Skip to content
LoopStrengthReduce.cpp 145 KiB
Newer Older
        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
        LU.WidestFixupType == OrigLU.WidestFixupType &&
        LU.HasFormulaWithSameRegs(OrigF)) {
Dan Gohman's avatar
Dan Gohman committed
      // Scan through this use's formulae.
      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
           E = LU.Formulae.end(); I != E; ++I) {
        const Formula &F = *I;
Dan Gohman's avatar
Dan Gohman committed
        // Check to see if this formula has the same registers and symbols
        // as OrigF.
        if (F.BaseRegs == OrigF.BaseRegs &&
            F.ScaledReg == OrigF.ScaledReg &&
            F.AM.BaseGV == OrigF.AM.BaseGV &&
            F.AM.Scale == OrigF.AM.Scale &&
            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
Dan Gohman's avatar
Dan Gohman committed
          // This is the formula where all the registers and symbols matched;
          // there aren't going to be any others. Since we declined it, we
          // can skip the rest of the formulae and procede to the next LSRUse.
Dan Gohman's avatar
Dan Gohman committed
  // Nothing looked good.
void LSRInstance::CollectInterestingTypesAndFactors() {
  SmallSetVector<const SCEV *, 4> Strides;

  // Collect interesting types and strides.
  SmallVector<const SCEV *, 4> Worklist;
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
    const SCEV *Expr = IU.getExpr(*UI);
    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));

    // Add strides for mentioned loops.
    Worklist.push_back(Expr);
    do {
      const SCEV *S = Worklist.pop_back_val();
      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
        Strides.insert(AR->getStepRecurrence(SE));
        Worklist.push_back(AR->getStart());
      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
        Worklist.append(Add->op_begin(), Add->op_end());
  }

  // Compute interesting factors from the set of interesting strides.
  for (SmallSetVector<const SCEV *, 4>::const_iterator
       I = Strides.begin(), E = Strides.end(); I != E; ++I)
    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
      const SCEV *OldStride = *I;
      const SCEV *NewStride = *NewStrideIter;
      if (SE.getTypeSizeInBits(OldStride->getType()) !=
          SE.getTypeSizeInBits(NewStride->getType())) {
        if (SE.getTypeSizeInBits(OldStride->getType()) >
            SE.getTypeSizeInBits(NewStride->getType()))
          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
        else
          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
      }
      if (const SCEVConstant *Factor =
            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
                                                        SE, true))) {
        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
          Factors.insert(Factor->getValue()->getValue().getSExtValue());
      } else if (const SCEVConstant *Factor =
                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
                                                               NewStride,
        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
          Factors.insert(Factor->getValue()->getValue().getSExtValue());
  // If all uses use the same type, don't bother looking for truncation-based
  // reuse.
  if (Types.size() == 1)
    Types.clear();

  DEBUG(print_factors_and_types(dbgs()));
void LSRInstance::CollectFixupsAndInitialFormulae() {
  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
    // Record the uses.
    LSRFixup &LF = getNewFixup();
    LF.UserInst = UI->getUser();
    LF.OperandValToReplace = UI->getOperandValToReplace();
    LF.PostIncLoops = UI->getPostIncLoops();
    LSRUse::KindType Kind = LSRUse::Basic;
    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
      Kind = LSRUse::Address;
      AccessTy = getAccessType(LF.UserInst);
    }


    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
    // (N - i == 0), and this allows (N - i) to be the expression that we work
    // with rather than just N or i, so we can consider the register
    // requirements for both N and i at the same time. Limiting this code to
    // equality icmps is not a problem because all interesting loops use
    // equality icmps, thanks to IndVarSimplify.
    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
      if (CI->isEquality()) {
        // Swap the operands if needed to put the OperandValToReplace on the
        // left, for consistency.
        Value *NV = CI->getOperand(1);
        if (NV == LF.OperandValToReplace) {
          CI->setOperand(1, CI->getOperand(0));
          CI->setOperand(0, NV);
        }

        // x == y  -->  x - y == 0
        const SCEV *N = SE.getSCEV(NV);
          // S is normalized, so normalize N before folding it into S
          // to keep the result normalized.
          N = TransformForPostIncUse(Normalize, N, CI, 0,
                                     LF.PostIncLoops, SE, DT);
          Kind = LSRUse::ICmpZero;
          S = SE.getMinusSCEV(N, S);
        }

        // -1 and the negations of all interesting strides (except the negation
        // of -1) are now also interesting.
        for (size_t i = 0, e = Factors.size(); i != e; ++i)
          if (Factors[i] != -1)
            Factors.insert(-(uint64_t)Factors[i]);
        Factors.insert(-1);
      }

    // Set up the initial formula for this use.
    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
    LF.LUIdx = P.first;
    LF.Offset = P.second;
    LSRUse &LU = Uses[LF.LUIdx];
    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
    if (!LU.WidestFixupType ||
        SE.getTypeSizeInBits(LU.WidestFixupType) <
        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
      LU.WidestFixupType = LF.OperandValToReplace->getType();

    // If this is the first use of this LSRUse, give it a formula.
    if (LU.Formulae.empty()) {
      InsertInitialFormula(S, LU, LF.LUIdx);
      CountRegisters(LU.Formulae.back(), LF.LUIdx);
    }
  }

  DEBUG(print_fixups(dbgs()));
}

Dan Gohman's avatar
Dan Gohman committed
/// InsertInitialFormula - Insert a formula for the given expression into
/// the given use, separating out loop-variant portions from loop-invariant
/// and loop-computable portions.
LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
  bool Inserted = InsertFormula(LU, LUIdx, F);
  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
}

Dan Gohman's avatar
Dan Gohman committed
/// InsertSupplementalFormula - Insert a simple single-register formula for
/// the given expression into the given use.
void
LSRInstance::InsertSupplementalFormula(const SCEV *S,
                                       LSRUse &LU, size_t LUIdx) {
  Formula F;
  F.BaseRegs.push_back(S);
  F.AM.HasBaseReg = true;
  bool Inserted = InsertFormula(LU, LUIdx, F);
  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}

/// CountRegisters - Note which registers are used by the given formula,
/// updating RegUses.
void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
  if (F.ScaledReg)
    RegUses.CountRegister(F.ScaledReg, LUIdx);
  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
       E = F.BaseRegs.end(); I != E; ++I)
    RegUses.CountRegister(*I, LUIdx);
}

/// InsertFormula - If the given formula has not yet been inserted, add it to
/// the list, and return true. Return false otherwise.
bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
  if (!LU.InsertFormula(F))
  CountRegisters(F, LUIdx);
  return true;
}

/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
/// loop-invariant values which we're tracking. These other uses will pin these
/// values in registers, making them less profitable for elimination.
/// TODO: This currently misses non-constant addrec step registers.
/// TODO: Should this give more weight to users inside the loop?
void
LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
  SmallPtrSet<const SCEV *, 8> Inserted;

  while (!Worklist.empty()) {
    const SCEV *S = Worklist.pop_back_val();

    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
      Worklist.append(N->op_begin(), N->op_end());
    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
      Worklist.push_back(C->getOperand());
    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
      Worklist.push_back(D->getLHS());
      Worklist.push_back(D->getRHS());
    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
      if (!Inserted.insert(U)) continue;
      const Value *V = U->getValue();
      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
        // Look for instructions defined outside the loop.
        if (L->contains(Inst)) continue;
      } else if (isa<UndefValue>(V))
        // Undef doesn't have a live range, so it doesn't matter.
        continue;
      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
           UI != UE; ++UI) {
        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
        // Ignore non-instructions.
        if (!UserInst)
          continue;
        // Ignore instructions in other functions (as can happen with
        // Constants).
        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
          continue;
        // Ignore instructions not dominated by the loop.
        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
          UserInst->getParent() :
          cast<PHINode>(UserInst)->getIncomingBlock(
            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
        if (!DT.dominates(L->getHeader(), UseBB))
          continue;
        // Ignore uses which are part of other SCEV expressions, to avoid
        // analyzing them multiple times.
        if (SE.isSCEVable(UserInst->getType())) {
          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
          // If the user is a no-op, look through to its uses.
          if (!isa<SCEVUnknown>(UserS))
            continue;
          if (UserS == U) {
            Worklist.push_back(
              SE.getUnknown(const_cast<Instruction *>(UserInst)));
            continue;
          }
        }
        // Ignore icmp instructions which are already being analyzed.
        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
          unsigned OtherIdx = !UI.getOperandNo();
          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
            continue;
        }

        LSRFixup &LF = getNewFixup();
        LF.UserInst = const_cast<Instruction *>(UserInst);
        LF.OperandValToReplace = UI.getUse();
        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
        LF.LUIdx = P.first;
        LF.Offset = P.second;
        LSRUse &LU = Uses[LF.LUIdx];
        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
        if (!LU.WidestFixupType ||
            SE.getTypeSizeInBits(LU.WidestFixupType) <
            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
          LU.WidestFixupType = LF.OperandValToReplace->getType();
        InsertSupplementalFormula(U, LU, LF.LUIdx);
        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
        break;
      }
    }
  }
}

/// CollectSubexprs - Split S into subexpressions which can be pulled out into
/// separate registers. If C is non-null, multiply each subexpression by C.
static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
                            SmallVectorImpl<const SCEV *> &Ops,
                            ScalarEvolution &SE) {
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    // Break out add operands.
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
         I != E; ++I)
      CollectSubexprs(*I, C, Ops, L, SE);
    return;
  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    // Split a non-zero base out of an addrec.
    if (!AR->getStart()->isZero()) {
      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
                                       AR->getLoop(),
                                       //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
                                       SCEV::FlagAnyWrap),
                      C, Ops, L, SE);
      CollectSubexprs(AR->getStart(), C, Ops, L, SE);
      return;
    }
  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    // Break (C * (a + b + c)) into C*a + C*b + C*c.
    if (Mul->getNumOperands() == 2)
      if (const SCEVConstant *Op0 =
            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
        CollectSubexprs(Mul->getOperand(1),
                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
  // Otherwise use the value itself, optionally with a scale applied.
  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
}

/// GenerateReassociations - Split out subexpressions from adds and the bases of
/// addrecs.
void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
                                         Formula Base,
                                         unsigned Depth) {
  // Arbitrarily cap recursion to protect compile time.
  if (Depth >= 3) return;

  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
    const SCEV *BaseReg = Base.BaseRegs[i];

    SmallVector<const SCEV *, 8> AddOps;
    CollectSubexprs(BaseReg, 0, AddOps, L, SE);
    if (AddOps.size() == 1) continue;

    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
         JE = AddOps.end(); J != JE; ++J) {

      // Loop-variant "unknown" values are uninteresting; we won't be able to
      // do anything meaningful with them.
      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
      // Don't pull a constant into a register if the constant could be folded
      // into an immediate field.
      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
                           Base.getNumRegs() > 1,
                           LU.Kind, LU.AccessTy, TLI, SE))
        continue;

      // Collect all operands except *J.
      SmallVector<const SCEV *, 8> InnerAddOps
Dan Gohman's avatar
Dan Gohman committed
        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());

      // Don't leave just a constant behind in a register if the constant could
      // be folded into an immediate field.
      if (InnerAddOps.size() == 1 &&
          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
                           Base.getNumRegs() > 1,
                           LU.Kind, LU.AccessTy, TLI, SE))
        continue;

      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
      if (InnerSum->isZero())
        continue;

      // Add the remaining pieces of the add back into the new formula.
      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
      if (TLI && InnerSumSC &&
          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
                                   InnerSumSC->getValue()->getZExtValue())) {
        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
                           InnerSumSC->getValue()->getZExtValue();
        F.BaseRegs.erase(F.BaseRegs.begin() + i);
      } else
        F.BaseRegs[i] = InnerSum;

      // Add J as its own register, or an unfolded immediate.
      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
                                   SC->getValue()->getZExtValue()))
        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
                           SC->getValue()->getZExtValue();
      else
        F.BaseRegs.push_back(*J);

      if (InsertFormula(LU, LUIdx, F))
        // If that formula hadn't been seen before, recurse to find more like
        // it.
        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
    }
  }
}

/// GenerateCombinations - Generate a formula consisting of all of the
/// loop-dominating registers added into a single register.
void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman's avatar
Dan Gohman committed
                                       Formula Base) {
Dan Gohman's avatar
Dan Gohman committed
  // This method is only interesting on a plurality of registers.
  if (Base.BaseRegs.size() <= 1) return;

  Formula F = Base;
  F.BaseRegs.clear();
  SmallVector<const SCEV *, 4> Ops;
  for (SmallVectorImpl<const SCEV *>::const_iterator
       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
    const SCEV *BaseReg = *I;
    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
        !SE.hasComputableLoopEvolution(BaseReg, L))
      Ops.push_back(BaseReg);
    else
      F.BaseRegs.push_back(BaseReg);
  }
  if (Ops.size() > 1) {
    const SCEV *Sum = SE.getAddExpr(Ops);
    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
    // opportunity to fold something. For now, just ignore such cases
Dan Gohman's avatar
Dan Gohman committed
    // rather than proceed with zero in a register.
    if (!Sum->isZero()) {
      F.BaseRegs.push_back(Sum);
      (void)InsertFormula(LU, LUIdx, F);
    }
  }
}

/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
                                          Formula Base) {
  // We can't add a symbolic offset if the address already contains one.
  if (Base.AM.BaseGV) return;

  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
    const SCEV *G = Base.BaseRegs[i];
    GlobalValue *GV = ExtractSymbol(G, SE);
    if (G->isZero() || !GV)
      continue;
    Formula F = Base;
    F.AM.BaseGV = GV;
    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
                    LU.Kind, LU.AccessTy, TLI))
      continue;
    F.BaseRegs[i] = G;
    (void)InsertFormula(LU, LUIdx, F);
  }
}

/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
                                          Formula Base) {
  // TODO: For now, just add the min and max offset, because it usually isn't
  // worthwhile looking at everything inbetween.
  SmallVector<int64_t, 2> Worklist;
  Worklist.push_back(LU.MinOffset);
  if (LU.MaxOffset != LU.MinOffset)
    Worklist.push_back(LU.MaxOffset);

  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
    const SCEV *G = Base.BaseRegs[i];

    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
         E = Worklist.end(); I != E; ++I) {
      Formula F = Base;
      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
                     LU.Kind, LU.AccessTy, TLI)) {
        // Add the offset to the base register.
        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
        // If it cancelled out, drop the base register, otherwise update it.
        if (NewG->isZero()) {
          std::swap(F.BaseRegs[i], F.BaseRegs.back());
          F.BaseRegs.pop_back();
        } else
          F.BaseRegs[i] = NewG;

        (void)InsertFormula(LU, LUIdx, F);
      }
    }

    int64_t Imm = ExtractImmediate(G, SE);
    if (G->isZero() || Imm == 0)
      continue;
    Formula F = Base;
    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
                    LU.Kind, LU.AccessTy, TLI))
      continue;
    F.BaseRegs[i] = G;
    (void)InsertFormula(LU, LUIdx, F);
  }
}

/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
/// the comparison. For example, x == y -> x*c == y*c.
void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
                                         Formula Base) {
  if (LU.Kind != LSRUse::ICmpZero) return;

  // Determine the integer type for the base formula.
  if (!IntTy) return;
  if (SE.getTypeSizeInBits(IntTy) > 64) return;

  // Don't do this if there is more than one offset.
  if (LU.MinOffset != LU.MaxOffset) return;

  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");

  // Check each interesting stride.
  for (SmallSetVector<int64_t, 8>::const_iterator
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
    int64_t Factor = *I;

    // Check that the multiplication doesn't overflow.
    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
      continue;

    // Check that multiplying with the use offset doesn't overflow.
    int64_t Offset = LU.MinOffset;
    if (Offset == INT64_MIN && Factor == -1)
      continue;
    Offset = (uint64_t)Offset * Factor;
Dan Gohman's avatar
Dan Gohman committed
    if (Offset / Factor != LU.MinOffset)
    Formula F = Base;
    F.AM.BaseOffs = NewBaseOffs;

    // Check that this scale is legal.
    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
      continue;

    // Compensate for the use having MinOffset built into it.
    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;

    const SCEV *FactorS = SE.getConstant(IntTy, Factor);

    // Check that multiplying with each base register doesn't overflow.
    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
        goto next;
    }

    // Check that multiplying with the scaled register doesn't overflow.
    if (F.ScaledReg) {
      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
    // Check that multiplying with the unfolded offset doesn't overflow.
    if (F.UnfoldedOffset != 0) {
      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
        continue;
      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
        continue;
    }

    // If we make it here and it's legal, add it.
    (void)InsertFormula(LU, LUIdx, F);
  next:;
  }
}

/// GenerateScales - Generate stride factor reuse formulae by making use of
/// scaled-offset address modes, for example.
Dan Gohman's avatar
Dan Gohman committed
void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
  // Determine the integer type for the base formula.
  if (!IntTy) return;

  // If this Formula already has a scaled register, we can't add another one.
  if (Base.AM.Scale != 0) return;

  // Check each interesting stride.
  for (SmallSetVector<int64_t, 8>::const_iterator
       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
    int64_t Factor = *I;

    Base.AM.Scale = Factor;
    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
    // Check whether this scale is going to be legal.
    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
                    LU.Kind, LU.AccessTy, TLI)) {
      // As a special-case, handle special out-of-loop Basic users specially.
      // TODO: Reconsider this special case.
      if (LU.Kind == LSRUse::Basic &&
          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
                     LSRUse::Special, LU.AccessTy, TLI) &&
          LU.AllFixupsOutsideLoop)
        LU.Kind = LSRUse::Special;
      else
        continue;
    }
    // For an ICmpZero, negating a solitary base register won't lead to
    // new solutions.
    if (LU.Kind == LSRUse::ICmpZero &&
        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
      continue;
    // For each addrec base reg, apply the scale, if possible.
    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
      if (const SCEVAddRecExpr *AR =
            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
        if (FactorS->isZero())
          continue;
        // Divide out the factor, ignoring high bits, since we'll be
        // scaling the value back up in the end.
        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
          // TODO: This could be optimized to avoid all the copying.
          Formula F = Base;
          F.ScaledReg = Quotient;
          (void)InsertFormula(LU, LUIdx, F);
        }
      }
  }
}

/// GenerateTruncates - Generate reuse formulae from different IV types.
Dan Gohman's avatar
Dan Gohman committed
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
  // This requires TargetLowering to tell us which truncates are free.
  if (!TLI) return;

  // Don't bother truncating symbolic values.
  if (Base.AM.BaseGV) return;

  // Determine the integer type for the base formula.
  if (!DstTy) return;
  DstTy = SE.getEffectiveSCEVType(DstTy);

  for (SmallSetVector<Type *, 4>::const_iterator
       I = Types.begin(), E = Types.end(); I != E; ++I) {
    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
      Formula F = Base;

      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
           JE = F.BaseRegs.end(); J != JE; ++J)
        *J = SE.getAnyExtendExpr(*J, SrcTy);

      // TODO: This assumes we've done basic processing on all uses and
      // have an idea what the register usage is.
      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
        continue;

      (void)InsertFormula(LU, LUIdx, F);
    }
  }
}

namespace {

Dan Gohman's avatar
Dan Gohman committed
/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
/// defer modifications so that the search phase doesn't have to worry about
/// the data structures moving underneath it.
struct WorkItem {
  size_t LUIdx;
  int64_t Imm;
  const SCEV *OrigReg;

  WorkItem(size_t LI, int64_t I, const SCEV *R)
    : LUIdx(LI), Imm(I), OrigReg(R) {}

  void print(raw_ostream &OS) const;
  void dump() const;
};

}

void WorkItem::print(raw_ostream &OS) const {
  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
     << " , add offset " << Imm;
}

void WorkItem::dump() const {
  print(errs()); errs() << '\n';
}

/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
/// distance apart and try to form reuse opportunities between them.
void LSRInstance::GenerateCrossUseConstantOffsets() {
  // Group the registers by their value without any added constant offset.
  typedef std::map<int64_t, const SCEV *> ImmMapTy;
  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
  RegMapTy Map;
  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
  SmallVector<const SCEV *, 8> Sequence;
  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
       I != E; ++I) {
    const SCEV *Reg = *I;
    int64_t Imm = ExtractImmediate(Reg, SE);
    std::pair<RegMapTy::iterator, bool> Pair =
      Map.insert(std::make_pair(Reg, ImmMapTy()));
    if (Pair.second)
      Sequence.push_back(Reg);
    Pair.first->second.insert(std::make_pair(Imm, *I));
    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
  }

  // Now examine each set of registers with the same base value. Build up
  // a list of work to do and do the work in a separate step so that we're
  // not adding formulae and register counts while we're searching.
  SmallVector<WorkItem, 32> WorkItems;
  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
       E = Sequence.end(); I != E; ++I) {
    const SCEV *Reg = *I;
    const ImmMapTy &Imms = Map.find(Reg)->second;

    // It's not worthwhile looking for reuse if there's only one offset.
    if (Imms.size() == 1)
      continue;

    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
               J != JE; ++J)
            dbgs() << ' ' << J->first;
          dbgs() << '\n');

    // Examine each offset.
    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
         J != JE; ++J) {
      const SCEV *OrigReg = J->second;

      int64_t JImm = J->first;
      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);

      if (!isa<SCEVConstant>(OrigReg) &&
          UsedByIndicesMap[Reg].count() == 1) {
        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
        continue;
      }

      // Conservatively examine offsets between this orig reg a few selected
      // other orig regs.
      ImmMapTy::const_iterator OtherImms[] = {
        Imms.begin(), prior(Imms.end()),
        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
      };
      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
        ImmMapTy::const_iterator M = OtherImms[i];
        if (M == J || M == JE) continue;

        // Compute the difference between the two.
        int64_t Imm = (uint64_t)JImm - M->first;
        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
             LUIdx = UsedByIndices.find_next(LUIdx))
          // Make a memo of this use, offset, and register tuple.
          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
      }
    }
  }

  Map.clear();
  Sequence.clear();
  UsedByIndicesMap.clear();

  // Now iterate through the worklist and add new formulae.
  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
       E = WorkItems.end(); I != E; ++I) {
    const WorkItem &WI = *I;
    size_t LUIdx = WI.LUIdx;
    LSRUse &LU = Uses[LUIdx];
    int64_t Imm = WI.Imm;
    const SCEV *OrigReg = WI.OrigReg;

    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);

Dan Gohman's avatar
Dan Gohman committed
    // TODO: Use a more targeted data structure.
    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
Dan Gohman's avatar
Dan Gohman committed
      const Formula &F = LU.Formulae[L];
      // Use the immediate in the scaled register.
      if (F.ScaledReg == OrigReg) {
        int64_t Offs = (uint64_t)F.AM.BaseOffs +
                       Imm * (uint64_t)F.AM.Scale;
        // Don't create 50 + reg(-50).
        if (F.referencesReg(SE.getSCEV(
                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
          continue;
        Formula NewF = F;
        NewF.AM.BaseOffs = Offs;
        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
                        LU.Kind, LU.AccessTy, TLI))
          continue;
        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);

        // If the new scale is a constant in a register, and adding the constant
        // value to the immediate would produce a value closer to zero than the
        // immediate itself, then the formula isn't worthwhile.
        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
          if (C->getValue()->isNegative() !=
                (NewF.AM.BaseOffs < 0) &&
              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
            continue;

        // OK, looks good.
        (void)InsertFormula(LU, LUIdx, NewF);
      } else {
        // Use the immediate in a base register.
        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
          const SCEV *BaseReg = F.BaseRegs[N];
          if (BaseReg != OrigReg)
            continue;
          Formula NewF = F;
          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
                          LU.Kind, LU.AccessTy, TLI)) {
            if (!TLI ||
                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
              continue;
            NewF = F;
            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
          }
          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);

          // If the new formula has a constant in a register, and adding the
          // constant value to the immediate would produce a value closer to
          // zero than the immediate itself, then the formula isn't worthwhile.
          for (SmallVectorImpl<const SCEV *>::const_iterator
               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
               J != JE; ++J)
            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
                   abs64(NewF.AM.BaseOffs)) &&
                  (C->getValue()->getValue() +
                   NewF.AM.BaseOffs).countTrailingZeros() >=
                   CountTrailingZeros_64(NewF.AM.BaseOffs))
                goto skip_formula;

          // Ok, looks good.
          (void)InsertFormula(LU, LUIdx, NewF);
          break;
        skip_formula:;
        }
      }
    }
  }
}

/// GenerateAllReuseFormulae - Generate formulae for each use.
void
LSRInstance::GenerateAllReuseFormulae() {
  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
  // queries are more precise.
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
  }
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateScales(LU, LUIdx, LU.Formulae[i]);
  }
  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
  }

  GenerateCrossUseConstantOffsets();

  DEBUG(dbgs() << "\n"
                  "After generating reuse formulae:\n";
        print_uses(dbgs()));
Dan Gohman's avatar
Dan Gohman committed
/// If there are multiple formulae with the same set of registers used
/// by other uses, pick the best one and delete the others.
void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
  DenseSet<const SCEV *> VisitedRegs;
  SmallPtrSet<const SCEV *, 16> Regs;
#endif

  // Collect the best formula for each unique set of shared registers. This
  // is reset for each use.
  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
    BestFormulaeTy;
  BestFormulaeTy BestFormulae;

  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
    LSRUse &LU = Uses[LUIdx];
Dan Gohman's avatar
Dan Gohman committed
    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
         FIdx != NumForms; ++FIdx) {
      Formula &F = LU.Formulae[FIdx];

      SmallVector<const SCEV *, 2> Key;
      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
           JE = F.BaseRegs.end(); J != JE; ++J) {
        const SCEV *Reg = *J;
        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
          Key.push_back(Reg);
      }
      if (F.ScaledReg &&
          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
        Key.push_back(F.ScaledReg);
      // Unstable sort by host order ok, because this is only used for
      // uniquifying.
      std::sort(Key.begin(), Key.end());

      std::pair<BestFormulaeTy::const_iterator, bool> P =
        BestFormulae.insert(std::make_pair(Key, FIdx));
      if (!P.second) {
        Formula &Best = LU.Formulae[P.first->second];

        Cost CostF;
        CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
        Regs.clear();
        Cost CostBest;
        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
        Regs.clear();
        if (CostF < CostBest)
        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
                        "    in favor of formula "; Best.print(dbgs());
Dan Gohman's avatar
Dan Gohman committed
    // Now that we've filtered out some formulae, recompute the Regs set.
    if (Any)
      LU.RecomputeRegs(LUIdx, RegUses);

    // Reset this to prepare for the next use.
          dbgs() << "\n"
                    "After filtering out undesirable candidates:\n";
// This is a rough guess that seems to work fairly well.
static const size_t ComplexityLimit = UINT16_MAX;

/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
/// solutions the solver might have to consider. It almost never considers
/// this many solutions because it prune the search space, but the pruning
/// isn't always sufficient.
size_t LSRInstance::EstimateSearchSpaceComplexity() const {
Dan Gohman's avatar
Dan Gohman committed
  size_t Power = 1;
  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),