Skip to content
VirtRegRewriter.cpp 99.1 KiB
Newer Older
        for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
          MachineOperand &MOk = MI.getOperand(k);
          if (MOk.isReg() && MOk.isEarlyClobber() &&
              TRI->regsOverlap(MOk.getReg(), PhysReg)) {
            CanReuse = false;
            DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
                         << " for vreg" << VirtReg << ": " << MOk << '\n');
            break;
          }
        }
      }

      if (CanReuse) {
        // If this stack slot value is already available, reuse it!
        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
          DEBUG(dbgs() << "Reusing RM#"
                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
        else
          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
        DEBUG(dbgs() << " from physreg "
              << TRI->getName(PhysReg) << " for vreg"
              << VirtReg <<" instead of reloading into physreg "
              << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
        MI.getOperand(i).setReg(RReg);
        MI.getOperand(i).setSubReg(0);

        // The only technical detail we have is that we don't know that
        // PhysReg won't be clobbered by a reloaded stack slot that occurs
        // later in the instruction.  In particular, consider 'op V1, V2'.
        // If V1 is available in physreg R0, we would choose to reuse it
        // here, instead of reloading it into the register the allocator
        // indicated (say R1).  However, V2 might have to be reloaded
        // later, and it might indicate that it needs to live in R0.  When
        // this occurs, we need to have information available that
        // indicates it is safe to use R1 for the reload instead of R0.
        //
        // To further complicate matters, we might conflict with an alias,
        // or R0 and R1 might not be compatible with each other.  In this
        // case, we actually insert a reload for V1 in R1, ensuring that
        // we can get at R0 or its alias.
        ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
                                VRM->getPhys(VirtReg), VirtReg);
        if (isTied)
          // Only mark it clobbered if this is a use&def operand.
          ReusedOperands.markClobbered(PhysReg);
        ++NumReused;

        if (MI.getOperand(i).isKill() &&
            ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {

          // The store of this spilled value is potentially dead, but we
          // won't know for certain until we've confirmed that the re-use
          // above is valid, which means waiting until the other operands
          // are processed. For now we just track the spill slot, we'll
          // remove it after the other operands are processed if valid.

          PotentialDeadStoreSlots.push_back(ReuseSlot);
        }

        // Mark is isKill if it's there no other uses of the same virtual
        // register and it's not a two-address operand. IsKill will be
        // unset if reg is reused.
        if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
          MI.getOperand(i).setIsKill();
          KilledMIRegs.insert(VirtReg);
        }

        continue;
      }  // CanReuse

      // Otherwise we have a situation where we have a two-address instruction
      // whose mod/ref operand needs to be reloaded.  This reload is already
      // available in some register "PhysReg", but if we used PhysReg as the
      // operand to our 2-addr instruction, the instruction would modify
      // PhysReg.  This isn't cool if something later uses PhysReg and expects
      // to get its initial value.
      //
      // To avoid this problem, and to avoid doing a load right after a store,
      // we emit a copy from PhysReg into the designated register for this
      // operand.
      //
      // This case also applies to an earlyclobber'd PhysReg.
      unsigned DesignatedReg = VRM->getPhys(VirtReg);
      assert(DesignatedReg && "Must map virtreg to physreg!");

      // Note that, if we reused a register for a previous operand, the
      // register we want to reload into might not actually be
      // available.  If this occurs, use the register indicated by the
      // reuser.
      if (ReusedOperands.hasReuses())
        DesignatedReg = ReusedOperands.
          GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
                          MaybeDeadStores, RegKills, KillOps, *VRM);

      // If the mapped designated register is actually the physreg we have
      // incoming, we don't need to inserted a dead copy.
      if (DesignatedReg == PhysReg) {
        // If this stack slot value is already available, reuse it!
        if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
          DEBUG(dbgs() << "Reusing RM#"
                << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
        else
          DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
        DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
              << " for vreg" << VirtReg
              << " instead of reloading into same physreg.\n");
        unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
        MI.getOperand(i).setReg(RReg);
        MI.getOperand(i).setSubReg(0);
        ReusedOperands.markClobbered(RReg);
        ++NumReused;
        continue;
      }

      MRI->setPhysRegUsed(DesignatedReg);
      ReusedOperands.markClobbered(DesignatedReg);

      // Back-schedule reloads and remats.
      MachineBasicBlock::iterator InsertLoc =
        ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
                         SSorRMId, TII, *MBB->getParent());
      MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
                                     TII->get(TargetOpcode::COPY),
                                     DesignatedReg).addReg(PhysReg);
      CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
      UpdateKills(*CopyMI, TRI, RegKills, KillOps);

      // This invalidates DesignatedReg.
      Spills.ClobberPhysReg(DesignatedReg);

      Spills.addAvailable(ReuseSlot, DesignatedReg);
      unsigned RReg =
        SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
      MI.getOperand(i).setReg(RReg);
      MI.getOperand(i).setSubReg(0);
      DEBUG(dbgs() << '\t' << *prior(InsertLoc));
      ++NumReused;
      continue;
    } // if (PhysReg)

      // Otherwise, reload it and remember that we have it.
    PhysReg = VRM->getPhys(VirtReg);
    assert(PhysReg && "Must map virtreg to physreg!");

    // Note that, if we reused a register for a previous operand, the
    // register we want to reload into might not actually be
    // available.  If this occurs, use the register indicated by the
    // reuser.
    if (ReusedOperands.hasReuses())
      PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
                  Spills, MaybeDeadStores, RegKills, KillOps, *VRM);

    MRI->setPhysRegUsed(PhysReg);
    ReusedOperands.markClobbered(PhysReg);
    if (AvoidReload)
      ++NumAvoided;
    else {
      // Back-schedule reloads and remats.
      MachineBasicBlock::iterator InsertLoc =
        ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
                         SSorRMId, TII, *MBB->getParent());

      if (DoReMat) {
        ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
      } else {
        const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
        TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
        MachineInstr *LoadMI = prior(InsertLoc);
        VRM->addSpillSlotUse(SSorRMId, LoadMI);
        ++NumLoads;
        DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
      }
      // This invalidates PhysReg.
      Spills.ClobberPhysReg(PhysReg);

      // Any stores to this stack slot are not dead anymore.
      if (!DoReMat)
        MaybeDeadStores[SSorRMId] = NULL;
      Spills.addAvailable(SSorRMId, PhysReg);
      // Assumes this is the last use. IsKill will be unset if reg is reused
      // unless it's a two-address operand.
      if (!MI.isRegTiedToDefOperand(i) &&
          KilledMIRegs.count(VirtReg) == 0) {
        MI.getOperand(i).setIsKill();
        KilledMIRegs.insert(VirtReg);
      }

      UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
      DEBUG(dbgs() << '\t' << *prior(InsertLoc));
    }
    unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
    MI.getOperand(i).setReg(RReg);
    MI.getOperand(i).setSubReg(0);
  }

  // Ok - now we can remove stores that have been confirmed dead.
  for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
    // This was the last use and the spilled value is still available
    // for reuse. That means the spill was unnecessary!
    int PDSSlot = PotentialDeadStoreSlots[j];
    MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
    if (DeadStore) {
      DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
      InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
      VRM->RemoveMachineInstrFromMaps(DeadStore);
      MBB->erase(DeadStore);
      MaybeDeadStores[PDSSlot] = NULL;
      ++NumDSE;
    }
  }

}

/// rewriteMBB - Keep track of which spills are available even after the
Jim Grosbach's avatar
Jim Grosbach committed
/// register allocator is done with them.  If possible, avoid reloading vregs.
void
LocalRewriter::RewriteMBB(LiveIntervals *LIs,
                          AvailableSpills &Spills, BitVector &RegKills,
                          std::vector<MachineOperand*> &KillOps) {

  DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
               << MBB->getName() << "':\n");

  MachineFunction &MF = *MBB->getParent();

  // MaybeDeadStores - When we need to write a value back into a stack slot,
  // keep track of the inserted store.  If the stack slot value is never read
  // (because the value was used from some available register, for example), and
  // subsequently stored to, the original store is dead.  This map keeps track
  // of inserted stores that are not used.  If we see a subsequent store to the
  // same stack slot, the original store is deleted.
  std::vector<MachineInstr*> MaybeDeadStores;
  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);

  // ReMatDefs - These are rematerializable def MIs which are not deleted.
  SmallSet<MachineInstr*, 4> ReMatDefs;

  // Keep track of the registers we have already spilled in case there are
  // multiple defs of the same register in MI.
  SmallSet<unsigned, 8> SpilledMIRegs;

  RegKills.reset();
  KillOps.clear();
  KillOps.resize(TRI->getNumRegs(), NULL);

  DistanceMap.clear();
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
       MII != E; ) {
    MachineBasicBlock::iterator NextMII = llvm::next(MII);
    if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
      NextMII = llvm::next(MII);
    InsertRestores(MII, Spills, RegKills, KillOps);

    bool Erased = false;
    bool BackTracked = false;
    MachineInstr &MI = *MII;
    // Remember DbgValue's which reference stack slots.
    if (MI.isDebugValue() && MI.getOperand(0).isFI())
      Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);

    /// ReusedOperands - Keep track of operand reuse in case we need to undo
    /// reuse.
    ReuseInfo ReusedOperands(MI, TRI);
    ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
    // If we have folded references to memory operands, make sure we clear all
    // physical registers that may contain the value of the spilled virtual
    // register

    // Copy the folded virts to a small vector, we may change MI2VirtMap.
    SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
    // C++0x FTW!
    for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
                   VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
           VRM->getFoldedVirts(&MI);
         FVRange.first != FVRange.second; ++FVRange.first)
      FoldedVirts.push_back(FVRange.first->second);

    for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
      unsigned VirtReg = FoldedVirts[FVI].first;
      VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
      DEBUG(dbgs() << "Folded vreg: " << VirtReg << "  MR: " << MR);

      int SS = VRM->getStackSlot(VirtReg);
      if (SS == VirtRegMap::NO_STACK_SLOT)
        continue;
      FoldedSS.insert(SS);
      DEBUG(dbgs() << " - StackSlot: " << SS << "\n");

      // If this folded instruction is just a use, check to see if it's a
      // straight load from the virt reg slot.
      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
        int FrameIdx;
        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
        if (DestReg && FrameIdx == SS) {
          // If this spill slot is available, turn it into a copy (or nothing)
          // instead of leaving it as a load!
          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
            DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
            if (DestReg != InReg) {
              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
              MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
                                             TII->get(TargetOpcode::COPY))
                .addReg(DestReg, RegState::Define, DefMO->getSubReg())
                .addReg(InReg, RegState::Kill);
              // Revisit the copy so we make sure to notice the effects of the
              // operation on the destreg (either needing to RA it if it's
              // virtual or needing to clobber any values if it's physical).
              NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
              BackTracked = true;
            } else {
              DEBUG(dbgs() << "Removing now-noop copy: " << MI);
              // Unset last kill since it's being reused.
              InvalidateKill(InReg, TRI, RegKills, KillOps);
              Spills.disallowClobberPhysReg(InReg);

            InvalidateKills(MI, TRI, RegKills, KillOps);
            VRM->RemoveMachineInstrFromMaps(&MI);
            MBB->erase(&MI);
            Erased = true;
            goto ProcessNextInst;
          }
        } else {
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
          SmallVector<MachineInstr*, 4> NewMIs;
          if (PhysReg &&
Jim Grosbach's avatar
Jim Grosbach committed
              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
            MBB->insert(MII, NewMIs[0]);
            InvalidateKills(MI, TRI, RegKills, KillOps);
            VRM->RemoveMachineInstrFromMaps(&MI);
            MBB->erase(&MI);
            Erased = true;
            --NextMII;  // backtrack to the unfolded instruction.
            BackTracked = true;
            goto ProcessNextInst;
          }
        }
      }

      // If this reference is not a use, any previous store is now dead.
      // Otherwise, the store to this stack slot is not dead anymore.
      MachineInstr* DeadStore = MaybeDeadStores[SS];
      if (DeadStore) {
        bool isDead = !(MR & VirtRegMap::isRef);
        MachineInstr *NewStore = NULL;
        if (MR & VirtRegMap::isModRef) {
          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
          SmallVector<MachineInstr*, 4> NewMIs;
          // We can reuse this physreg as long as we are allowed to clobber
          // the value and there isn't an earlier def that has already clobbered
          // the physreg.
          if (PhysReg &&
              !ReusedOperands.isClobbered(PhysReg) &&
              Spills.canClobberPhysReg(PhysReg) &&
              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
            MachineOperand *KillOpnd =
              DeadStore->findRegisterUseOperand(PhysReg, true);
            // Note, if the store is storing a sub-register, it's possible the
            // super-register is needed below.
            if (KillOpnd && !KillOpnd->getSubReg() &&
                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
              MBB->insert(MII, NewMIs[0]);
              NewStore = NewMIs[1];
              MBB->insert(MII, NewStore);
              VRM->addSpillSlotUse(SS, NewStore);
              InvalidateKills(MI, TRI, RegKills, KillOps);
              VRM->RemoveMachineInstrFromMaps(&MI);
              MBB->erase(&MI);
              --NextMII;  // backtrack to the unfolded instruction.
              BackTracked = true;
        if (isDead) {  // Previous store is dead.
          // If we get here, the store is dead, nuke it now.
          DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
          InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
          VRM->RemoveMachineInstrFromMaps(DeadStore);
          MBB->erase(DeadStore);
          if (!NewStore)
            ++NumDSE;
        }

        MaybeDeadStores[SS] = NULL;
        if (NewStore) {
          // Treat this store as a spill merged into a copy. That makes the
          // stack slot value available.
          VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
          goto ProcessNextInst;
        }
      }

      // If the spill slot value is available, and this is a new definition of
      // the value, the value is not available anymore.
      if (MR & VirtRegMap::isMod) {
        // Notice that the value in this stack slot has been modified.
        Spills.ModifyStackSlotOrReMat(SS);

        // If this is *just* a mod of the value, check to see if this is just a
        // store to the spill slot (i.e. the spill got merged into the copy). If
        // so, realize that the vreg is available now, and add the store to the
        // MaybeDeadStore info.
        int StackSlot;
        if (!(MR & VirtRegMap::isRef)) {
          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
                   "Src hasn't been allocated yet?");

            if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
                                    Spills, RegKills, KillOps, TRI)) {
              NextMII = llvm::next(MII);
              BackTracked = true;
              goto ProcessNextInst;
            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
            // this as a potentially dead store in case there is a subsequent
            // store into the stack slot without a read from it.
            MaybeDeadStores[StackSlot] = &MI;

            // If the stack slot value was previously available in some other
            // register, change it now.  Otherwise, make the register
            // available in PhysReg.
            Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
    // Process all of the spilled defs.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
        continue;

      unsigned VirtReg = MO.getReg();
      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        // Also check if it's copying from an "undef", if so, we can't
        // eliminate this or else the undef marker is lost and it will
        // confuses the scavenger. This is extremely rare.
        if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
            MI.getNumOperands() == 2) {
          ++NumDCE;
          DEBUG(dbgs() << "Removing now-noop copy: " << MI);
          SmallVector<unsigned, 2> KillRegs;
          InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
          if (MO.isDead() && !KillRegs.empty()) {
            // Source register or an implicit super/sub-register use is killed.
            assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
            // Last def is now dead.
            TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
          }
          VRM->RemoveMachineInstrFromMaps(&MI);
          MBB->erase(&MI);
          Erased = true;
          Spills.disallowClobberPhysReg(VirtReg);
          goto ProcessNextInst;
        }
        // If it's not a no-op copy, it clobbers the value in the destreg.
        Spills.ClobberPhysReg(VirtReg);
        ReusedOperands.markClobbered(VirtReg);

        // Check to see if this instruction is a load from a stack slot into
        // a register.  If so, this provides the stack slot value in the reg.
        int FrameIdx;
        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
          assert(DestReg == VirtReg && "Unknown load situation!");

          // If it is a folded reference, then it's not safe to clobber.
          bool Folded = FoldedSS.count(FrameIdx);
          // Otherwise, if it wasn't available, remember that it is now!
          Spills.addAvailable(FrameIdx, DestReg, !Folded);
          goto ProcessNextInst;
        }
      unsigned SubIdx = MO.getSubReg();
      bool DoReMat = VRM->isReMaterialized(VirtReg);
      if (DoReMat)
        ReMatDefs.insert(&MI);

      // The only vregs left are stack slot definitions.
      int StackSlot = VRM->getStackSlot(VirtReg);
      const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);

      // If this def is part of a two-address operand, make sure to execute
      // the store from the correct physical register.
      unsigned PhysReg;
      unsigned TiedOp;
      if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
        PhysReg = MI.getOperand(TiedOp).getReg();
        if (SubIdx) {
          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
                 "Can't find corresponding super-register!");
          PhysReg = SuperReg;
        }
      } else {
        PhysReg = VRM->getPhys(VirtReg);
        if (ReusedOperands.isClobbered(PhysReg)) {
          // Another def has taken the assigned physreg. It must have been a
          // use&def which got it due to reuse. Undo the reuse!
          PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
                      Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
      assert(PhysReg && "VR not assigned a physical register?");
      MRI->setPhysRegUsed(PhysReg);
      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
      ReusedOperands.markClobbered(RReg);
      MI.getOperand(i).setReg(RReg);
      MI.getOperand(i).setSubReg(0);

      if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
        SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
          LastStore, Spills, ReMatDefs, RegKills, KillOps);
        NextMII = llvm::next(MII);
        // Check to see if this is a noop copy.  If so, eliminate the
        // instruction before considering the dest reg to be changed.
        if (MI.isIdentityCopy()) {
          ++NumDCE;
          DEBUG(dbgs() << "Removing now-noop copy: " << MI);
          InvalidateKills(MI, TRI, RegKills, KillOps);
          VRM->RemoveMachineInstrFromMaps(&MI);
          MBB->erase(&MI);
          Erased = true;
          UpdateKills(*LastStore, TRI, RegKills, KillOps);
          goto ProcessNextInst;
        }
    // Delete dead instructions without side effects.
    if (!Erased && !BackTracked && isSafeToDelete(MI)) {
      InvalidateKills(MI, TRI, RegKills, KillOps);
      VRM->RemoveMachineInstrFromMaps(&MI);
      MBB->erase(&MI);
      Erased = true;
      DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
    if (!Erased && !BackTracked) {
      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
        UpdateKills(*II, TRI, RegKills, KillOps);
    }
    MII = NextMII;
llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
  switch (RewriterOpt) {
  default: llvm_unreachable("Unreachable!");
  case local:
    return new LocalRewriter();