Newer
Older
Chain = RetVal.getValue(1);
if (RetTyVT == MVT::i1)
RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal);
break;
RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag);
Chain = RetVal.getValue(1);
case MVT::i32:
RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
Chain = RetVal.getValue(1);
case MVT::i64: {
SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag);
SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32,
Lo.getValue(2));
RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
Chain = Hi.getValue(1);
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
case MVT::f32:
case MVT::f64: {
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(InFlag);
RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops);
Chain = RetVal.getValue(1);
InFlag = RetVal.getValue(2);
if (X86ScalarSSE) {
// FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys.clear();
Tys.push_back(MVT::Other);
Ops.clear();
Ops.push_back(Chain);
Ops.push_back(RetVal);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(RetTyVT));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot,
DAG.getSrcValue(NULL));
Chain = RetVal.getValue(1);
}
if (RetTyVT == MVT::f32 && !X86ScalarSSE)
// FIXME: we would really like to remember that this FP_ROUND
// operation is okay to eliminate if we allow excess FP precision.
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
break;
}
}
return std::make_pair(RetVal, Chain);
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
}
SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
MachineFunction &MF = DAG.getMachineFunction();
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
}
return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32);
}
std::pair<SDOperand, SDOperand> X86TargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
SelectionDAG &DAG) {
SDOperand Result;
if (Depth) // Depths > 0 not supported yet!
Result = DAG.getConstant(0, getPointerTy());
else {
SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
if (!isFrameAddress)
// Just load the return address
Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI,
DAG.getSrcValue(NULL));
else
Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI,
DAG.getConstant(4, MVT::i32));
}
return std::make_pair(Result, Chain);
}
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
/// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode
/// which corresponds to the condition code.
static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) {
switch (X86CC) {
default: assert(0 && "Unknown X86 conditional code!");
case X86ISD::COND_A: return X86::JA;
case X86ISD::COND_AE: return X86::JAE;
case X86ISD::COND_B: return X86::JB;
case X86ISD::COND_BE: return X86::JBE;
case X86ISD::COND_E: return X86::JE;
case X86ISD::COND_G: return X86::JG;
case X86ISD::COND_GE: return X86::JGE;
case X86ISD::COND_L: return X86::JL;
case X86ISD::COND_LE: return X86::JLE;
case X86ISD::COND_NE: return X86::JNE;
case X86ISD::COND_NO: return X86::JNO;
case X86ISD::COND_NP: return X86::JNP;
case X86ISD::COND_NS: return X86::JNS;
case X86ISD::COND_O: return X86::JO;
case X86ISD::COND_P: return X86::JP;
case X86ISD::COND_S: return X86::JS;
}
}
/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
/// specific condition code. It returns a false if it cannot do a direct
/// translation. X86CC is the translated CondCode. Flip is set to true if the
/// the order of comparison operands should be flipped.
static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC,
bool &Flip) {
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
Flip = false;
X86CC = X86ISD::COND_INVALID;
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
if (!isFP) {
switch (SetCCOpcode) {
default: break;
case ISD::SETEQ: X86CC = X86ISD::COND_E; break;
case ISD::SETGT: X86CC = X86ISD::COND_G; break;
case ISD::SETGE: X86CC = X86ISD::COND_GE; break;
case ISD::SETLT: X86CC = X86ISD::COND_L; break;
case ISD::SETLE: X86CC = X86ISD::COND_LE; break;
case ISD::SETNE: X86CC = X86ISD::COND_NE; break;
case ISD::SETULT: X86CC = X86ISD::COND_B; break;
case ISD::SETUGT: X86CC = X86ISD::COND_A; break;
case ISD::SETULE: X86CC = X86ISD::COND_BE; break;
case ISD::SETUGE: X86CC = X86ISD::COND_AE; break;
}
} else {
// On a floating point condition, the flags are set as follows:
// ZF PF CF op
// 0 | 0 | 0 | X > Y
// 0 | 0 | 1 | X < Y
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
switch (SetCCOpcode) {
default: break;
case ISD::SETUEQ:
case ISD::SETEQ: X86CC = X86ISD::COND_E; break;
case ISD::SETOLE: Flip = true; // Fallthrough
case ISD::SETOGT:
case ISD::SETGT: X86CC = X86ISD::COND_A; break;
case ISD::SETOLT: Flip = true; // Fallthrough
case ISD::SETOGE:
case ISD::SETGE: X86CC = X86ISD::COND_AE; break;
case ISD::SETUGE: Flip = true; // Fallthrough
case ISD::SETULT:
case ISD::SETLT: X86CC = X86ISD::COND_B; break;
case ISD::SETUGT: Flip = true; // Fallthrough
case ISD::SETULE:
case ISD::SETLE: X86CC = X86ISD::COND_BE; break;
case ISD::SETONE:
case ISD::SETNE: X86CC = X86ISD::COND_NE; break;
case ISD::SETUO: X86CC = X86ISD::COND_P; break;
case ISD::SETO: X86CC = X86ISD::COND_NP; break;
}
}
return X86CC != X86ISD::COND_INVALID;
/// hasFPCMov - is there a floating point cmov for the specific X86 condition
/// code. Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
switch (X86CC) {
default:
return false;
case X86ISD::COND_B:
case X86ISD::COND_BE:
case X86ISD::COND_E:
case X86ISD::COND_P:
case X86ISD::COND_A:
case X86ISD::COND_AE:
case X86ISD::COND_NE:
case X86ISD::COND_NP:
return true;
}
}
MachineBasicBlock *
X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
MachineBasicBlock *BB) {
switch (MI->getOpcode()) {
default: assert(false && "Unexpected instr type to insert");
case X86::CMOV_FR32:
case X86::CMOV_FR64: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue());
BuildMI(BB, Opc, 1).addMBB(sinkMBB);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
delete MI; // The pseudo instruction is gone now.
return BB;
}
case X86::FP_TO_INT16_IN_MEM:
case X86::FP_TO_INT32_IN_MEM:
case X86::FP_TO_INT64_IN_MEM: {
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
MachineFunction *F = BB->getParent();
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
// Load the old value of the high byte of the control word...
unsigned OldCW =
F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass);
addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);
// Set the high part to be round to zero...
addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);
// Reload the modified control word now...
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
// Restore the memory image of control word to original value
addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI->getOpcode()) {
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
}
X86AddressMode AM;
MachineOperand &Op = MI->getOperand(0);
if (Op.isRegister()) {
AM.BaseType = X86AddressMode::RegBase;
AM.Base.Reg = Op.getReg();
} else {
AM.BaseType = X86AddressMode::FrameIndexBase;
AM.Base.FrameIndex = Op.getFrameIndex();
}
Op = MI->getOperand(1);
if (Op.isImmediate())
AM.Scale = Op.getImmedValue();
Op = MI->getOperand(2);
if (Op.isImmediate())
AM.IndexReg = Op.getImmedValue();
Op = MI->getOperand(3);
if (Op.isGlobalAddress()) {
AM.GV = Op.getGlobal();
} else {
AM.Disp = Op.getImmedValue();
}
addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg());
// Reload the original control word now.
addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
delete MI; // The pseudo instruction is gone now.
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// X86 Custom Lowering Hooks
//===----------------------------------------------------------------------===//
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: assert(0 && "Should not custom lower this!");
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: {
assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
"Not an i64 shift!");
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDOperand ShOpLo = Op.getOperand(0);
SDOperand ShOpHi = Op.getOperand(1);
SDOperand ShAmt = Op.getOperand(2);
SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi,
: DAG.getConstant(0, MVT::i32);
SDOperand Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
} else {
Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
}
SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag,
ShAmt, DAG.getConstant(32, MVT::i8));
SDOperand Hi, Lo;
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::i32);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Ops.push_back(Tmp2);
Ops.push_back(Tmp3);
Ops.push_back(CC);
Ops.push_back(InFlag);
Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops);
InFlag = Hi.getValue(1);
Ops.clear();
Ops.push_back(Tmp3);
Ops.push_back(Tmp1);
Ops.push_back(CC);
Ops.push_back(InFlag);
Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops);
} else {
Ops.push_back(Tmp2);
Ops.push_back(Tmp3);
Ops.push_back(CC);
Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops);
InFlag = Lo.getValue(1);
Ops.clear();
Ops.push_back(Tmp3);
Ops.push_back(Tmp1);
Ops.push_back(CC);
Ops.push_back(InFlag);
Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops);
}
Tys.clear();
Tys.push_back(MVT::i32);
Tys.push_back(MVT::i32);
Ops.clear();
Ops.push_back(Lo);
Ops.push_back(Hi);
return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops);
}
case ISD::SINT_TO_FP: {
assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
Op.getOperand(0).getValueType() >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
SDOperand Result;
MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
unsigned Size = MVT::getSizeInBits(SrcVT)/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other,
DAG.getEntryNode(), Op.getOperand(0),
StackSlot, DAG.getSrcValue(NULL));
// Build the FILD
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
if (X86ScalarSSE) Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(StackSlot);
Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Tys, Ops);
if (X86ScalarSSE) {
Chain = Result.getValue(1);
SDOperand InFlag = Result.getValue(2);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Result);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(Op.getValueType()));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, Tys, Ops);
Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
DAG.getSrcValue(NULL));
}
}
case ISD::FP_TO_SINT: {
assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
"Unknown FP_TO_SINT to lower!");
// We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
// stack slot.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
unsigned Opc;
switch (Op.getValueType()) {
default: assert(0 && "Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
}
SDOperand Chain = DAG.getEntryNode();
SDOperand Value = Op.getOperand(0);
if (X86ScalarSSE) {
assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot,
DAG.getSrcValue(0));
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::f64);
Tys.push_back(MVT::Other);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
Value = DAG.getNode(X86ISD::FLD, Tys, Ops);
Chain = Value.getValue(1);
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
}
// Build the FP_TO_INT*_IN_MEM
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Value);
Ops.push_back(StackSlot);
SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops);
// Load the result.
return DAG.getLoad(Op.getValueType(), FIST, StackSlot,
DAG.getSrcValue(NULL));
}
case ISD::READCYCLECOUNTER: {
Chris Lattner
committed
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Op.getOperand(0));
SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops);
Ops.clear();
Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)));
Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX,
MVT::i32, Ops[0].getValue(2)));
Ops.push_back(Ops[1].getValue(1));
Tys[0] = Tys[1] = MVT::i32;
Tys.push_back(MVT::Other);
return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops);
case ISD::FABS: {
MVT::ValueType VT = Op.getValueType();
const Type *OpNTy = MVT::getTypeForValueType(VT);
std::vector<Constant*> CV;
if (VT == MVT::f64) {
CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
} else {
CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
}
Constant *CS = ConstantStruct::get(CV);
SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
SDOperand Mask
= DAG.getNode(X86ISD::LOAD_PACK,
VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL));
return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
}
case ISD::FNEG: {
MVT::ValueType VT = Op.getValueType();
const Type *OpNTy = MVT::getTypeForValueType(VT);
std::vector<Constant*> CV;
if (VT == MVT::f64) {
CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
} else {
CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
CV.push_back(ConstantFP::get(OpNTy, 0.0));
}
Constant *CS = ConstantStruct::get(CV);
SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
SDOperand Mask
= DAG.getNode(X86ISD::LOAD_PACK,
VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL));
return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
}
case ISD::SETCC: {
assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
SDOperand Cond;
SDOperand CC = Op.getOperand(2);
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
bool Flip;
unsigned X86CC;
if (translateX86CC(CC, isFP, X86CC, Flip)) {
if (Flip)
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
Op.getOperand(1), Op.getOperand(0));
else
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
Op.getOperand(0), Op.getOperand(1));
return DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86CC, MVT::i8), Cond);
} else {
assert(isFP && "Illegal integer SetCC!");
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
Op.getOperand(0), Op.getOperand(1));
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
std::vector<MVT::ValueType> Tys;
std::vector<SDOperand> Ops;
switch (SetCCOpcode) {
default: assert(false && "Illegal floating point SetCC!");
case ISD::SETOEQ: { // !PF & ZF
Tys.push_back(MVT::i8);
Tys.push_back(MVT::Flag);
Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8));
Ops.push_back(Cond);
SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86ISD::COND_E, MVT::i8),
Tmp1.getValue(1));
return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
}
case ISD::SETUNE: { // PF | !ZF
Tys.push_back(MVT::i8);
Tys.push_back(MVT::Flag);
Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8));
Ops.push_back(Cond);
SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
DAG.getConstant(X86ISD::COND_NE, MVT::i8),
Tmp1.getValue(1));
return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
}
}
}
}
case ISD::SELECT: {
MVT::ValueType VT = Op.getValueType();
bool isFP = MVT::isFloatingPoint(VT);
bool isFPStack = isFP && !X86ScalarSSE;
bool isFPSSE = isFP && X86ScalarSSE;
SDOperand Op0 = Op.getOperand(0);
SDOperand Cond, CC;
if (Op0.getOpcode() == ISD::SETCC)
Op0 = LowerOperation(Op0, DAG);
if (Op0.getOpcode() == X86ISD::SETCC) {
// If condition flag is set by a X86ISD::CMP, then make a copy of it
// (since flag operand cannot be shared). If the X86ISD::SETCC does not
// have another use it will be eliminated.
// If the X86ISD::SETCC has more than one use, then it's probably better
// to use a test instead of duplicating the X86ISD::CMP (for register
// pressure reason).
if (Op0.getOperand(1).getOpcode() == X86ISD::CMP) {
if (!Op0.hasOneUse()) {
std::vector<MVT::ValueType> Tys;
for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i)
Tys.push_back(Op0.Val->getValueType(i));
std::vector<SDOperand> Ops;
for (unsigned i = 0; i < Op0.getNumOperands(); ++i)
Ops.push_back(Op0.getOperand(i));
Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops);
}
CC = Op0.getOperand(0);
Cond = Op0.getOperand(1);
// Make a copy as flag result cannot be used by more than one.
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
Cond.getOperand(0), Cond.getOperand(1));
isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
} else
addTest = true;
} else
addTest = true;
CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8);
Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0);
std::vector<MVT::ValueType> Tys;
Tys.push_back(Op.getValueType());
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
// condition is true.
Ops.push_back(Op.getOperand(2));
Ops.push_back(Op.getOperand(1));
Ops.push_back(CC);
Ops.push_back(Cond);
return DAG.getNode(X86ISD::CMOV, Tys, Ops);
SDOperand Cond = Op.getOperand(1);
SDOperand Dest = Op.getOperand(2);
SDOperand CC;
if (Cond.getOpcode() == ISD::SETCC)
Cond = LowerOperation(Cond, DAG);
if (Cond.getOpcode() == X86ISD::SETCC) {
// If condition flag is set by a X86ISD::CMP, then make a copy of it
// (since flag operand cannot be shared). If the X86ISD::SETCC does not
// have another use it will be eliminated.
// If the X86ISD::SETCC has more than one use, then it's probably better
// to use a test instead of duplicating the X86ISD::CMP (for register
// pressure reason).
if (Cond.getOperand(1).getOpcode() == X86ISD::CMP) {
if (!Cond.hasOneUse()) {
std::vector<MVT::ValueType> Tys;
for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i)
Tys.push_back(Cond.Val->getValueType(i));
std::vector<SDOperand> Ops;
for (unsigned i = 0; i < Cond.getNumOperands(); ++i)
Ops.push_back(Cond.getOperand(i));
Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops);
}
Cond = Cond.getOperand(1);
// Make a copy as flag result cannot be used by more than one.
Cond = DAG.getNode(X86ISD::CMP, MVT::Flag,
Cond.getOperand(0), Cond.getOperand(1));
} else
addTest = true;
} else
addTest = true;
if (addTest) {
Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond);
}
return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Op.getOperand(0), Op.getOperand(2), CC, Cond);
}
SDOperand InFlag(0, 0);
SDOperand Chain = Op.getOperand(0);
unsigned Align =
(unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
if (Align == 0) Align = 1;
ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
// If not DWORD aligned, call memset if size is less than the threshold.
// It knows how to align to the right boundary first.
if ((Align & 3) != 0 ||
!(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) {
MVT::ValueType IntPtr = getPointerTy();
const Type *IntPtrTy = getTargetData().getIntPtrType();
std::vector<std::pair<SDOperand, const Type*> > Args;
Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
// Extend the ubyte argument to be an int value for the call.
SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
Args.push_back(std::make_pair(Val, IntPtrTy));
Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
std::pair<SDOperand,SDOperand> CallResult =
LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
return CallResult.second;
}
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
unsigned BytesLeft = 0;
if (ValC) {
unsigned ValReg;
unsigned Val = ValC->getValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
BytesLeft = I->getValue() % 2;
Val = (Val << 8) | Val;
ValReg = X86::AX;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
BytesLeft = I->getValue() % 4;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
ValReg = X86::EAX;
break;
default: // Byte aligned
AVT = MVT::i8;
Count = Op.getOperand(3);
ValReg = X86::AL;
break;
}
Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
Count = Op.getOperand(3);
Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
InFlag = Chain.getValue(1);
}
Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
InFlag = Chain.getValue(1);
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
Chain = DAG.getNode(X86ISD::REP_STOS, MVT::Other, Chain,
DAG.getValueType(AVT), InFlag);
if (BytesLeft) {
// Issue stores for the last 1 - 3 bytes.
SDOperand Value;
unsigned Val = ValC->getValue() & 255;
unsigned Offset = I->getValue() - BytesLeft;
SDOperand DstAddr = Op.getOperand(1);
MVT::ValueType AddrVT = DstAddr.getValueType();
if (BytesLeft >= 2) {
Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
DAG.getNode(ISD::ADD, AddrVT, DstAddr,
DAG.getConstant(Offset, AddrVT)),
DAG.getSrcValue(NULL));
BytesLeft -= 2;
Offset += 2;
}
if (BytesLeft == 1) {
Value = DAG.getConstant(Val, MVT::i8);
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
DAG.getNode(ISD::ADD, AddrVT, DstAddr,
DAG.getConstant(Offset, AddrVT)),
DAG.getSrcValue(NULL));
}
}
return Chain;
}
case ISD::MEMCPY: {
SDOperand Chain = Op.getOperand(0);
unsigned Align =
(unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
if (Align == 0) Align = 1;
ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
// If not DWORD aligned, call memcpy if size is less than the threshold.
// It knows how to align to the right boundary first.
if ((Align & 3) != 0 ||
!(I && I->getValue() >= Subtarget->getMinRepStrSizeThreshold())) {
MVT::ValueType IntPtr = getPointerTy();
const Type *IntPtrTy = getTargetData().getIntPtrType();
std::vector<std::pair<SDOperand, const Type*> > Args;
Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
std::pair<SDOperand,SDOperand> CallResult =
LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
return CallResult.second;
}
unsigned BytesLeft = 0;
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
Count = DAG.getConstant(I->getValue() / 2, MVT::i32);
BytesLeft = I->getValue() % 2;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
Count = DAG.getConstant(I->getValue() / 4, MVT::i32);
BytesLeft = I->getValue() % 4;
break;
default: // Byte aligned
AVT = MVT::i8;
Count = Op.getOperand(3);
break;
}
SDOperand InFlag(0, 0);
Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag);
InFlag = Chain.getValue(1);
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
Chain = DAG.getNode(X86ISD::REP_MOVS, MVT::Other, Chain,
DAG.getValueType(AVT), InFlag);
if (BytesLeft) {
// Issue loads and stores for the last 1 - 3 bytes.
unsigned Offset = I->getValue() - BytesLeft;
SDOperand DstAddr = Op.getOperand(1);
MVT::ValueType DstVT = DstAddr.getValueType();
SDOperand SrcAddr = Op.getOperand(2);
MVT::ValueType SrcVT = SrcAddr.getValueType();
SDOperand Value;
if (BytesLeft >= 2) {
Value = DAG.getLoad(MVT::i16, Chain,
DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
DAG.getConstant(Offset, SrcVT)),
DAG.getSrcValue(NULL));
Chain = Value.getValue(1);
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
DAG.getNode(ISD::ADD, DstVT, DstAddr,
DAG.getConstant(Offset, DstVT)),
DAG.getSrcValue(NULL));
BytesLeft -= 2;
Offset += 2;
}
if (BytesLeft == 1) {
Value = DAG.getLoad(MVT::i8, Chain,
DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
DAG.getConstant(Offset, SrcVT)),
DAG.getSrcValue(NULL));
Chain = Value.getValue(1);
Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
DAG.getNode(ISD::ADD, DstVT, DstAddr,
DAG.getConstant(Offset, DstVT)),
DAG.getSrcValue(NULL));
}
}
return Chain;
// ConstantPool, GlobalAddress, and ExternalSymbol are lowered as their
// target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
case ISD::ConstantPool: {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
DAG.getTargetConstantPool(CP->get(), getPointerTy(),
CP->getAlignment()));
if (getTargetMachine().getSubtarget<X86Subtarget>().isTargetDarwin()) {
// With PIC, the address is actually $g + Offset.
Evan Cheng
committed
if (getTargetMachine().getRelocationModel() == Reloc::PIC)
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
}
return Result;
}
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
DAG.getTargetGlobalAddress(GV, getPointerTy()));
if (getTargetMachine().
getSubtarget<X86Subtarget>().isTargetDarwin()) {
// With PIC, the address is actually $g + Offset.
Evan Cheng
committed
if (getTargetMachine().getRelocationModel() == Reloc::PIC)
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
// For Darwin, external and weak symbols are indirect, so we want to load
// the value at address GV, not the value of GV itself. This means that
// the GlobalAddress must be in the base or index register of the address,
// not the GV offset field.
Evan Cheng
committed
if (getTargetMachine().getRelocationModel() != Reloc::Static &&
(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
(GV->isExternal() && !GV->hasNotBeenReadFromBytecode())))
Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(),
}
return Result;
case ISD::ExternalSymbol: {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
DAG.getTargetExternalSymbol(Sym, getPointerTy()));
if (getTargetMachine().
getSubtarget<X86Subtarget>().isTargetDarwin()) {
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC)
Result = DAG.getNode(ISD::ADD, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
}
return Result;
}
case ISD::VASTART: {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
// FIXME: Replace MVT::i32 with PointerTy
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
Op.getOperand(1), Op.getOperand(2));
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
}
case ISD::RET: {
SDOperand Copy;
switch(Op.getNumOperands()) {
default:
assert(0 && "Do not know how to return this many arguments!");
abort();
case 1:
return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
case 2: {
MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
if (MVT::isInteger(ArgVT))
Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1),
SDOperand());
else if (!X86ScalarSSE) {
std::vector<MVT::ValueType> Tys;
Tys.push_back(MVT::Other);
Tys.push_back(MVT::Flag);
std::vector<SDOperand> Ops;
Ops.push_back(Op.getOperand(0));
Ops.push_back(Op.getOperand(1));
Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops);
} else {
SDOperand MemLoc;
SDOperand Chain = Op.getOperand(0);
SDOperand Value = Op.getOperand(1);
if (Value.getOpcode() == ISD::LOAD &&
(Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
Chain = Value.getOperand(0);
MemLoc = Value.getOperand(1);
} else {
// Spill the value to memory and reload it into top of stack.
unsigned Size = MVT::getSizeInBits(ArgVT)/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0),
Value, MemLoc, DAG.getSrcValue(0));