Newer
Older
Owen Anderson
committed
} else {
dep = MD->getDependencyFrom(L, DepInst, DepInst->getParent());
Owen Anderson
committed
}
}
// If this load really doesn't depend on anything, then we must be loading an
// undef value. This can happen when loading for a fresh allocation with no
// intervening stores, for example.
if (dep.isNone()) {
// If this load depends directly on an allocation, there isn't
// anything stored there; therefore, we can optimize this load
// to undef.
L->replaceAllUsesWith(UndefValue::get(L->getType()));
toErase.push_back(L);
deletedLoad = true;
NumGVNLoad++;
}
Owen Anderson
committed
if (!deletedLoad)
last = L;
return deletedLoad;
}
Owen Anderson
committed
Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
Owen Anderson
committed
DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
if (I == localAvail.end())
return 0;
ValueNumberScope* locals = I->second;
Owen Anderson
committed
while (locals) {
DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
if (I != locals->table.end())
return I->second;
else
locals = locals->parent;
}
return 0;
}
Owen Anderson
committed
/// processInstruction - When calculating availability, handle an instruction
Owen Anderson
committed
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I,
Chris Lattner
committed
DenseMap<Value*, LoadInst*> &lastSeenLoad,
SmallVectorImpl<Instruction*> &toErase) {
Owen Anderson
committed
if (LoadInst* L = dyn_cast<LoadInst>(I)) {
bool changed = processLoad(L, lastSeenLoad, toErase);
if (!changed) {
unsigned num = VN.lookup_or_add(L);
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
Owen Anderson
committed
}
return changed;
}
Owen Anderson
committed
uint32_t nextNum = VN.getNextUnusedValueNumber();
Owen Anderson
committed
unsigned num = VN.lookup_or_add(I);
Chris Lattner
committed
Owen Anderson
committed
// Allocations are always uniquely numbered, so we can save time and memory
// by fast failing them.
Owen Anderson
committed
if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
Owen Anderson
committed
return false;
Owen Anderson
committed
}
Owen Anderson
committed
Owen Anderson
committed
if (PHINode* p = dyn_cast<PHINode>(I)) {
Value* constVal = CollapsePhi(p);
Owen Anderson
committed
if (constVal) {
for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
PI != PE; ++PI)
if (PI->second.count(p))
PI->second.erase(p);
Owen Anderson
committed
p->replaceAllUsesWith(constVal);
toErase.push_back(p);
Owen Anderson
committed
} else {
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
Owen Anderson
committed
}
Owen Anderson
committed
// If the number we were assigned was a brand new VN, then we don't
// need to do a lookup to see if the number already exists
// somewhere in the domtree: it can't!
} else if (num == nextNum) {
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
// Perform value-number based elimination
Owen Anderson
committed
} else if (Value* repl = lookupNumber(I->getParent(), num)) {
Owen Anderson
committed
// Remove it!
Owen Anderson
committed
I->replaceAllUsesWith(repl);
toErase.push_back(I);
return true;
Owen Anderson
committed
} else {
Owen Anderson
committed
localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
Owen Anderson
committed
}
return false;
}
// GVN::runOnFunction - This is the main transformation entry point for a
// function.
//
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTree>();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
VN.setDomTree(DT);
bool changed = false;
bool shouldContinue = true;
Owen Anderson
committed
// Merge unconditional branches, allowing PRE to catch more
// optimization opportunities.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
BasicBlock* BB = FI;
++FI;
bool removedBlock = MergeBlockIntoPredecessor(BB, this);
if (removedBlock) NumGVNBlocks++;
changed |= removedBlock;
Owen Anderson
committed
}
while (shouldContinue) {
shouldContinue = iterateOnFunction(F);
changed |= shouldContinue;
}
Owen Anderson
committed
if (EnablePRE) {
bool PREChanged = true;
while (PREChanged) {
PREChanged = performPRE(F);
Owen Anderson
committed
changed |= PREChanged;
Owen Anderson
committed
}
cleanupGlobalSets();
bool GVN::processBlock(DomTreeNode* DTN) {
BasicBlock* BB = DTN->getBlock();
SmallVector<Instruction*, 8> toErase;
DenseMap<Value*, LoadInst*> lastSeenLoad;
bool changed_function = false;
Owen Anderson
committed
if (DTN->getIDom())
Owen Anderson
committed
localAvail[BB] =
new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
else
localAvail[BB] = new ValueNumberScope(0);
Owen Anderson
committed
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
changed_function |= processInstruction(BI, lastSeenLoad, toErase);
if (toErase.empty()) {
++BI;
continue;
}
// If we need some instructions deleted, do it now.
NumGVNInstr += toErase.size();
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
--BI;
for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
E = toErase.end(); I != E; ++I) {
DEBUG(cerr << "GVN removed: " << **I);
MD->removeInstruction(*I);
if (AtStart)
BI = BB->begin();
else
++BI;
toErase.clear();
}
return changed_function;
}
Owen Anderson
committed
/// performPRE - Perform a purely local form of PRE that looks for diamond
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function& F) {
bool changed = false;
SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
Owen Anderson
committed
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
BasicBlock* CurrentBlock = *DI;
// Nothing to PRE in the entry block.
if (CurrentBlock == &F.getEntryBlock()) continue;
for (BasicBlock::iterator BI = CurrentBlock->begin(),
BE = CurrentBlock->end(); BI != BE; ) {
Owen Anderson
committed
if (isa<AllocationInst>(BI) || isa<TerminatorInst>(BI) ||
isa<PHINode>(BI) || BI->mayReadFromMemory() ||
BI->mayWriteToMemory()) {
Owen Anderson
committed
BI++;
continue;
}
uint32_t valno = VN.lookup(BI);
// Look for the predecessors for PRE opportunities. We're
// only trying to solve the basic diamond case, where
// a value is computed in the successor and one predecessor,
// but not the other. We also explicitly disallow cases
// where the successor is its own predecessor, because they're
// more complicated to get right.
unsigned numWith = 0;
unsigned numWithout = 0;
BasicBlock* PREPred = 0;
Owen Anderson
committed
DenseMap<BasicBlock*, Value*> predMap;
Owen Anderson
committed
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI) {
// We're not interested in PRE where the block is its
Owen Anderson
committed
// own predecessor, on in blocks with predecessors
// that are not reachable.
if (*PI == CurrentBlock) {
Owen Anderson
committed
numWithout = 2;
Owen Anderson
committed
break;
} else if (!localAvail.count(*PI)) {
numWithout = 2;
break;
}
DenseMap<uint32_t, Value*>::iterator predV =
localAvail[*PI]->table.find(valno);
if (predV == localAvail[*PI]->table.end()) {
Owen Anderson
committed
PREPred = *PI;
numWithout++;
Owen Anderson
committed
} else if (predV->second == BI) {
Owen Anderson
committed
numWithout = 2;
} else {
Owen Anderson
committed
predMap[*PI] = predV->second;
Owen Anderson
committed
numWith++;
}
}
// Don't do PRE when it might increase code size, i.e. when
// we would need to insert instructions in more than one pred.
if (numWithout != 1 || numWith == 0) {
BI++;
continue;
}
// We can't do PRE safely on a critical edge, so instead we schedule
// the edge to be split and perform the PRE the next time we iterate
// on the function.
unsigned succNum = 0;
for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
i != e; ++i)
if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
succNum = i;
break;
}
if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
changed = true;
BI++;
continue;
}
Owen Anderson
committed
// Instantiate the expression the in predecessor that lacked it.
// Because we are going top-down through the block, all value numbers
// will be available in the predecessor by the time we need them. Any
// that weren't original present will have been instantiated earlier
// in this loop.
Instruction* PREInstr = BI->clone();
bool success = true;
for (unsigned i = 0; i < BI->getNumOperands(); ++i) {
Value* op = BI->getOperand(i);
if (isa<Argument>(op) || isa<Constant>(op) || isa<GlobalValue>(op))
PREInstr->setOperand(i, op);
else {
Value* V = lookupNumber(PREPred, VN.lookup(op));
if (!V) {
success = false;
break;
} else
PREInstr->setOperand(i, V);
}
Owen Anderson
committed
}
// Fail out if we encounter an operand that is not available in
// the PRE predecessor. This is typically because of loads which
// are not value numbered precisely.
if (!success) {
delete PREInstr;
BI++;
continue;
}
PREInstr->insertBefore(PREPred->getTerminator());
PREInstr->setName(BI->getName() + ".pre");
Owen Anderson
committed
predMap[PREPred] = PREInstr;
Owen Anderson
committed
VN.add(PREInstr, valno);
NumGVNPRE++;
// Update the availability map to include the new instruction.
Owen Anderson
committed
localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
Owen Anderson
committed
// Create a PHI to make the value available in this block.
PHINode* Phi = PHINode::Create(BI->getType(),
BI->getName() + ".pre-phi",
CurrentBlock->begin());
for (pred_iterator PI = pred_begin(CurrentBlock),
PE = pred_end(CurrentBlock); PI != PE; ++PI)
Owen Anderson
committed
Phi->addIncoming(predMap[*PI], *PI);
Owen Anderson
committed
VN.add(Phi, valno);
Owen Anderson
committed
localAvail[CurrentBlock]->table[valno] = Phi;
Owen Anderson
committed
BI->replaceAllUsesWith(Phi);
Owen Anderson
committed
VN.erase(BI);
Owen Anderson
committed
Instruction* erase = BI;
BI++;
DEBUG(cerr << "GVN removed: " << *erase);
MD->removeInstruction(erase);
Owen Anderson
committed
erase->eraseFromParent();
changed = true;
}
}
for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
SplitCriticalEdge(I->first, I->second, this);
Owen Anderson
committed
return changed || toSplit.size();
Owen Anderson
committed
}
Owen Anderson
committed
// iterateOnFunction - Executes one iteration of GVN
Owen Anderson
committed
// Top-down walk of the dominator tree
Owen Anderson
committed
bool changed = false;
for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
DE = df_end(DT->getRootNode()); DI != DE; ++DI)
Owen Anderson
committed
changed |= processBlock(*DI);
Owen Anderson
committed
return changed;
Owen Anderson
committed
}
void GVN::cleanupGlobalSets() {
VN.clear();
phiMap.clear();
for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
delete I->second;
localAvail.clear();
}