack "eieio", ""()
Inline asms also support using non-standard assembly dialects. The
assumed dialect is ATT. When the '``inteldialect``' keyword is present,
the inline asm is using the Intel dialect. Currently, ATT and Intel are
the only supported dialects. An example is:
.. code-block:: llvm
call void asm inteldialect "eieio", ""()
If multiple keywords appear the '``sideeffect``' keyword must come
first, the '``alignstack``' keyword second and the '``inteldialect``'
keyword last.
Inline Asm Metadata
^^^^^^^^^^^^^^^^^^^
The call instructions that wrap inline asm nodes may have a
"``!srcloc``" MDNode attached to it that contains a list of constant
integers. If present, the code generator will use the integer as the
location cookie value when report errors through the ``LLVMContext``
error reporting mechanisms. This allows a front-end to correlate backend
errors that occur with inline asm back to the source code that produced
it. For example:
.. code-block:: llvm
call void asm sideeffect "something bad", ""(), !srcloc !42
...
!42 = !{ i32 1234567 }
It is up to the front-end to make sense of the magic numbers it places
in the IR. If the MDNode contains multiple constants, the code generator
will use the one that corresponds to the line of the asm that the error
occurs on.
.. _metadata:
Metadata Nodes and Metadata Strings
-----------------------------------
LLVM IR allows metadata to be attached to instructions in the program
that can convey extra information about the code to the optimizers and
code generator. One example application of metadata is source-level
debug information. There are two metadata primitives: strings and nodes.
All metadata has the ``metadata`` type and is identified in syntax by a
preceding exclamation point ('``!``').
A metadata string is a string surrounded by double quotes. It can
contain any character by escaping non-printable characters with
"``\xx``" where "``xx``" is the two digit hex code. For example:
"``!"test\00"``".
Metadata nodes are represented with notation similar to structure
constants (a comma separated list of elements, surrounded by braces and
preceded by an exclamation point). Metadata nodes can have any values as
their operand. For example:
.. code-block:: llvm
!{ metadata !"test\00", i32 10}
A :ref:`named metadata <namedmetadatastructure>` is a collection of
metadata nodes, which can be looked up in the module symbol table. For
example:
.. code-block:: llvm
!foo = metadata !{!4, !3}
Metadata can be used as function arguments. Here ``llvm.dbg.value``
function is using two metadata arguments:
.. code-block:: llvm
call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
Metadata can be attached with an instruction. Here metadata ``!21`` is
attached to the ``add`` instruction using the ``!dbg`` identifier:
.. code-block:: llvm
%indvar.next = add i64 %indvar, 1, !dbg !21
More information about specific metadata nodes recognized by the
optimizers and code generator is found below.
'``tbaa``' Metadata
^^^^^^^^^^^^^^^^^^^
In LLVM IR, memory does not have types, so LLVM's own type system is not
suitable for doing TBAA. Instead, metadata is added to the IR to
describe a type system of a higher level language. This can be used to
implement typical C/C++ TBAA, but it can also be used to implement
custom alias analysis behavior for other languages.
The current metadata format is very simple. TBAA metadata nodes have up
to three fields, e.g.:
.. code-block:: llvm
!0 = metadata !{ metadata !"an example type tree" }
!1 = metadata !{ metadata !"int", metadata !0 }
!2 = metadata !{ metadata !"float", metadata !0 }
!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
The first field is an identity field. It can be any value, usually a
metadata string, which uniquely identifies the type. The most important
name in the tree is the name of the root node. Two trees with different
root node names are entirely disjoint, even if they have leaves with
common names.
The second field identifies the type's parent node in the tree, or is
null or omitted for a root node. A type is considered to alias all of
its descendants and all of its ancestors in the tree. Also, a type is
considered to alias all types in other trees, so that bitcode produced
from multiple front-ends is handled conservatively.
If the third field is present, it's an integer which if equal to 1
indicates that the type is "constant" (meaning
``pointsToConstantMemory`` should return true; see `other useful
AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
'``tbaa.struct``' Metadata
^^^^^^^^^^^^^^^^^^^^^^^^^^
The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
aggregate assignment operations in C and similar languages, however it
is defined to copy a contiguous region of memory, which is more than
strictly necessary for aggregate types which contain holes due to
padding. Also, it doesn't contain any TBAA information about the fields
of the aggregate.
``!tbaa.struct`` metadata can describe which memory subregions in a
memcpy are padding and what the TBAA tags of the struct are.
The current metadata format is very simple. ``!tbaa.struct`` metadata
nodes are a list of operands which are in conceptual groups of three.
For each group of three, the first operand gives the byte offset of a
field in bytes, the second gives its size in bytes, and the third gives
its tbaa tag. e.g.:
.. code-block:: llvm
!4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
This describes a struct with two fields. The first is at offset 0 bytes
with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
and has size 4 bytes and has tbaa tag !2.
Note that the fields need not be contiguous. In this example, there is a
4 byte gap between the two fields. This gap represents padding which
does not carry useful data and need not be preserved.
'``fpmath``' Metadata
^^^^^^^^^^^^^^^^^^^^^
``fpmath`` metadata may be attached to any instruction of floating point
type. It can be used to express the maximum acceptable error in the
result of that instruction, in ULPs, thus potentially allowing the
compiler to use a more efficient but less accurate method of computing
it. ULP is defined as follows:
If ``x`` is a real number that lies between two finite consecutive
floating-point numbers ``a`` and ``b``, without being equal to one
of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
distance between the two non-equal finite floating-point numbers
nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
The metadata node shall consist of a single positive floating point
number representing the maximum relative error, for example:
.. code-block:: llvm
!0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
'``range``' Metadata
^^^^^^^^^^^^^^^^^^^^
``range`` metadata may be attached only to loads of integer types. It
expresses the possible ranges the loaded value is in. The ranges are
represented with a flattened list of integers. The loaded value is known
to be in the union of the ranges defined by each consecutive pair. Each
pair has the following properties:
- The type must match the type loaded by the instruction.
- The pair ``a,b`` represents the range ``[a,b)``.
- Both ``a`` and ``b`` are constants.
- The range is allowed to wrap.
- The range should not represent the full or empty set. That is,
``a!=b``.
In addition, the pairs must be in signed order of the lower bound and
they must be non-contiguous.
Examples:
.. code-block:: llvm
%a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
%b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
%c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
%d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
...
!0 = metadata !{ i8 0, i8 2 }
!1 = metadata !{ i8 255, i8 2 }
!2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
!3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
Module Flags Metadata
=====================
Information about the module as a whole is difficult to convey to LLVM's
subsystems. The LLVM IR isn't sufficient to transmit this information.
The ``llvm.module.flags`` named metadata exists in order to facilitate
this. These flags are in the form of key / value pairs --- much like a
dictionary --- making it easy for any subsystem who cares about a flag to
look it up.
The ``llvm.module.flags`` metadata contains a list of metadata triplets.
Each triplet has the following form:
- The first element is a *behavior* flag, which specifies the behavior
when two (or more) modules are merged together, and it encounters two
(or more) metadata with the same ID. The supported behaviors are
described below.
- The second element is a metadata string that is a unique ID for the
metadata. Each module may only have one flag entry for each unique ID (not
including entries with the **Require** behavior).
- The third element is the value of the flag.
When two (or more) modules are merged together, the resulting
``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
each unique metadata ID string, there will be exactly one entry in the merged
modules ``llvm.module.flags`` metadata table, and the value for that entry will
be determined by the merge behavior flag, as described below. The only exception
is that entries with the *Require* behavior are always preserved.
The following behaviors are supported:
.. list-table::
:header-rows: 1
:widths: 10 90
* - Value
- Behavior
* - 1
- **Error**
Emits an error if two values disagree, otherwise the resulting value
is that of the operands.
Emits a warning if two values disagree. The result value will be the
operand for the flag from the first module being linked.
Adds a requirement that another module flag be present and have a
specified value after linking is performed. The value must be a
metadata pair, where the first element of the pair is the ID of the
module flag to be restricted, and the second element of the pair is
the value the module flag should be restricted to. This behavior can
be used to restrict the allowable results (via triggering of an
error) of linking IDs with the **Override** behavior.
Uses the specified value, regardless of the behavior or value of the
other module. If both modules specify **Override**, but the values
differ, an error will be emitted.
* - 5
- **Append**
Appends the two values, which are required to be metadata nodes.
* - 6
- **AppendUnique**
Appends the two values, which are required to be metadata
nodes. However, duplicate entries in the second list are dropped
during the append operation.
It is an error for a particular unique flag ID to have multiple behaviors,
except in the case of **Require** (which adds restrictions on another metadata
value) or **Override**.
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
An example of module flags:
.. code-block:: llvm
!0 = metadata !{ i32 1, metadata !"foo", i32 1 }
!1 = metadata !{ i32 4, metadata !"bar", i32 37 }
!2 = metadata !{ i32 2, metadata !"qux", i32 42 }
!3 = metadata !{ i32 3, metadata !"qux",
metadata !{
metadata !"foo", i32 1
}
}
!llvm.module.flags = !{ !0, !1, !2, !3 }
- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
if two or more ``!"foo"`` flags are seen is to emit an error if their
values are not equal.
- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
behavior if two or more ``!"bar"`` flags are seen is to use the value
- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
behavior if two or more ``!"qux"`` flags are seen is to emit a
warning if their values are not equal.
- Metadata ``!3`` has the ID ``!"qux"`` and the value:
::
metadata !{ metadata !"foo", i32 1 }
The behavior is to emit an error if the ``llvm.module.flags`` does not
contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
performed.
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
Objective-C Garbage Collection Module Flags Metadata
----------------------------------------------------
On the Mach-O platform, Objective-C stores metadata about garbage
collection in a special section called "image info". The metadata
consists of a version number and a bitmask specifying what types of
garbage collection are supported (if any) by the file. If two or more
modules are linked together their garbage collection metadata needs to
be merged rather than appended together.
The Objective-C garbage collection module flags metadata consists of the
following key-value pairs:
.. list-table::
:header-rows: 1
:widths: 30 70
* - Key
- Value
* - ``Objective-C Version``
- **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
* - ``Objective-C Image Info Version``
- **[Required]** --- The version of the image info section. Currently
* - ``Objective-C Image Info Section``
- **[Required]** --- The section to place the metadata. Valid values are
``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
Objective-C ABI version 2.
* - ``Objective-C Garbage Collection``
- **[Required]** --- Specifies whether garbage collection is supported or
not. Valid values are 0, for no garbage collection, and 2, for garbage
collection supported.
* - ``Objective-C GC Only``
- **[Optional]** --- Specifies that only garbage collection is supported.
If present, its value must be 6. This flag requires that the
``Objective-C Garbage Collection`` flag have the value 2.
Some important flag interactions:
- If a module with ``Objective-C Garbage Collection`` set to 0 is
merged with a module with ``Objective-C Garbage Collection`` set to
2, then the resulting module has the
``Objective-C Garbage Collection`` flag set to 0.
- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
merged with a module with ``Objective-C GC Only`` set to 6.
Automatic Linker Flags Module Flags Metadata
--------------------------------------------
Some targets support embedding flags to the linker inside individual object
files. Typically this is used in conjunction with language extensions which
allow source files to explicitly declare the libraries they depend on, and have
these automatically be transmitted to the linker via object files.
These flags are encoded in the IR using metadata in the module flags section,
using the ``Linker Options`` key. The merge behavior for this flag is required
to be ``AppendUnique``, and the value for the key is expected to be a metadata
node which should be a list of other metadata nodes, each of which should be a
list of metadata strings defining linker options.
For example, the following metadata section specifies two separate sets of
linker options, presumably to link against ``libz`` and the ``Cocoa``
framework::
!0 = metadata !{ i32 6, metadata !"Linker Options",
metadata !{
metadata !{ metadata !"-lz" },
metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
!llvm.module.flags = !{ !0 }
The metadata encoding as lists of lists of options, as opposed to a collapsed
list of options, is chosen so that the IR encoding can use multiple option
strings to specify e.g., a single library, while still having that specifier be
preserved as an atomic element that can be recognized by a target specific
assembly writer or object file emitter.
Each individual option is required to be either a valid option for the target's
linker, or an option that is reserved by the target specific assembly writer or
object file emitter. No other aspect of these options is defined by the IR.
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
Intrinsic Global Variables
==========================
LLVM has a number of "magic" global variables that contain data that
affect code generation or other IR semantics. These are documented here.
All globals of this sort should have a section specified as
"``llvm.metadata``". This section and all globals that start with
"``llvm.``" are reserved for use by LLVM.
The '``llvm.used``' Global Variable
-----------------------------------
The ``@llvm.used`` global is an array with i8\* element type which has
:ref:`appending linkage <linkage_appending>`. This array contains a list of
pointers to global variables and functions which may optionally have a
pointer cast formed of bitcast or getelementptr. For example, a legal
use of it is:
.. code-block:: llvm
@X = global i8 4
@Y = global i32 123
@llvm.used = appending global [2 x i8*] [
i8* @X,
i8* bitcast (i32* @Y to i8*)
], section "llvm.metadata"
If a global variable appears in the ``@llvm.used`` list, then the
compiler, assembler, and linker are required to treat the symbol as if
there is a reference to the global that it cannot see. For example, if a
variable has internal linkage and no references other than that from the
``@llvm.used`` list, it cannot be deleted. This is commonly used to
represent references from inline asms and other things the compiler
cannot "see", and corresponds to "``attribute((used))``" in GNU C.
On some targets, the code generator must emit a directive to the
assembler or object file to prevent the assembler and linker from
molesting the symbol.
The '``llvm.compiler.used``' Global Variable
--------------------------------------------
The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
directive, except that it only prevents the compiler from touching the
symbol. On targets that support it, this allows an intelligent linker to
optimize references to the symbol without being impeded as it would be
by ``@llvm.used``.
This is a rare construct that should only be used in rare circumstances,
and should not be exposed to source languages.
The '``llvm.global_ctors``' Global Variable
-------------------------------------------
.. code-block:: llvm
%0 = type { i32, void ()* }
@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
The ``@llvm.global_ctors`` array contains a list of constructor
functions and associated priorities. The functions referenced by this
array will be called in ascending order of priority (i.e. lowest first)
when the module is loaded. The order of functions with the same priority
is not defined.
The '``llvm.global_dtors``' Global Variable
-------------------------------------------
.. code-block:: llvm
%0 = type { i32, void ()* }
@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
The ``@llvm.global_dtors`` array contains a list of destructor functions
and associated priorities. The functions referenced by this array will
be called in descending order of priority (i.e. highest first) when the
module is loaded. The order of functions with the same priority is not
defined.
Instruction Reference
=====================
The LLVM instruction set consists of several different classifications
of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
instructions <binaryops>`, :ref:`bitwise binary
instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
:ref:`other instructions <otherops>`.
.. _terminators:
Terminator Instructions
-----------------------
As mentioned :ref:`previously <functionstructure>`, every basic block in a
program ends with a "Terminator" instruction, which indicates which
block should be executed after the current block is finished. These
terminator instructions typically yield a '``void``' value: they produce
control flow, not values (the one exception being the
':ref:`invoke <i_invoke>`' instruction).
The terminator instructions are: ':ref:`ret <i_ret>`',
':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
.. _i_ret:
'``ret``' Instruction
^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
::
ret <type> <value> ; Return a value from a non-void function
ret void ; Return from void function
Overview:
"""""""""
The '``ret``' instruction is used to return control flow (and optionally
a value) from a function back to the caller.
There are two forms of the '``ret``' instruction: one that returns a
value and then causes control flow, and one that just causes control
flow to occur.
Arguments:
""""""""""
The '``ret``' instruction optionally accepts a single argument, the
return value. The type of the return value must be a ':ref:`first
class <t_firstclass>`' type.
A function is not :ref:`well formed <wellformed>` if it it has a non-void
return type and contains a '``ret``' instruction with no return value or
a return value with a type that does not match its type, or if it has a
void return type and contains a '``ret``' instruction with a return
value.
Semantics:
""""""""""
When the '``ret``' instruction is executed, control flow returns back to
the calling function's context. If the caller is a
":ref:`call <i_call>`" instruction, execution continues at the
instruction after the call. If the caller was an
":ref:`invoke <i_invoke>`" instruction, execution continues at the
beginning of the "normal" destination block. If the instruction returns
a value, that value shall set the call or invoke instruction's return
value.
Example:
""""""""
.. code-block:: llvm
ret i32 5 ; Return an integer value of 5
ret void ; Return from a void function
ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
.. _i_br:
'``br``' Instruction
^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
::
br i1 <cond>, label <iftrue>, label <iffalse>
br label <dest> ; Unconditional branch
Overview:
"""""""""
The '``br``' instruction is used to cause control flow to transfer to a
different basic block in the current function. There are two forms of
this instruction, corresponding to a conditional branch and an
unconditional branch.
Arguments:
""""""""""
The conditional branch form of the '``br``' instruction takes a single
'``i1``' value and two '``label``' values. The unconditional form of the
'``br``' instruction takes a single '``label``' value as a target.
Semantics:
""""""""""
Upon execution of a conditional '``br``' instruction, the '``i1``'
argument is evaluated. If the value is ``true``, control flows to the
'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
to the '``iffalse``' ``label`` argument.
Example:
""""""""
.. code-block:: llvm
Test:
%cond = icmp eq i32 %a, %b
br i1 %cond, label %IfEqual, label %IfUnequal
IfEqual:
ret i32 1
IfUnequal:
ret i32 0
.. _i_switch:
'``switch``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
::
switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
Overview:
"""""""""
The '``switch``' instruction is used to transfer control flow to one of
several different places. It is a generalization of the '``br``'
instruction, allowing a branch to occur to one of many possible
destinations.
Arguments:
""""""""""
The '``switch``' instruction uses three parameters: an integer
comparison value '``value``', a default '``label``' destination, and an
array of pairs of comparison value constants and '``label``'s. The table
is not allowed to contain duplicate constant entries.
Semantics:
""""""""""
The ``switch`` instruction specifies a table of values and destinations.
When the '``switch``' instruction is executed, this table is searched
for the given value. If the value is found, control flow is transferred
to the corresponding destination; otherwise, control flow is transferred
to the default destination.
Implementation:
"""""""""""""""
Depending on properties of the target machine and the particular
``switch`` instruction, this instruction may be code generated in
different ways. For example, it could be generated as a series of
chained conditional branches or with a lookup table.
Example:
""""""""
.. code-block:: llvm
; Emulate a conditional br instruction
%Val = zext i1 %value to i32
switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
; Emulate an unconditional br instruction
switch i32 0, label %dest [ ]
; Implement a jump table:
switch i32 %val, label %otherwise [ i32 0, label %onzero
i32 1, label %onone
i32 2, label %ontwo ]
.. _i_indirectbr:
'``indirectbr``' Instruction
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
::
indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
Overview:
"""""""""
The '``indirectbr``' instruction implements an indirect branch to a
label within the current function, whose address is specified by
"``address``". Address must be derived from a
:ref:`blockaddress <blockaddress>` constant.
Arguments:
""""""""""
The '``address``' argument is the address of the label to jump to. The
rest of the arguments indicate the full set of possible destinations
that the address may point to. Blocks are allowed to occur multiple
times in the destination list, though this isn't particularly useful.
This destination list is required so that dataflow analysis has an
accurate understanding of the CFG.
Semantics:
""""""""""
Control transfers to the block specified in the address argument. All
possible destination blocks must be listed in the label list, otherwise
this instruction has undefined behavior. This implies that jumps to
labels defined in other functions have undefined behavior as well.
Implementation:
"""""""""""""""
This is typically implemented with a jump through a register.
Example:
""""""""