Skip to content
RegAllocGreedy.cpp 48.9 KiB
Newer Older
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "LiveDebugVariables.h"
#include "LiveRangeEdit.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopRanges.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits,  "Number of split local live ranges");
STATISTIC(NumEvicted,      "Number of interferences evicted");

static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
                                       createGreedyRegisterAllocator);

namespace {
class RAGreedy : public MachineFunctionPass,
                 public RegAllocBase,
                 private LiveRangeEdit::Delegate {

  // context
  MachineFunction *MF;
  BitVector ReservedRegs;

  // analyses
  LiveStacks *LS;
  MachineDominatorTree *DomTree;
  MachineLoopInfo *Loops;
  MachineLoopRanges *LoopRanges;
  EdgeBundles *Bundles;
  SpillPlacement *SpillPlacer;
  // state
  std::auto_ptr<Spiller> SpillerInstance;
  std::priority_queue<std::pair<unsigned, unsigned> > Queue;

  // Live ranges pass through a number of stages as we try to allocate them.
  // Some of the stages may also create new live ranges:
  //
  // - Region splitting.
  // - Per-block splitting.
  // - Local splitting.
  // - Spilling.
  //
  // Ranges produced by one of the stages skip the previous stages when they are
  // dequeued. This improves performance because we can skip interference checks
  // that are unlikely to give any results. It also guarantees that the live
  // range splitting algorithm terminates, something that is otherwise hard to
  // ensure.
  enum LiveRangeStage {
    RS_New,      ///< Never seen before.
    RS_First,    ///< First time in the queue.
    RS_Global,   ///< Produced by global splitting.
    RS_Local,    ///< Produced by local splitting.
    RS_Spill     ///< Produced by spilling.
  };

  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;

  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    return LiveRangeStage(LRStage[VirtReg.reg]);
  }

  template<typename Iterator>
  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    LRStage.resize(MRI->getNumVirtRegs());
    for (;Begin != End; ++Begin) {
      unsigned Reg = (*Begin)->reg;
      if (LRStage[Reg] == RS_New)
        LRStage[Reg] = NewStage;
    }
  /// Cached per-block interference maps
  InterferenceCache IntfCache;

  /// All basic blocks where the current register has uses.
  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
  /// Global live range splitting candidate info.
  struct GlobalSplitCandidate {
    unsigned PhysReg;
    BitVector LiveBundles;
    SmallVector<unsigned, 8> ActiveBlocks;

    void reset(unsigned Reg) {
      PhysReg = Reg;
      LiveBundles.clear();
      ActiveBlocks.clear();
    }
  };

  /// Candidate info for for each PhysReg in AllocationOrder.
  /// This vector never shrinks, but grows to the size of the largest register
  /// class.
  SmallVector<GlobalSplitCandidate, 32> GlobalCand;

  /// For every instruction in SA->UseSlots, store the previous non-copy
  /// instruction.
  SmallVector<SlotIndex, 8> PrevSlot;

public:
  RAGreedy();

  /// Return the pass name.
  virtual const char* getPassName() const {
  }

  /// RAGreedy analysis usage.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
  virtual void releaseMemory();
  virtual Spiller &spiller() { return *SpillerInstance; }
  virtual void enqueue(LiveInterval *LI);
  virtual LiveInterval *dequeue();
  virtual unsigned selectOrSplit(LiveInterval&,
                                 SmallVectorImpl<LiveInterval*>&);

  /// Perform register allocation.
  virtual bool runOnMachineFunction(MachineFunction &mf);

  static char ID;
  void LRE_WillEraseInstruction(MachineInstr*);
  bool LRE_CanEraseVirtReg(unsigned);
  void LRE_WillShrinkVirtReg(unsigned);
  void LRE_DidCloneVirtReg(unsigned, unsigned);
  bool addSplitConstraints(InterferenceCache::Cursor, float&);
  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
  void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
  float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
  SlotIndex getPrevMappedIndex(const MachineInstr*);
  void calcPrevSlots();
  unsigned nextSplitPoint(unsigned);
  bool canEvictInterference(LiveInterval&, unsigned, float&);
  unsigned tryAssign(LiveInterval&, AllocationOrder&,
                     SmallVectorImpl<LiveInterval*>&);
  unsigned tryEvict(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
                          SmallVectorImpl<LiveInterval*>&);
  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    SmallVectorImpl<LiveInterval*>&);
  unsigned trySplit(LiveInterval&, AllocationOrder&,
                    SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace

char RAGreedy::ID = 0;

FunctionPass* llvm::createGreedyRegisterAllocator() {
  return new RAGreedy();
}

RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
}

void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveDebugVariables>();
  AU.addPreserved<LiveDebugVariables>();
  if (StrongPHIElim)
    AU.addRequiredID(StrongPHIEliminationID);
  AU.addRequiredTransitive<RegisterCoalescer>();
  AU.addRequired<CalculateSpillWeights>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineLoopRanges>();
  AU.addPreserved<MachineLoopRanges>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  AU.addRequired<EdgeBundles>();
  AU.addRequired<SpillPlacement>();
  MachineFunctionPass::getAnalysisUsage(AU);
}


//===----------------------------------------------------------------------===//
//                     LiveRangeEdit delegate methods
//===----------------------------------------------------------------------===//

void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
  // LRE itself will remove from SlotIndexes and parent basic block.
  VRM->RemoveMachineInstrFromMaps(MI);
}

bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
    unassign(LIS->getInterval(VirtReg), PhysReg);
    return true;
  }
  // Unassigned virtreg is probably in the priority queue.
  // RegAllocBase will erase it after dequeueing.
  return false;
}
void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
  unsigned PhysReg = VRM->getPhys(VirtReg);
  if (!PhysReg)
    return;

  // Register is assigned, put it back on the queue for reassignment.
  LiveInterval &LI = LIS->getInterval(VirtReg);
  unassign(LI, PhysReg);
  enqueue(&LI);
}

void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
  // LRE may clone a virtual register because dead code elimination causes it to
  // be split into connected components. Ensure that the new register gets the
  // same stage as the parent.
  LRStage.grow(New);
  LRStage[New] = LRStage[Old];
}

void RAGreedy::releaseMemory() {
  SpillerInstance.reset(0);
  GlobalCand.clear();
  RegAllocBase::releaseMemory();
}

void RAGreedy::enqueue(LiveInterval *LI) {
  // Prioritize live ranges by size, assigning larger ranges first.
  // The queue holds (size, reg) pairs.
  const unsigned Size = LI->getSize();
  const unsigned Reg = LI->reg;
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
         "Can only enqueue virtual registers");
  if (LRStage[Reg] == RS_New)
    LRStage[Reg] = RS_First;

  if (LRStage[Reg] == RS_Second)
    // Unsplit ranges that couldn't be allocated immediately are deferred until
    // everything else has been allocated. Long ranges are allocated last so
    // they are split against realistic interference.
    Prio = (1u << 31) - Size;
  else {
    // Everything else is allocated in long->short order. Long ranges that don't
    // fit should be spilled ASAP so they don't create interference.
    // Boost ranges that have a physical register hint.
    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
      Prio |= (1u << 30);
  }

  Queue.push(std::make_pair(Prio, Reg));
LiveInterval *RAGreedy::dequeue() {
  if (Queue.empty())
    return 0;
  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
  Queue.pop();
  return LI;
}

//===----------------------------------------------------------------------===//
//                            Direct Assignment
//===----------------------------------------------------------------------===//

/// tryAssign - Try to assign VirtReg to an available register.
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
                             AllocationOrder &Order,
                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
  Order.rewind();
  unsigned PhysReg;
  while ((PhysReg = Order.next()))
    if (!checkPhysRegInterference(VirtReg, PhysReg))
      break;
  if (!PhysReg || Order.isHint(PhysReg))
    return PhysReg;

  // PhysReg is available. Try to evict interference from a cheaper alternative.
  unsigned Cost = TRI->getCostPerUse(PhysReg);

  // Most registers have 0 additional cost.
  if (!Cost)
    return PhysReg;

  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
               << '\n');
  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
  return CheapReg ? CheapReg : PhysReg;
}


//===----------------------------------------------------------------------===//
//                         Interference eviction
//===----------------------------------------------------------------------===//
/// canEvict - Return true if all interferences between VirtReg and PhysReg can
/// be evicted.
/// Return false if any interference is heavier than MaxWeight.
/// On return, set MaxWeight to the maximal spill weight of an interference.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
  float Weight = 0;
  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    // If there is 10 or more interferences, chances are one is heavier.
    if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
    // Check if any interfering live range is heavier than MaxWeight.
    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
        return false;
        return false;
      Weight = std::max(Weight, Intf->weight);
  MaxWeight = Weight;
  return true;
}

/// tryEvict - Try to evict all interferences for a physreg.
/// @param  VirtReg Currently unassigned virtual register.
/// @param  Order   Physregs to try.
/// @return         Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
                            AllocationOrder &Order,
                            SmallVectorImpl<LiveInterval*> &NewVRegs,
                            unsigned CostPerUseLimit) {
  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);

  // Keep track of the lightest single interference seen so far.
  unsigned BestPhys = 0;

  Order.rewind();
  while (unsigned PhysReg = Order.next()) {
    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
      continue;
    // The first use of a register in a function has cost 1.
    if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
      continue;

    if (!canEvictInterference(VirtReg, PhysReg, Weight))
      continue;

    // This is an eviction candidate.
    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
                 << Weight << '\n');
    if (BestPhys && Weight >= BestWeight)
      continue;

    // Best so far.
    BestPhys = PhysReg;
    BestWeight = Weight;
    // Stop if the hint can be used.
    if (Order.isHint(PhysReg))
      break;
  if (!BestPhys)
    return 0;

  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
      LiveInterval *Intf = Q.interferingVRegs()[i];
      unassign(*Intf, VRM->getPhys(Intf->reg));
      ++NumEvicted;
      NewVRegs.push_back(Intf);
    }
  }
  return BestPhys;
//===----------------------------------------------------------------------===//
//                              Region Splitting
//===----------------------------------------------------------------------===//

/// addSplitConstraints - Fill out the SplitConstraints vector based on the
/// interference pattern in Physreg and its aliases. Add the constraints to
/// SpillPlacement and return the static cost of this split in Cost, assuming
/// that all preferences in SplitConstraints are met.
/// Return false if there are no bundles with positive bias.
bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
                                   float &Cost) {
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  // Reset interference dependent info.
  SplitConstraints.resize(UseBlocks.size());
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];

    Intf.moveToBlock(BC.Number);
    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    if (!Intf.hasInterference())
      continue;

    // Number of spill code instructions to insert.
    unsigned Ins = 0;

    // Interference for the live-in value.
      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
        BC.Entry = SpillPlacement::MustSpill, ++Ins;
      else if (Intf.first() < BI.FirstUse)
      else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
        BC.Exit = SpillPlacement::MustSpill, ++Ins;
      else if (Intf.last() > BI.LastUse)
      else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def))
    // Accumulate the total frequency of inserted spill code.
    if (Ins)
      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
  // Add constraints for use-blocks. Note that these are the only constraints
  // that may add a positive bias, it is downhill from here.
  SpillPlacer->addConstraints(SplitConstraints);
/// addThroughConstraints - Add constraints and links to SpillPlacer from the
/// live-through blocks in Blocks.
void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
                                     ArrayRef<unsigned> Blocks) {
  const unsigned GroupSize = 8;
  SpillPlacement::BlockConstraint BCS[GroupSize];
  unsigned TBS[GroupSize];
  unsigned B = 0, T = 0;
  for (unsigned i = 0; i != Blocks.size(); ++i) {
    unsigned Number = Blocks[i];
      assert(T < GroupSize && "Array overflow");
      TBS[T] = Number;
      if (++T == GroupSize) {
        SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
        T = 0;
      }
    assert(B < GroupSize && "Array overflow");
    BCS[B].Number = Number;

    // Interference for the live-in value.
    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
      BCS[B].Entry = SpillPlacement::MustSpill;
    else
      BCS[B].Entry = SpillPlacement::PrefSpill;

    // Interference for the live-out value.
    if (Intf.last() >= SA->getLastSplitPoint(Number))
      BCS[B].Exit = SpillPlacement::MustSpill;
    else
      BCS[B].Exit = SpillPlacement::PrefSpill;

    if (++B == GroupSize) {
      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
      SpillPlacer->addConstraints(Array);
      B = 0;
    }
  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
  SpillPlacer->addConstraints(Array);
  SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
                          InterferenceCache::Cursor Intf) {
  // Keep track of through blocks that have not been added to SpillPlacer.
  BitVector Todo = SA->getThroughBlocks();
  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
  unsigned AddedTo = 0;
  for (;;) {
    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
    if (NewBundles.empty())
      break;
    // Find new through blocks in the periphery of PrefRegBundles.
    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
      unsigned Bundle = NewBundles[i];
      // Look at all blocks connected to Bundle in the full graph.
      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
           I != E; ++I) {
        unsigned Block = *I;
        if (!Todo.test(Block))
        Todo.reset(Block);
        // This is a new through block. Add it to SpillPlacer later.
        ActiveBlocks.push_back(Block);
    if (ActiveBlocks.size() > AddedTo) {
      ArrayRef<unsigned> Add(&ActiveBlocks[AddedTo],
                             ActiveBlocks.size() - AddedTo);
      addThroughConstraints(Intf, Add);
      AddedTo = ActiveBlocks.size();
    }
    // Perhaps iterating can enable more bundles?
    SpillPlacer->iterate();
  }
  DEBUG(dbgs() << ", v=" << Visited);
}
/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
                                    InterferenceCache::Cursor Intf) {
  const BitVector &LiveBundles = Cand.LiveBundles;
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
    unsigned Ins = 0;

    if (BI.LiveIn)
      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
    if (BI.LiveOut)
      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
    if (Ins)
      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    unsigned Number = Cand.ActiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
    if (!RegIn && !RegOut)
      continue;
    if (RegIn && RegOut) {
      // We need double spill code if this block has interference.
      Intf.moveToBlock(Number);
      if (Intf.hasInterference())
        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
      continue;
    }
    // live-in / stack-out or stack-in live-out.
    GlobalCost += SpillPlacer->getBlockFrequency(Number);
/// splitAroundRegion - Split VirtReg around the region determined by
/// LiveBundles. Make an effort to avoid interference from PhysReg.
///
/// The 'register' interval is going to contain as many uses as possible while
/// avoiding interference. The 'stack' interval is the complement constructed by
/// SplitEditor. It will contain the rest.
///
void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
                                 GlobalSplitCandidate &Cand,
                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
  const BitVector &LiveBundles = Cand.LiveBundles;

    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
           << " with bundles";
    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
      dbgs() << " EB#" << i;
    dbgs() << ".\n";
  });

  InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);

  // Create the main cross-block interval.
  const unsigned MainIntv = SE->openIntv();

  // First add all defs that are live out of a block.
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];

    // Create separate intervals for isolated blocks with multiple uses.
    if (!RegIn && !RegOut && BI.FirstUse != BI.LastUse) {
      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
      SE->splitSingleBlock(BI);
      SE->selectIntv(MainIntv);
      continue;
    }

    // Should the register be live out?
    if (!BI.LiveOut || !RegOut)
      continue;

    SlotIndex Start, Stop;
    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
    Intf.moveToBlock(BI.MBB->getNumber());
    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
                 << " [" << Start << ';'
                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');

    // The interference interval should either be invalid or overlap MBB.
    assert((!Intf.hasInterference() || Intf.first() < Stop)
           && "Bad interference");
    assert((!Intf.hasInterference() || Intf.last() > Start)

    // Check interference leaving the block.
    if (!Intf.hasInterference()) {
      // Block is interference-free.
      DEBUG(dbgs() << ", no interference");
      if (!BI.LiveThrough) {
        DEBUG(dbgs() << ", not live-through.\n");
        SE->useIntv(SE->enterIntvBefore(BI.Def), Stop);
        continue;
      }
      if (!RegIn) {
        // Block is live-through, but entry bundle is on the stack.
        // Reload just before the first use.
        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
        continue;
      }
      DEBUG(dbgs() << ", live-through.\n");
      continue;
    }

    // Block has interference.
    DEBUG(dbgs() << ", interference to " << Intf.last());
    if (!BI.LiveThrough && Intf.last() <= BI.Def) {
      // The interference doesn't reach the outgoing segment.
      DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
    SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
    if (Intf.last().getBoundaryIndex() < BI.LastUse) {
      // There are interference-free uses at the end of the block.
      // Find the first use that can get the live-out register.
      SmallVectorImpl<SlotIndex>::const_iterator UI =
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
                         Intf.last().getBoundaryIndex());
      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
      SlotIndex Use = *UI;
      assert(Use <= BI.LastUse && "Couldn't find last use");
      // Only attempt a split befroe the last split point.
      if (Use.getBaseIndex() <= LastSplitPoint) {
        DEBUG(dbgs() << ", free use at " << Use << ".\n");
        assert(SegStart >= Intf.last() && "Couldn't avoid interference");
        assert(SegStart < LastSplitPoint && "Impossible split point");
    }

    // Interference is after the last use.
    DEBUG(dbgs() << " after last use.\n");
    assert(SegStart >= Intf.last() && "Couldn't avoid interference");
  }

  // Now all defs leading to live bundles are handled, do everything else.
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];

    // Is the register live-in?
    if (!BI.LiveIn || !RegIn)
      continue;

    // We have an incoming register. Check for interference.
    SlotIndex Start, Stop;
    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
    Intf.moveToBlock(BI.MBB->getNumber());
    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
                 << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
                 << ')');

    // Check interference entering the block.
    if (!Intf.hasInterference()) {
      // Block is interference-free.
      DEBUG(dbgs() << ", no interference");
      if (!BI.LiveThrough) {
        DEBUG(dbgs() << ", killed in block.\n");
        SE->useIntv(Start, SE->leaveIntvAfter(BI.Kill));
        SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
        // Block is live-through, but exit bundle is on the stack.
        // Spill immediately after the last use.
          SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
          continue;
        }
        // The last use is after the last split point, it is probably an
        // indirect jump.
        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
                     << LastSplitPoint << ", stack-out.\n");
        SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
        // Run a double interval from the split to the last use.
        // This makes it possible to spill the complement without affecting the
        // indirect branch.
        continue;
      }
      // Register is live-through.
      DEBUG(dbgs() << ", uses, live-through.\n");
    DEBUG(dbgs() << ", interference from " << Intf.first());
    if (!BI.LiveThrough && Intf.first() >= BI.Kill) {
      // The interference doesn't reach the outgoing segment.
      DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
    if (Intf.first().getBaseIndex() > BI.FirstUse) {
      // There are interference-free uses at the beginning of the block.
      // Find the last use that can get the register.
      SmallVectorImpl<SlotIndex>::const_iterator UI =
        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
                         Intf.first().getBaseIndex());
      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
      SlotIndex Use = (--UI)->getBoundaryIndex();
      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
      continue;
    }

    // Interference is before the first use.
    DEBUG(dbgs() << " before first use.\n");
    assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    unsigned Number = Cand.ActiveBlocks[i];
    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
    DEBUG(dbgs() << "Live through BB#" << Number << '\n');
    if (RegIn && RegOut) {
      Intf.moveToBlock(Number);
      if (!Intf.hasInterference()) {
        SE->useIntv(Indexes->getMBBStartIdx(Number),
                    Indexes->getMBBEndIdx(Number));
        continue;
      }
    }
    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
    if (RegIn)
      SE->leaveIntvAtTop(*MBB);
    if (RegOut)
      SE->enterIntvAtEnd(*MBB);
  }

  SmallVector<unsigned, 8> IntvMap;
  SE->finish(&IntvMap);
  LRStage.resize(MRI->getNumVirtRegs());

  // Sort out the new intervals created by splitting. We get four kinds:
  // - Remainder intervals should not be split again.
  // - Candidate intervals can be assigned to Cand.PhysReg.
  // - Block-local splits are candidates for local splitting.
  // - DCE leftovers should go back on the queue.
  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
    unsigned Reg = LREdit.get(i)->reg;

    // Ignore old intervals from DCE.
    if (LRStage[Reg] != RS_New)
      continue;

    // Remainder interval. Don't try splitting again, spill if it doesn't
    // allocate.
    if (IntvMap[i] == 0) {
      LRStage[Reg] = RS_Global;
      continue;
    }

    // Other intervals are treated as new. This includes the main interval,
    // local intervals created for blocks with multiple uses, and anything
    // created by DCE.
  }

    MF->verify(this, "After splitting live range around region");
}

unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
  float BestCost = 0;
  const unsigned NoCand = ~0u;
  unsigned BestCand = NoCand;
  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
    if (GlobalCand.size() <= Cand)
      GlobalCand.resize(Cand+1);
    GlobalCand[Cand].reset(PhysReg);
    SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
    InterferenceCache::Cursor Intf(IntfCache, PhysReg);
    if (!addSplitConstraints(Intf, Cost)) {
      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
    if (BestCand != NoCand && Cost >= BestCost) {
      DEBUG(dbgs() << " worse than "
                   << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n');
    growRegion(GlobalCand[Cand], Intf);
    // No live bundles, defer to splitSingleBlocks().
    if (!GlobalCand[Cand].LiveBundles.any()) {
      DEBUG(dbgs() << " no bundles.\n");
    Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
    DEBUG({
      dbgs() << ", total = " << Cost << " with bundles";
      for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
           i = GlobalCand[Cand].LiveBundles.find_next(i))
        dbgs() << " EB#" << i;
      dbgs() << ".\n";
    });
    if (BestCand == NoCand || Cost < BestCost) {
      BestCand = Cand;
      BestCost = 0.98f * Cost; // Prevent rounding effects.
  if (BestCand == NoCand)
  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
//===----------------------------------------------------------------------===//
//                             Local Splitting
//===----------------------------------------------------------------------===//


/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
                              SmallVectorImpl<float> &GapWeight) {
  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
  const unsigned NumGaps = Uses.size()-1;

  // Start and end points for the interference check.
  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;

  GapWeight.assign(NumGaps, 0.0f);

  // Add interference from each overlapping register.