Skip to content
GVN.cpp 43.3 KiB
Newer Older
    // ... that depends on a store ...
    if (StoreInst* S = dyn_cast<StoreInst>(dep)) {
      if (S->getPointerOperand() == pointer) {
        // Remove it!
        MD.removeInstruction(L);
        
        L->replaceAllUsesWith(S->getOperand(0));
        toErase.push_back(L);
        deletedLoad = true;
        NumGVNLoad++;
      }
      
      // Whether we removed it or not, we can't
      // go any further
      break;
    } else if (!last) {
      // If we don't depend on a store, and we haven't
      // been loaded before, bail.
      break;
    } else if (dep == last) {
      // Remove it!
      MD.removeInstruction(L);
      
      L->replaceAllUsesWith(last);
      toErase.push_back(L);
      deletedLoad = true;
      NumGVNLoad++;
        
      break;
    } else {
      dep = MD.getDependency(L, dep);

  if (dep != MemoryDependenceAnalysis::None &&
      dep != MemoryDependenceAnalysis::NonLocal &&
      isa<AllocationInst>(dep)) {
    // Check that this load is actually from the
    // allocation we found
    Value* v = L->getOperand(0);
    while (true) {
      if (BitCastInst *BC = dyn_cast<BitCastInst>(v))
        v = BC->getOperand(0);
      else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(v))
        v = GEP->getOperand(0);
      else
        break;
    }
    if (v == dep) {
      // If this load depends directly on an allocation, there isn't
      // anything stored there; therefore, we can optimize this load
      // to undef.
      MD.removeInstruction(L);

      L->replaceAllUsesWith(UndefValue::get(L->getType()));
      toErase.push_back(L);
      deletedLoad = true;
      NumGVNLoad++;
    }
  }

/// processInstruction - When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I,
                             DenseMap<Value*, LoadInst*> &lastSeenLoad,
                             SmallVectorImpl<Instruction*> &toErase) {
  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
    bool changed = processLoad(L, lastSeenLoad, toErase);
    
    if (!changed) {
      unsigned num = VN.lookup_or_add(L);
      localAvail[I->getParent()].insert(std::make_pair(num, L));
    }
    
    return changed;
  }
  
  unsigned num = VN.lookup_or_add(I);
  // Allocations are always uniquely numbered, so we can save time and memory
  // by fast failing them.
  if (isa<AllocationInst>(I)) {
    localAvail[I->getParent()].insert(std::make_pair(num, I));
  // Collapse PHI nodes
    Value* constVal = CollapsePhi(p);
      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
           PI != PE; ++PI)
        if (PI->second.count(p))
          PI->second.erase(p);
      p->replaceAllUsesWith(constVal);
      toErase.push_back(p);
    } else {
      localAvail[I->getParent()].insert(std::make_pair(num, I));
  // Perform value-number based elimination
  } else if (localAvail[I->getParent()].count(num)) {
    Value* repl = localAvail[I->getParent()][num];
    MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
    MD.removeInstruction(I);
    I->replaceAllUsesWith(repl);
    toErase.push_back(I);
    return true;
  } else if (!I->isTerminator()) {
    localAvail[I->getParent()].insert(std::make_pair(num, I));
  }
  
  return false;
}

// GVN::runOnFunction - This is the main transformation entry point for a
// function.
//
Owen Anderson's avatar
Owen Anderson committed
bool GVN::runOnFunction(Function& F) {
  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
  VN.setMemDep(&getAnalysis<MemoryDependenceAnalysis>());
  VN.setDomTree(&getAnalysis<DominatorTree>());
Owen Anderson's avatar
Owen Anderson committed
  bool changed = false;
  bool shouldContinue = true;
  
  while (shouldContinue) {
    shouldContinue = iterateOnFunction(F);
    changed |= shouldContinue;
  }
  
  return changed;
}


bool GVN::processBlock(DomTreeNode* DTN) {
  BasicBlock* BB = DTN->getBlock();

  SmallVector<Instruction*, 8> toErase;
  DenseMap<Value*, LoadInst*> lastSeenLoad;
  bool changed_function = false;
  
  if (DTN->getIDom())
    localAvail.insert(std::make_pair(BB,
                      localAvail[DTN->getIDom()->getBlock()]));
  
  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
       BI != BE;) {
    changed_function |= processInstruction(BI, lastSeenLoad, toErase);
    if (toErase.empty()) {
      ++BI;
      continue;
    }
    
    // If we need some instructions deleted, do it now.
    NumGVNInstr += toErase.size();
    
    // Avoid iterator invalidation.
    bool AtStart = BI == BB->begin();
    if (!AtStart)
      --BI;

    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
         E = toErase.end(); I != E; ++I)
      (*I)->eraseFromParent();

    if (AtStart)
      BI = BB->begin();
    else
      ++BI;
    
    toErase.clear();
  }
  
  return changed_function;
}

/// performPRE - Perform a purely local form of PRE that looks for diamond
/// control flow patterns and attempts to perform simple PRE at the join point.
bool GVN::performPRE(Function& F) {
  bool changed = false;
  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
    BasicBlock* CurrentBlock = *DI;
    
    // Nothing to PRE in the entry block.
    if (CurrentBlock == &F.getEntryBlock()) continue;
    
    for (BasicBlock::iterator BI = CurrentBlock->begin(),
         BE = CurrentBlock->end(); BI != BE; ) {
      if (isa<AllocaInst>(BI) || isa<TerminatorInst>(BI) ||
          isa<LoadInst>(BI) || isa<StoreInst>(BI) ||
          isa<CallInst>(BI) || isa<PHINode>(BI)) {
        BI++;
        continue;
      }
      
      uint32_t valno = VN.lookup(BI);
      
      // Look for the predecessors for PRE opportunities.  We're
      // only trying to solve the basic diamond case, where
      // a value is computed in the successor and one predecessor,
      // but not the other.  We also explicitly disallow cases
      // where the successor is its own predecessor, because they're
      // more complicated to get right.
      unsigned numWith = 0;
      unsigned numWithout = 0;
      BasicBlock* PREPred = 0;
      for (pred_iterator PI = pred_begin(CurrentBlock),
           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
        // We're not interested in PRE where the block is its
        // own predecessor.
        if (*PI == CurrentBlock)
          numWithout = 2;
          
        if (!localAvail[*PI].count(valno)) {
          PREPred = *PI;
          numWithout++;
        } else if (localAvail[*PI][valno] == BI) {
          numWithout = 2;
        } else {
          numWith++;
        }
      }
      
      // Don't do PRE when it might increase code size, i.e. when
      // we would need to insert instructions in more than one pred.
      if (numWithout != 1 || numWith == 0) {
        BI++;
        continue;
      }
      
      // Instantiate the expression the in predecessor that lacked it.
      // Because we are going top-down through the block, all value numbers
      // will be available in the predecessor by the time we need them.  Any
      // that weren't original present will have been instantiated earlier
      // in this loop.
      Instruction* PREInstr = BI->clone();
      bool success = true;
      for (unsigned i = 0; i < BI->getNumOperands(); ++i) {
        Value* op = BI->getOperand(i);
        if (isa<Argument>(op) || isa<Constant>(op) || isa<GlobalValue>(op))
          PREInstr->setOperand(i, op);
        else if (!localAvail[PREPred].count(VN.lookup(op))) {
          success = false;
          break;
        } else
          PREInstr->setOperand(i, localAvail[PREPred][VN.lookup(op)]);
      }
      
      // Fail out if we encounter an operand that is not available in
      // the PRE predecessor.  This is typically because of loads which 
      // are not value numbered precisely.
      if (!success) {
        delete PREInstr;
        BI++;
        continue;
      }
      
      PREInstr->insertBefore(PREPred->getTerminator());
      PREInstr->setName(BI->getName() + ".pre");
      VN.add(PREInstr, valno);
      NumGVNPRE++;
      
      // Update the availability map to include the new instruction.
      localAvail[PREPred].insert(std::make_pair(valno, PREInstr));
      
      // Create a PHI to make the value available in this block.
      PHINode* Phi = PHINode::Create(BI->getType(),
                                     BI->getName() + ".pre-phi",
                                     CurrentBlock->begin());
      for (pred_iterator PI = pred_begin(CurrentBlock),
           PE = pred_end(CurrentBlock); PI != PE; ++PI)
        Phi->addIncoming(localAvail[*PI][valno], *PI);
      
      VN.add(Phi, valno);
      
      // The newly created PHI completely replaces the old instruction,
      // so we need to update the maps to reflect this.
      for (DenseMap<BasicBlock*, DenseMap<uint32_t, Value*> >::iterator
           UI = localAvail.begin(), UE = localAvail.end(); UI != UE; ++UI)
        for (DenseMap<uint32_t, Value*>::iterator UUI = UI->second.begin(),
             UUE = UI->second.end(); UUI != UUE; ++UUI)
            if (UUI->second == BI)
              UUI->second = Phi;
      
      BI->replaceAllUsesWith(Phi);
      
      Instruction* erase = BI;
      BI++;
      erase->eraseFromParent();
      
      changed = true;
    }
  }
  
  return changed;
}

Owen Anderson's avatar
Owen Anderson committed
// GVN::iterateOnFunction - Executes one iteration of GVN
bool GVN::iterateOnFunction(Function &F) {
  // Clean out global sets from any previous functions
  VN.clear();
  DominatorTree &DT = getAnalysis<DominatorTree>();   
  // Top-down walk of the dominator tree
  bool changed = false;
  for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
       DE = df_end(DT.getRootNode()); DI != DE; ++DI)
    changed |= processBlock(*DI);
    
  changed |= performPRE(F);
  return changed;