Skip to content
VirtRegRewriter.cpp 85.7 KiB
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    // This invalidates Phys.
    Spills.ClobberPhysReg(PhysReg);
    // Remember it's available.
    Spills.addAvailable(SS, PhysReg);
    MaybeDeadStores[SS] = NULL;

    // Unfold current MI.
    SmallVector<MachineInstr*, 4> NewMIs;
    if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
      assert(0 && "Unable unfold the load / store folding instruction!");
    assert(NewMIs.size() == 1);
    AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
    VRM.transferRestorePts(&MI, NewMIs[0]);
    MII = MBB.insert(MII, NewMIs[0]);
    InvalidateKills(MI, RegKills, KillOps);
    VRM.RemoveMachineInstrFromMaps(&MI);
    MBB.erase(&MI);
    ++NumModRefUnfold;

    // Unfold next instructions that fold the same SS.
    do {
      MachineInstr &NextMI = *NextMII;
      NextMII = next(NextMII);
      NewMIs.clear();
      if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
        assert(0 && "Unable unfold the load / store folding instruction!");
      assert(NewMIs.size() == 1);
      AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
      VRM.transferRestorePts(&NextMI, NewMIs[0]);
      MBB.insert(NextMII, NewMIs[0]);
      InvalidateKills(NextMI, RegKills, KillOps);
      VRM.RemoveMachineInstrFromMaps(&NextMI);
      MBB.erase(&NextMI);
      ++NumModRefUnfold;
    } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));

    // Store the value back into SS.
    TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
    MachineInstr *StoreMI = prior(NextMII);
    VRM.addSpillSlotUse(SS, StoreMI);
    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);

    return true;
  }

  /// OptimizeByUnfold - Turn a store folding instruction into a load folding
  /// instruction. e.g.
  ///     xorl  %edi, %eax
  ///     movl  %eax, -32(%ebp)
  ///     movl  -36(%ebp), %eax
  ///     orl   %eax, -32(%ebp)
  /// ==>
  ///     xorl  %edi, %eax
  ///     orl   -36(%ebp), %eax
  ///     mov   %eax, -32(%ebp)
  /// This enables unfolding optimization for a subsequent instruction which will
  /// also eliminate the newly introduced store instruction.
  bool OptimizeByUnfold(MachineBasicBlock &MBB,
                        MachineBasicBlock::iterator &MII,
                        std::vector<MachineInstr*> &MaybeDeadStores,
                        AvailableSpills &Spills,
                        BitVector &RegKills,
                        std::vector<MachineOperand*> &KillOps,
                        VirtRegMap &VRM) {
    MachineFunction &MF = *MBB.getParent();
    MachineInstr &MI = *MII;
    unsigned UnfoldedOpc = 0;
    unsigned UnfoldPR = 0;
    unsigned UnfoldVR = 0;
    int FoldedSS = VirtRegMap::NO_STACK_SLOT;
    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
      // Only transform a MI that folds a single register.
      if (UnfoldedOpc)
        return false;
      UnfoldVR = I->second.first;
      VirtRegMap::ModRef MR = I->second.second;
      // MI2VirtMap be can updated which invalidate the iterator.
      // Increment the iterator first.
      ++I; 
      if (VRM.isAssignedReg(UnfoldVR))
        continue;
      // If this reference is not a use, any previous store is now dead.
      // Otherwise, the store to this stack slot is not dead anymore.
      FoldedSS = VRM.getStackSlot(UnfoldVR);
      MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
      if (DeadStore && (MR & VirtRegMap::isModRef)) {
        unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
        if (!PhysReg || !DeadStore->readsRegister(PhysReg))
          continue;
        UnfoldPR = PhysReg;
        UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
                                                      false, true);
      }
    }

    if (!UnfoldedOpc) {
      if (!UnfoldVR)
        return false;

      // Look for other unfolding opportunities.
      return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
                               MaybeDeadStores, Spills, RegKills, KillOps, VRM);
    }

    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
        continue;
      unsigned VirtReg = MO.getReg();
      if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
        continue;
      if (VRM.isAssignedReg(VirtReg)) {
        unsigned PhysReg = VRM.getPhys(VirtReg);
        if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
          return false;
      } else if (VRM.isReMaterialized(VirtReg))
        continue;
      int SS = VRM.getStackSlot(VirtReg);
      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
      if (PhysReg) {
        if (TRI->regsOverlap(PhysReg, UnfoldPR))
          return false;
        continue;
      }
      if (VRM.hasPhys(VirtReg)) {
        PhysReg = VRM.getPhys(VirtReg);
        if (!TRI->regsOverlap(PhysReg, UnfoldPR))
          continue;
      }

      // Ok, we'll need to reload the value into a register which makes
      // it impossible to perform the store unfolding optimization later.
      // Let's see if it is possible to fold the load if the store is
      // unfolded. This allows us to perform the store unfolding
      // optimization.
      SmallVector<MachineInstr*, 4> NewMIs;
      if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
        assert(NewMIs.size() == 1);
        MachineInstr *NewMI = NewMIs.back();
        NewMIs.clear();
        int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
        assert(Idx != -1);
        SmallVector<unsigned, 1> Ops;
        Ops.push_back(Idx);
        MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
        if (FoldedMI) {
          VRM.addSpillSlotUse(SS, FoldedMI);
          if (!VRM.hasPhys(UnfoldVR))
            VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
          VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
          MII = MBB.insert(MII, FoldedMI);
          InvalidateKills(MI, RegKills, KillOps);
          VRM.RemoveMachineInstrFromMaps(&MI);
          MBB.erase(&MI);
          MF.DeleteMachineInstr(NewMI);
          return true;
        }
        MF.DeleteMachineInstr(NewMI);
      }
    }

    return false;
  }

  /// CommuteToFoldReload -
  /// Look for
  /// r1 = load fi#1
  /// r1 = op r1, r2<kill>
  /// store r1, fi#1
  ///
  /// If op is commutable and r2 is killed, then we can xform these to
  /// r2 = op r2, fi#1
  /// store r2, fi#1
  bool CommuteToFoldReload(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator &MII,
                           unsigned VirtReg, unsigned SrcReg, int SS,
                           AvailableSpills &Spills,
                           BitVector &RegKills,
                           std::vector<MachineOperand*> &KillOps,
                           const TargetRegisterInfo *TRI,
                           VirtRegMap &VRM) {
    if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
      return false;

    MachineFunction &MF = *MBB.getParent();
    MachineInstr &MI = *MII;
    MachineBasicBlock::iterator DefMII = prior(MII);
    MachineInstr *DefMI = DefMII;
    const TargetInstrDesc &TID = DefMI->getDesc();
    unsigned NewDstIdx;
    if (DefMII != MBB.begin() &&
        TID.isCommutable() &&
        TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
      MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
      unsigned NewReg = NewDstMO.getReg();
      if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
        return false;
      MachineInstr *ReloadMI = prior(DefMII);
      int FrameIdx;
      unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
      if (DestReg != SrcReg || FrameIdx != SS)
        return false;
      int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
      if (UseIdx == -1)
        return false;
      unsigned DefIdx;
      if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
        return false;
      assert(DefMI->getOperand(DefIdx).isReg() &&
             DefMI->getOperand(DefIdx).getReg() == SrcReg);

      // Now commute def instruction.
      MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
      if (!CommutedMI)
        return false;
      SmallVector<unsigned, 1> Ops;
      Ops.push_back(NewDstIdx);
      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
      // Not needed since foldMemoryOperand returns new MI.
      MF.DeleteMachineInstr(CommutedMI);
      if (!FoldedMI)
        return false;

      VRM.addSpillSlotUse(SS, FoldedMI);
      VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
      // Insert new def MI and spill MI.
      const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
      TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
      MII = prior(MII);
      MachineInstr *StoreMI = MII;
      VRM.addSpillSlotUse(SS, StoreMI);
      VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
      MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.

      // Delete all 3 old instructions.
      InvalidateKills(*ReloadMI, RegKills, KillOps);
      VRM.RemoveMachineInstrFromMaps(ReloadMI);
      MBB.erase(ReloadMI);
      InvalidateKills(*DefMI, RegKills, KillOps);
      VRM.RemoveMachineInstrFromMaps(DefMI);
      MBB.erase(DefMI);
      InvalidateKills(MI, RegKills, KillOps);
      VRM.RemoveMachineInstrFromMaps(&MI);
      MBB.erase(&MI);

      // If NewReg was previously holding value of some SS, it's now clobbered.
      // This has to be done now because it's a physical register. When this
      // instruction is re-visited, it's ignored.
      Spills.ClobberPhysReg(NewReg);

      ++NumCommutes;
      return true;
    }

    return false;
  }

  /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
  /// the last store to the same slot is now dead. If so, remove the last store.
  void SpillRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator &MII,
                           int Idx, unsigned PhysReg, int StackSlot,
                           const TargetRegisterClass *RC,
                           bool isAvailable, MachineInstr *&LastStore,
                           AvailableSpills &Spills,
                           SmallSet<MachineInstr*, 4> &ReMatDefs,
                           BitVector &RegKills,
                           std::vector<MachineOperand*> &KillOps,
                           VirtRegMap &VRM) {

    TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
    MachineInstr *StoreMI = next(MII);
    VRM.addSpillSlotUse(StackSlot, StoreMI);
    DOUT << "Store:\t" << *StoreMI;

    // If there is a dead store to this stack slot, nuke it now.
    if (LastStore) {
      DOUT << "Removed dead store:\t" << *LastStore;
      ++NumDSE;
      SmallVector<unsigned, 2> KillRegs;
      InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
      MachineBasicBlock::iterator PrevMII = LastStore;
      bool CheckDef = PrevMII != MBB.begin();
      if (CheckDef)
        --PrevMII;
      VRM.RemoveMachineInstrFromMaps(LastStore);
      MBB.erase(LastStore);
      if (CheckDef) {
        // Look at defs of killed registers on the store. Mark the defs
        // as dead since the store has been deleted and they aren't
        // being reused.
        for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
          bool HasOtherDef = false;
          if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
            MachineInstr *DeadDef = PrevMII;
            if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
              // FIXME: This assumes a remat def does not have side
              // effects.
              VRM.RemoveMachineInstrFromMaps(DeadDef);
              MBB.erase(DeadDef);
              ++NumDRM;
            }
          }
        }
      }
    }

    LastStore = next(MII);

    // If the stack slot value was previously available in some other
    // register, change it now.  Otherwise, make the register available,
    // in PhysReg.
    Spills.ModifyStackSlotOrReMat(StackSlot);
    Spills.ClobberPhysReg(PhysReg);
    Spills.addAvailable(StackSlot, PhysReg, isAvailable);
    ++NumStores;
  }

  /// TransferDeadness - A identity copy definition is dead and it's being
  /// removed. Find the last def or use and mark it as dead / kill.
  void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
                        unsigned Reg, BitVector &RegKills,
                        std::vector<MachineOperand*> &KillOps,
                        VirtRegMap &VRM) {
    SmallPtrSet<MachineInstr*, 4> Seens;
    SmallVector<std::pair<MachineInstr*, int>,8> Refs;
    for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
           RE = RegInfo->reg_end(); RI != RE; ++RI) {
      MachineInstr *UDMI = &*RI;
      if (UDMI->getParent() != MBB)
        continue;
      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
      if (DI == DistanceMap.end() || DI->second > CurDist)
        continue;
      if (Seens.insert(UDMI))
        Refs.push_back(std::make_pair(UDMI, DI->second));
    if (Refs.empty())
      return;
    std::sort(Refs.begin(), Refs.end(), RefSorter());

    while (!Refs.empty()) {
      MachineInstr *LastUDMI = Refs.back().first;
      Refs.pop_back();

      MachineOperand *LastUD = NULL;
      for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = LastUDMI->getOperand(i);
        if (!MO.isReg() || MO.getReg() != Reg)
          continue;
        if (!LastUD || (LastUD->isUse() && MO.isDef()))
          LastUD = &MO;
        if (LastUDMI->isRegTiedToDefOperand(i))
      if (LastUD->isDef()) {
        // If the instruction has no side effect, delete it and propagate
        // backward further. Otherwise, mark is dead and we are done.
        const TargetInstrDesc &TID = LastUDMI->getDesc();
        if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
            TID.hasUnmodeledSideEffects()) {
          LastUD->setIsDead();
          break;
        }
        VRM.RemoveMachineInstrFromMaps(LastUDMI);
        MBB->erase(LastUDMI);
      } else {
        LastUD->setIsKill();
        RegKills.set(Reg);
        KillOps[Reg] = LastUD;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
      }
    }
  }

  /// rewriteMBB - Keep track of which spills are available even after the
  /// register allocator is done with them.  If possible, avid reloading vregs.
  void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
                  LiveIntervals *LIs,
                  AvailableSpills &Spills, BitVector &RegKills,
                  std::vector<MachineOperand*> &KillOps) {

    DOUT << "\n**** Local spiller rewriting MBB '"
         << MBB.getBasicBlock()->getName() << "':\n";

    MachineFunction &MF = *MBB.getParent();
    
    // MaybeDeadStores - When we need to write a value back into a stack slot,
    // keep track of the inserted store.  If the stack slot value is never read
    // (because the value was used from some available register, for example), and
    // subsequently stored to, the original store is dead.  This map keeps track
    // of inserted stores that are not used.  If we see a subsequent store to the
    // same stack slot, the original store is deleted.
    std::vector<MachineInstr*> MaybeDeadStores;
    MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);

    // ReMatDefs - These are rematerializable def MIs which are not deleted.
    SmallSet<MachineInstr*, 4> ReMatDefs;

    // Clear kill info.
    SmallSet<unsigned, 2> KilledMIRegs;
    RegKills.reset();
    KillOps.clear();
    KillOps.resize(TRI->getNumRegs(), NULL);

    unsigned Dist = 0;
    DistanceMap.clear();
    for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
         MII != E; ) {
      MachineBasicBlock::iterator NextMII = next(MII);

      VirtRegMap::MI2VirtMapTy::const_iterator I, End;
      bool Erased = false;
      bool BackTracked = false;
      if (OptimizeByUnfold(MBB, MII,
                           MaybeDeadStores, Spills, RegKills, KillOps, VRM))
        NextMII = next(MII);

      MachineInstr &MI = *MII;

      if (VRM.hasEmergencySpills(&MI)) {
        // Spill physical register(s) in the rare case the allocator has run out
        // of registers to allocate.
        SmallSet<int, 4> UsedSS;
        std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
        for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
          unsigned PhysReg = EmSpills[i];
          const TargetRegisterClass *RC =
            TRI->getPhysicalRegisterRegClass(PhysReg);
          assert(RC && "Unable to determine register class!");
          int SS = VRM.getEmergencySpillSlot(RC);
          if (UsedSS.count(SS))
            assert(0 && "Need to spill more than one physical registers!");
          UsedSS.insert(SS);
          TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
          MachineInstr *StoreMI = prior(MII);
          VRM.addSpillSlotUse(SS, StoreMI);
          TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
          MachineInstr *LoadMI = next(MII);
          VRM.addSpillSlotUse(SS, LoadMI);
          ++NumPSpills;
        }
        NextMII = next(MII);
      }

      // Insert restores here if asked to.
      if (VRM.isRestorePt(&MI)) {
        std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
        for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
          unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
          if (!VRM.getPreSplitReg(VirtReg))
            continue; // Split interval spilled again.
          unsigned Phys = VRM.getPhys(VirtReg);
          RegInfo->setPhysRegUsed(Phys);

          // Check if the value being restored if available. If so, it must be
          // from a predecessor BB that fallthrough into this BB. We do not
          // expect:
          // BB1:
          // r1 = load fi#1
          // ...
          //    = r1<kill>
          // ... # r1 not clobbered
          // ...
          //    = load fi#1
          bool DoReMat = VRM.isReMaterialized(VirtReg);
          int SSorRMId = DoReMat
            ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
          unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
          if (InReg == Phys) {
            // If the value is already available in the expected register, save
            // a reload / remat.
            if (SSorRMId)
              DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
            else
              DOUT << "Reusing SS#" << SSorRMId;
            DOUT << " from physreg "
                 << TRI->getName(InReg) << " for vreg"
                 << VirtReg <<" instead of reloading into physreg "
                 << TRI->getName(Phys) << "\n";
            ++NumOmitted;
            continue;
          } else if (InReg && InReg != Phys) {
            if (SSorRMId)
              DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
            else
              DOUT << "Reusing SS#" << SSorRMId;
            DOUT << " from physreg "
                 << TRI->getName(InReg) << " for vreg"
                 << VirtReg <<" by copying it into physreg "
                 << TRI->getName(Phys) << "\n";

            // If the reloaded / remat value is available in another register,
            // copy it to the desired register.
            TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);

            // This invalidates Phys.
            Spills.ClobberPhysReg(Phys);
            // Remember it's available.
            Spills.addAvailable(SSorRMId, Phys);

            // Mark is killed.
            MachineInstr *CopyMI = prior(MII);
            MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
            KillOpnd->setIsKill();
            UpdateKills(*CopyMI, RegKills, KillOps, TRI);

            DOUT << '\t' << *CopyMI;
            ++NumCopified;
            continue;
          }

          if (VRM.isReMaterialized(VirtReg)) {
            ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
          } else {
            const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
            TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
            MachineInstr *LoadMI = prior(MII);
            VRM.addSpillSlotUse(SSorRMId, LoadMI);
            ++NumLoads;
          }

          // This invalidates Phys.
          Spills.ClobberPhysReg(Phys);
          // Remember it's available.
          Spills.addAvailable(SSorRMId, Phys);

          UpdateKills(*prior(MII), RegKills, KillOps, TRI);
          DOUT << '\t' << *prior(MII);
        }
      }

      // Insert spills here if asked to.
      if (VRM.isSpillPt(&MI)) {
        std::vector<std::pair<unsigned,bool> > &SpillRegs =
          VRM.getSpillPtSpills(&MI);
        for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
          unsigned VirtReg = SpillRegs[i].first;
          bool isKill = SpillRegs[i].second;
          if (!VRM.getPreSplitReg(VirtReg))
            continue; // Split interval spilled again.
          const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
          unsigned Phys = VRM.getPhys(VirtReg);
          int StackSlot = VRM.getStackSlot(VirtReg);
          TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
          MachineInstr *StoreMI = next(MII);
          VRM.addSpillSlotUse(StackSlot, StoreMI);
          DOUT << "Store:\t" << *StoreMI;
          VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
        }
        NextMII = next(MII);
      }

      /// ReusedOperands - Keep track of operand reuse in case we need to undo
      /// reuse.
      ReuseInfo ReusedOperands(MI, TRI);
      SmallVector<unsigned, 4> VirtUseOps;
      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI.getOperand(i);
        if (!MO.isReg() || MO.getReg() == 0)
          continue;   // Ignore non-register operands.
        
        unsigned VirtReg = MO.getReg();
        if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
          // Ignore physregs for spilling, but remember that it is used by this
          // function.
          RegInfo->setPhysRegUsed(VirtReg);
          continue;
        }

        // We want to process implicit virtual register uses first.
        if (MO.isImplicit())
          // If the virtual register is implicitly defined, emit a implicit_def
          // before so scavenger knows it's "defined".
          VirtUseOps.insert(VirtUseOps.begin(), i);
        else
          VirtUseOps.push_back(i);
      }

      // Process all of the spilled uses and all non spilled reg references.
      SmallVector<int, 2> PotentialDeadStoreSlots;
      KilledMIRegs.clear();
      for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
        unsigned i = VirtUseOps[j];
        MachineOperand &MO = MI.getOperand(i);
        unsigned VirtReg = MO.getReg();
        assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
               "Not a virtual register?");

        unsigned SubIdx = MO.getSubReg();
        if (VRM.isAssignedReg(VirtReg)) {
          // This virtual register was assigned a physreg!
          unsigned Phys = VRM.getPhys(VirtReg);
          RegInfo->setPhysRegUsed(Phys);
          if (MO.isDef())
            ReusedOperands.markClobbered(Phys);
          unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
          MI.getOperand(i).setReg(RReg);
          MI.getOperand(i).setSubReg(0);
          if (VRM.isImplicitlyDefined(VirtReg))
            BuildMI(MBB, &MI, MI.getDebugLoc(),
                    TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
          continue;
        }
        
        // This virtual register is now known to be a spilled value.
        if (!MO.isUse())
          continue;  // Handle defs in the loop below (handle use&def here though)

        bool AvoidReload = false;
        if (LIs->hasInterval(VirtReg)) {
          LiveInterval &LI = LIs->getInterval(VirtReg);
          if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber())))
            // Must be defined by an implicit def. It should not be spilled. Note,
            // this is for correctness reason. e.g.
            // 8   %reg1024<def> = IMPLICIT_DEF
            // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
            // The live range [12, 14) are not part of the r1024 live interval since
            // it's defined by an implicit def. It will not conflicts with live
            // interval of r1025. Now suppose both registers are spilled, you can
            // easily see a situation where both registers are reloaded before
            // the INSERT_SUBREG and both target registers that would overlap.
            AvoidReload = true;
        }

        bool DoReMat = VRM.isReMaterialized(VirtReg);
        int SSorRMId = DoReMat
          ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
        int ReuseSlot = SSorRMId;

        // Check to see if this stack slot is available.
        unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);

        // If this is a sub-register use, make sure the reuse register is in the
        // right register class. For example, for x86 not all of the 32-bit
        // registers have accessible sub-registers.
        // Similarly so for EXTRACT_SUBREG. Consider this:
        // EDI = op
        // MOV32_mr fi#1, EDI
        // ...
        //       = EXTRACT_SUBREG fi#1
        // fi#1 is available in EDI, but it cannot be reused because it's not in
        // the right register file.
        if (PhysReg && !AvoidReload &&
            (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
          if (!RC->contains(PhysReg))
            PhysReg = 0;
        }

        if (PhysReg && !AvoidReload) {
          // This spilled operand might be part of a two-address operand.  If this
          // is the case, then changing it will necessarily require changing the 
          // def part of the instruction as well.  However, in some cases, we
          // aren't allowed to modify the reused register.  If none of these cases
          // apply, reuse it.
          bool CanReuse = true;
          bool isTied = MI.isRegTiedToDefOperand(i);
          if (isTied) {
            // Okay, we have a two address operand.  We can reuse this physreg as
            // long as we are allowed to clobber the value and there isn't an
            // earlier def that has already clobbered the physreg.
            CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
              Spills.canClobberPhysReg(PhysReg);
          }
          
          if (CanReuse) {
            // If this stack slot value is already available, reuse it!
            if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
              DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
            else
              DOUT << "Reusing SS#" << ReuseSlot;
            DOUT << " from physreg "
                 << TRI->getName(PhysReg) << " for vreg"
                 << VirtReg <<" instead of reloading into physreg "
                 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
            unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
            MI.getOperand(i).setReg(RReg);
            MI.getOperand(i).setSubReg(0);

            // The only technical detail we have is that we don't know that
            // PhysReg won't be clobbered by a reloaded stack slot that occurs
            // later in the instruction.  In particular, consider 'op V1, V2'.
            // If V1 is available in physreg R0, we would choose to reuse it
            // here, instead of reloading it into the register the allocator
            // indicated (say R1).  However, V2 might have to be reloaded
            // later, and it might indicate that it needs to live in R0.  When
            // this occurs, we need to have information available that
            // indicates it is safe to use R1 for the reload instead of R0.
            //
            // To further complicate matters, we might conflict with an alias,
            // or R0 and R1 might not be compatible with each other.  In this
            // case, we actually insert a reload for V1 in R1, ensuring that
            // we can get at R0 or its alias.
            ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
                                    VRM.getPhys(VirtReg), VirtReg);
            if (isTied)
              // Only mark it clobbered if this is a use&def operand.
              ReusedOperands.markClobbered(PhysReg);
            ++NumReused;

            if (MI.getOperand(i).isKill() &&
                ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {

              // The store of this spilled value is potentially dead, but we
              // won't know for certain until we've confirmed that the re-use
              // above is valid, which means waiting until the other operands
              // are processed. For now we just track the spill slot, we'll
              // remove it after the other operands are processed if valid.

              PotentialDeadStoreSlots.push_back(ReuseSlot);
            }

            // Mark is isKill if it's there no other uses of the same virtual
            // register and it's not a two-address operand. IsKill will be
            // unset if reg is reused.
            if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
              MI.getOperand(i).setIsKill();
              KilledMIRegs.insert(VirtReg);
            }

            continue;
          }  // CanReuse
          
          // Otherwise we have a situation where we have a two-address instruction
          // whose mod/ref operand needs to be reloaded.  This reload is already
          // available in some register "PhysReg", but if we used PhysReg as the
          // operand to our 2-addr instruction, the instruction would modify
          // PhysReg.  This isn't cool if something later uses PhysReg and expects
          // to get its initial value.
          //
          // To avoid this problem, and to avoid doing a load right after a store,
          // we emit a copy from PhysReg into the designated register for this
          // operand.
          unsigned DesignatedReg = VRM.getPhys(VirtReg);
          assert(DesignatedReg && "Must map virtreg to physreg!");

          // Note that, if we reused a register for a previous operand, the
          // register we want to reload into might not actually be
          // available.  If this occurs, use the register indicated by the
          // reuser.
          if (ReusedOperands.hasReuses())
            DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
                                 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
          
          // If the mapped designated register is actually the physreg we have
          // incoming, we don't need to inserted a dead copy.
          if (DesignatedReg == PhysReg) {
            // If this stack slot value is already available, reuse it!
            if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
              DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
            else
              DOUT << "Reusing SS#" << ReuseSlot;
            DOUT << " from physreg " << TRI->getName(PhysReg)
                 << " for vreg" << VirtReg
                 << " instead of reloading into same physreg.\n";
            unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
            MI.getOperand(i).setReg(RReg);
            MI.getOperand(i).setSubReg(0);
            ReusedOperands.markClobbered(RReg);
            ++NumReused;
            continue;
          }
          
          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
          RegInfo->setPhysRegUsed(DesignatedReg);
          ReusedOperands.markClobbered(DesignatedReg);
          TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);

          MachineInstr *CopyMI = prior(MII);
          UpdateKills(*CopyMI, RegKills, KillOps, TRI);

          // This invalidates DesignatedReg.
          Spills.ClobberPhysReg(DesignatedReg);
          
          Spills.addAvailable(ReuseSlot, DesignatedReg);
          unsigned RReg =
            SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
          MI.getOperand(i).setReg(RReg);
          MI.getOperand(i).setSubReg(0);
          DOUT << '\t' << *prior(MII);
          ++NumReused;
          continue;
        } // if (PhysReg)
        
        // Otherwise, reload it and remember that we have it.
        PhysReg = VRM.getPhys(VirtReg);
        assert(PhysReg && "Must map virtreg to physreg!");

        // Note that, if we reused a register for a previous operand, the
        // register we want to reload into might not actually be
        // available.  If this occurs, use the register indicated by the
        // reuser.
        if (ReusedOperands.hasReuses())
          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
                                 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
        
        RegInfo->setPhysRegUsed(PhysReg);
        ReusedOperands.markClobbered(PhysReg);
        if (AvoidReload)
          ++NumAvoided;
        else {
          if (DoReMat) {
            ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
          } else {
            const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
            TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
            MachineInstr *LoadMI = prior(MII);
            VRM.addSpillSlotUse(SSorRMId, LoadMI);
            ++NumLoads;
          }
          // This invalidates PhysReg.
          Spills.ClobberPhysReg(PhysReg);

          // Any stores to this stack slot are not dead anymore.
          if (!DoReMat)
            MaybeDeadStores[SSorRMId] = NULL;
          Spills.addAvailable(SSorRMId, PhysReg);
          // Assumes this is the last use. IsKill will be unset if reg is reused
          // unless it's a two-address operand.
          if (!MI.isRegTiedToDefOperand(i) &&
              KilledMIRegs.count(VirtReg) == 0) {
            MI.getOperand(i).setIsKill();
            KilledMIRegs.insert(VirtReg);
          }

          UpdateKills(*prior(MII), RegKills, KillOps, TRI);
          DOUT << '\t' << *prior(MII);
        }
        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
        MI.getOperand(i).setReg(RReg);
        MI.getOperand(i).setSubReg(0);
      }

      // Ok - now we can remove stores that have been confirmed dead.
      for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
        // This was the last use and the spilled value is still available
        // for reuse. That means the spill was unnecessary!
        int PDSSlot = PotentialDeadStoreSlots[j];
        MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
        if (DeadStore) {
          DOUT << "Removed dead store:\t" << *DeadStore;
          InvalidateKills(*DeadStore, RegKills, KillOps);
          VRM.RemoveMachineInstrFromMaps(DeadStore);
          MBB.erase(DeadStore);
          MaybeDeadStores[PDSSlot] = NULL;
          ++NumDSE;
        }
      }


      DOUT << '\t' << MI;


      // If we have folded references to memory operands, make sure we clear all
      // physical registers that may contain the value of the spilled virtual
      // register
      SmallSet<int, 2> FoldedSS;
      for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
        unsigned VirtReg = I->second.first;
        VirtRegMap::ModRef MR = I->second.second;
        DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;

        // MI2VirtMap be can updated which invalidate the iterator.
        // Increment the iterator first.
        ++I;
        int SS = VRM.getStackSlot(VirtReg);
        if (SS == VirtRegMap::NO_STACK_SLOT)
          continue;
        FoldedSS.insert(SS);
        DOUT << " - StackSlot: " << SS << "\n";
        
        // If this folded instruction is just a use, check to see if it's a
        // straight load from the virt reg slot.
        if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
          int FrameIdx;
          unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
          if (DestReg && FrameIdx == SS) {
            // If this spill slot is available, turn it into a copy (or nothing)
            // instead of leaving it as a load!
            if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
              DOUT << "Promoted Load To Copy: " << MI;
              if (DestReg != InReg) {
                const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
                TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
                MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
                unsigned SubIdx = DefMO->getSubReg();
                // Revisit the copy so we make sure to notice the effects of the
                // operation on the destreg (either needing to RA it if it's 
                // virtual or needing to clobber any values if it's physical).
                NextMII = &MI;
                --NextMII;  // backtrack to the copy.
                // Propagate the sub-register index over.
                if (SubIdx) {
                  DefMO = NextMII->findRegisterDefOperand(DestReg);
                  DefMO->setSubReg(SubIdx);
                }

                // Mark is killed.
                MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
                KillOpnd->setIsKill();

                BackTracked = true;
              } else {
                DOUT << "Removing now-noop copy: " << MI;
                // Unset last kill since it's being reused.
                InvalidateKill(InReg, RegKills, KillOps);
                Spills.disallowClobberPhysReg(InReg);
              }

              InvalidateKills(MI, RegKills, KillOps);
              VRM.RemoveMachineInstrFromMaps(&MI);
              MBB.erase(&MI);
              Erased = true;
              goto ProcessNextInst;
            }
          } else {
            unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
            SmallVector<MachineInstr*, 4> NewMIs;
            if (PhysReg &&
                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
              MBB.insert(MII, NewMIs[0]);
              InvalidateKills(MI, RegKills, KillOps);
              VRM.RemoveMachineInstrFromMaps(&MI);
              MBB.erase(&MI);
              Erased = true;
              --NextMII;  // backtrack to the unfolded instruction.
              BackTracked = true;
              goto ProcessNextInst;
            }
          }
        }

        // If this reference is not a use, any previous store is now dead.
        // Otherwise, the store to this stack slot is not dead anymore.
        MachineInstr* DeadStore = MaybeDeadStores[SS];
        if (DeadStore) {
          bool isDead = !(MR & VirtRegMap::isRef);
          MachineInstr *NewStore = NULL;
          if (MR & VirtRegMap::isModRef) {
            unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
            SmallVector<MachineInstr*, 4> NewMIs;
            // We can reuse this physreg as long as we are allowed to clobber
            // the value and there isn't an earlier def that has already clobbered
            // the physreg.
            if (PhysReg &&
                !ReusedOperands.isClobbered(PhysReg) &&
                Spills.canClobberPhysReg(PhysReg) &&
                !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
              MachineOperand *KillOpnd =
                DeadStore->findRegisterUseOperand(PhysReg, true);
              // Note, if the store is storing a sub-register, it's possible the
              // super-register is needed below.
              if (KillOpnd && !KillOpnd->getSubReg() &&
                  TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
                MBB.insert(MII, NewMIs[0]);
                NewStore = NewMIs[1];
                MBB.insert(MII, NewStore);
                VRM.addSpillSlotUse(SS, NewStore);
                InvalidateKills(MI, RegKills, KillOps);
                VRM.RemoveMachineInstrFromMaps(&MI);
                MBB.erase(&MI);
                Erased = true;
                --NextMII;
                --NextMII;  // backtrack to the unfolded instruction.
                BackTracked = true;
                isDead = true;
                ++NumSUnfold;
              }
            }
          }

          if (isDead) {  // Previous store is dead.
            // If we get here, the store is dead, nuke it now.
            DOUT << "Removed dead store:\t" << *DeadStore;
            InvalidateKills(*DeadStore, RegKills, KillOps);
            VRM.RemoveMachineInstrFromMaps(DeadStore);
            MBB.erase(DeadStore);
            if (!NewStore)
              ++NumDSE;
          }

          MaybeDeadStores[SS] = NULL;
          if (NewStore) {
            // Treat this store as a spill merged into a copy. That makes the
            // stack slot value available.
            VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
            goto ProcessNextInst;
          }
        }

        // If the spill slot value is available, and this is a new definition of
        // the value, the value is not available anymore.
        if (MR & VirtRegMap::isMod) {
          // Notice that the value in this stack slot has been modified.
          Spills.ModifyStackSlotOrReMat(SS);