Skip to content
RegAllocFast.cpp 43.4 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");

static RegisterRegAlloc
  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);

namespace {
  class RAFast : public MachineFunctionPass {
  public:
    static char ID;
    RAFast() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
  private:
    const TargetMachine *TM;
    MachineFunction *MF;
    const TargetRegisterInfo *TRI;
    const TargetInstrInfo *TII;

    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
    // values are spilled.
    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;

    // Virt2PhysRegMap - This map contains entries for each virtual register
    // that is currently available in a physical register.
    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;

    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
      return Virt2PhysRegMap[VirtReg];
    }

    // PhysRegsUsed - This array is effectively a map, containing entries for
    // each physical register that currently has a value (ie, it is in
    // Virt2PhysRegMap).  The value mapped to is the virtual register
    // corresponding to the physical register (the inverse of the
    // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
    // because it is used by a future instruction, and to -2 if it is not
    // allocatable.  If the entry for a physical register is -1, then the
    // physical register is "not in the map".
    //
    std::vector<int> PhysRegsUsed;

    // UsedInInstr - BitVector of physregs that are used in the current
    // instruction, and so cannot be allocated.
    BitVector UsedInInstr;

    // Virt2LastUseMap - This maps each virtual register to its last use
    // (MachineInstr*, operand index pair).
    IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
    Virt2LastUseMap;

    std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      return Virt2LastUseMap[Reg];
    }

    // VirtRegModified - This bitset contains information about which virtual
    // registers need to be spilled back to memory when their registers are
    // scavenged.  If a virtual register has simply been rematerialized, there
    // is no reason to spill it to memory when we need the register back.
    //
    BitVector VirtRegModified;

    // UsedInMultipleBlocks - Tracks whether a particular register is used in
    // more than one block.
    BitVector UsedInMultipleBlocks;

    void markVirtRegModified(unsigned Reg, bool Val = true) {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      Reg -= TargetRegisterInfo::FirstVirtualRegister;
      if (Val)
        VirtRegModified.set(Reg);
      else
        VirtRegModified.reset(Reg);
    }

    bool isVirtRegModified(unsigned Reg) const {
      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
      assert(Reg - TargetRegisterInfo::FirstVirtualRegister <
             VirtRegModified.size() && "Illegal virtual register!");
      return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
    }

  public:
    virtual const char *getPassName() const {
      return "Fast Register Allocator";
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequiredID(PHIEliminationID);
      AU.addRequiredID(TwoAddressInstructionPassID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    /// runOnMachineFunction - Register allocate the whole function
    bool runOnMachineFunction(MachineFunction &Fn);

    /// AllocateBasicBlock - Register allocate the specified basic block.
    void AllocateBasicBlock(MachineBasicBlock &MBB);


    /// areRegsEqual - This method returns true if the specified registers are
    /// related to each other.  To do this, it checks to see if they are equal
    /// or if the first register is in the alias set of the second register.
    ///
    bool areRegsEqual(unsigned R1, unsigned R2) const {
      if (R1 == R2) return true;
      for (const unsigned *AliasSet = TRI->getAliasSet(R2);
           *AliasSet; ++AliasSet) {
        if (*AliasSet == R1) return true;
      }
      return false;
    }

    /// getStackSpaceFor - This returns the frame index of the specified virtual
    /// register on the stack, allocating space if necessary.
    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);

    /// removePhysReg - This method marks the specified physical register as no
    /// longer being in use.
    ///
    void removePhysReg(unsigned PhysReg);

    /// spillVirtReg - This method spills the value specified by PhysReg into
    /// the virtual register slot specified by VirtReg.  It then updates the RA
    /// data structures to indicate the fact that PhysReg is now available.
    ///
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                      unsigned VirtReg, unsigned PhysReg);

    /// spillPhysReg - This method spills the specified physical register into
    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
    /// true, then the request is ignored if the physical register does not
    /// contain a virtual register.
    ///
    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
                      unsigned PhysReg, bool OnlyVirtRegs = false);

    /// assignVirtToPhysReg - This method updates local state so that we know
    /// that PhysReg is the proper container for VirtReg now.  The physical
    /// register must not be used for anything else when this is called.
    ///
    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);

    /// isPhysRegAvailable - Return true if the specified physical register is
    /// free and available for use.  This also includes checking to see if
    /// aliased registers are all free...
    ///
    bool isPhysRegAvailable(unsigned PhysReg) const;

    /// isPhysRegSpillable - Can PhysReg be freed by spilling?
    bool isPhysRegSpillable(unsigned PhysReg) const;

    /// getFreeReg - Look to see if there is a free register available in the
    /// specified register class.  If not, return 0.
    ///
    unsigned getFreeReg(const TargetRegisterClass *RC);

    /// getReg - Find a physical register to hold the specified virtual
    /// register.  If all compatible physical registers are used, this method
    /// spills the last used virtual register to the stack, and uses that
    /// register. If NoFree is true, that means the caller knows there isn't
    /// a free register, do not call getFreeReg().
    unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
                    unsigned VirtReg, bool NoFree = false);

    /// reloadVirtReg - This method transforms the specified virtual
    /// register use to refer to a physical register.  This method may do this
    /// in one of several ways: if the register is available in a physical
    /// register already, it uses that physical register.  If the value is not
    /// in a physical register, and if there are physical registers available,
    /// it loads it into a register: PhysReg if that is an available physical
    /// register, otherwise any physical register of the right class.
    /// If register pressure is high, and it is possible, it tries to fold the
    /// load of the virtual register into the instruction itself.  It avoids
    /// doing this if register pressure is low to improve the chance that
    /// subsequent instructions can use the reloaded value.  This method
    /// returns the modified instruction.
    ///
    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                unsigned OpNum, SmallSet<unsigned, 4> &RRegs,
                                unsigned PhysReg);

    /// ComputeLocalLiveness - Computes liveness of registers within a basic
    /// block, setting the killed/dead flags as appropriate.
    void ComputeLocalLiveness(MachineBasicBlock& MBB);

    void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                       unsigned PhysReg);
  };
  char RAFast::ID = 0;
}

/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
  // Find the location Reg would belong...
  int SS = StackSlotForVirtReg[VirtReg];
  if (SS != -1)
    return SS;          // Already has space allocated?

  // Allocate a new stack object for this spill location...
  int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
                                                            RC->getAlignment());

  // Assign the slot.
  StackSlotForVirtReg[VirtReg] = FrameIdx;
  return FrameIdx;
}


/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RAFast::removePhysReg(unsigned PhysReg) {
  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
}


/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg.  It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RAFast::spillVirtReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator I,
                           unsigned VirtReg, unsigned PhysReg) {
  assert(VirtReg && "Spilling a physical register is illegal!"
         " Must not have appropriate kill for the register or use exists beyond"
         " the intended one.");
  DEBUG(dbgs() << "  Spilling register " << TRI->getName(PhysReg)
               << " containing %reg" << VirtReg);

  if (!isVirtRegModified(VirtReg)) {
    DEBUG(dbgs() << " which has not been modified, so no store necessary!");
    std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
    if (LastUse.first)
      LastUse.first->getOperand(LastUse.second).setIsKill();
  } else {
    // Otherwise, there is a virtual register corresponding to this physical
    // register.  We only need to spill it into its stack slot if it has been
    // modified.
    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
    int FrameIndex = getStackSpaceFor(VirtReg, RC);
    DEBUG(dbgs() << " to stack slot #" << FrameIndex);
    // If the instruction reads the register that's spilled, (e.g. this can
    // happen if it is a move to a physical register), then the spill
    // instruction is not a kill.
    bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
    TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
    ++NumStores;   // Update statistics
  }

  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available

  DEBUG(dbgs() << '\n');
  removePhysReg(PhysReg);
}


/// spillPhysReg - This method spills the specified physical register into the
/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
/// then the request is ignored if the physical register does not contain a
/// virtual register.
///
void RAFast::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
                           unsigned PhysReg, bool OnlyVirtRegs) {
  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
    return;
  }

  // If the selected register aliases any other registers, we must make
  // sure that one of the aliases isn't alive.
  for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
       *AliasSet; ++AliasSet) {
    if (PhysRegsUsed[*AliasSet] == -1 ||     // Spill aliased register.
        PhysRegsUsed[*AliasSet] == -2)       // If allocatable.
      continue;

    if (PhysRegsUsed[*AliasSet])
      spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
  }
}


/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now.  The physical
/// register must not be used for anything else when this is called.
///
void RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
  // Update information to note the fact that this register was just used, and
  // it holds VirtReg.
  PhysRegsUsed[PhysReg] = VirtReg;
  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
  UsedInInstr.set(PhysReg);
}


/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use.  This also includes checking to see if aliased
/// registers are all free...
///
bool RAFast::isPhysRegAvailable(unsigned PhysReg) const {
  if (PhysRegsUsed[PhysReg] != -1) return false;

  // If the selected register aliases any other allocated registers, it is
  // not free!
  for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
       *AliasSet; ++AliasSet)
    if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
      return false;                    // Can't use this reg then.
  return true;
}

/// isPhysRegSpillable - Return true if the specified physical register can be
/// spilled for use in the current instruction.
///
bool RAFast::isPhysRegSpillable(unsigned PhysReg) const {
  // Test that PhysReg and all aliases are either free or assigned to a VirtReg
  // that is not used in the instruction.
  if (PhysRegsUsed[PhysReg] != -1 &&
      (PhysRegsUsed[PhysReg] <= 0 || UsedInInstr.test(PhysReg)))
    return false;

  for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
       *AliasSet; ++AliasSet)
    if (PhysRegsUsed[*AliasSet] != -1 &&
        (PhysRegsUsed[*AliasSet] <= 0 || UsedInInstr.test(*AliasSet)))
      return false;
  return true;
}


/// getFreeReg - Look to see if there is a free register available in the
/// specified register class.  If not, return 0.
///
unsigned RAFast::getFreeReg(const TargetRegisterClass *RC) {
  // Get iterators defining the range of registers that are valid to allocate in
  // this class, which also specifies the preferred allocation order.
  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);

  for (; RI != RE; ++RI)
    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
      assert(*RI != 0 && "Cannot use register!");
      return *RI; // Found an unused register!
    }
  return 0;
}


/// getReg - Find a physical register to hold the specified virtual
/// register.  If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RAFast::getReg(MachineBasicBlock &MBB, MachineInstr *I,
                         unsigned VirtReg, bool NoFree) {
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);

  // First check to see if we have a free register of the requested type...
  unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);

  if (PhysReg != 0) {
    // Assign the register.
    assignVirtToPhysReg(VirtReg, PhysReg);
    return PhysReg;
  }

  // If we didn't find an unused register, scavenge one now! Don't be fancy,
  // just grab the first possible register.
  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);

  for (; RI != RE; ++RI)
    if (isPhysRegSpillable(*RI)) {
      PhysReg = *RI;
      break;
    }

  assert(PhysReg && "Physical register not assigned!?!?");
  spillPhysReg(MBB, I, PhysReg);
  assignVirtToPhysReg(VirtReg, PhysReg);
  return PhysReg;
}


/// reloadVirtReg - This method transforms the specified virtual
/// register use to refer to a physical register.  This method may do this in
/// one of several ways: if the register is available in a physical register
/// already, it uses that physical register.  If the value is not in a physical
/// register, and if there are physical registers available, it loads it into a
/// register: PhysReg if that is an available physical register, otherwise any
/// register.  If register pressure is high, and it is possible, it tries to
/// fold the load of the virtual register into the instruction itself.  It
/// avoids doing this if register pressure is low to improve the chance that
/// subsequent instructions can use the reloaded value.  This method returns
/// the modified instruction.
///
MachineInstr *RAFast::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                     unsigned OpNum,
                                     SmallSet<unsigned, 4> &ReloadedRegs,
                                     unsigned PhysReg) {
  unsigned VirtReg = MI->getOperand(OpNum).getReg();

  // If the virtual register is already available, just update the instruction
  // and return.
  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
    MI->getOperand(OpNum).setReg(PR);  // Assign the input register
    if (!MI->isDebugValue()) {
      // Do not do these for DBG_VALUE as they can affect codegen.
      UsedInInstr.set(PR);
      getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
    }
    return MI;
  }

  // Otherwise, we need to fold it into the current instruction, or reload it.
  // If we have registers available to hold the value, use them.
  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
  // If we already have a PhysReg (this happens when the instruction is a
  // reg-to-reg copy with a PhysReg destination) use that.
  if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) ||
      !isPhysRegAvailable(PhysReg))
    PhysReg = getFreeReg(RC);
  int FrameIndex = getStackSpaceFor(VirtReg, RC);

  if (PhysReg) {   // Register is available, allocate it!
    assignVirtToPhysReg(VirtReg, PhysReg);
  } else {         // No registers available.
    // Force some poor hapless value out of the register file to
    // make room for the new register, and reload it.
    PhysReg = getReg(MBB, MI, VirtReg, true);
  }

  markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded

  DEBUG(dbgs() << "  Reloading %reg" << VirtReg << " into "
               << TRI->getName(PhysReg) << "\n");

  // Add move instruction(s)
  TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
  ++NumLoads;    // Update statistics

  MF->getRegInfo().setPhysRegUsed(PhysReg);
  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
  getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);

  if (!ReloadedRegs.insert(PhysReg)) {
    std::string msg;
    raw_string_ostream Msg(msg);
    Msg << "Ran out of registers during register allocation!";
    if (MI->isInlineAsm()) {
      Msg << "\nPlease check your inline asm statement for invalid "
           << "constraints:\n";
      MI->print(Msg, TM);
    }
    report_fatal_error(Msg.str());
  }
  for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
       *SubRegs; ++SubRegs) {
    if (ReloadedRegs.insert(*SubRegs)) continue;

    std::string msg;
    raw_string_ostream Msg(msg);
    Msg << "Ran out of registers during register allocation!";
    if (MI->isInlineAsm()) {
      Msg << "\nPlease check your inline asm statement for invalid "
           << "constraints:\n";
      MI->print(Msg, TM);
    }
    report_fatal_error(Msg.str());
  }

  return MI;
}

/// isReadModWriteImplicitKill - True if this is an implicit kill for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
        MO.isDef() && !MO.isDead())
      return true;
  }
  return false;
}

/// isReadModWriteImplicitDef - True if this is an implicit def for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
        !MO.isDef() && MO.isKill())
      return true;
  }
  return false;
}

// precedes - Helper function to determine with MachineInstr A
// precedes MachineInstr B within the same MBB.
static bool precedes(MachineBasicBlock::iterator A,
                     MachineBasicBlock::iterator B) {
  if (A == B)
    return false;

  MachineBasicBlock::iterator I = A->getParent()->begin();
  while (I != A->getParent()->end()) {
    if (I == A)
      return true;
    else if (I == B)
      return false;

    ++I;
  }

  return false;
}

/// ComputeLocalLiveness - Computes liveness of registers within a basic
/// block, setting the killed/dead flags as appropriate.
void RAFast::ComputeLocalLiveness(MachineBasicBlock& MBB) {
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  // Keep track of the most recently seen previous use or def of each reg,
  // so that we can update them with dead/kill markers.
  DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
       I != E; ++I) {
    if (I->isDebugValue())
      continue;

    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = I->getOperand(i);
      // Uses don't trigger any flags, but we need to save
      // them for later.  Also, we have to process these
      // _before_ processing the defs, since an instr
      // uses regs before it defs them.
      if (!MO.isReg() || !MO.getReg() || !MO.isUse())
        continue;

      LastUseDef[MO.getReg()] = std::make_pair(I, i);

      if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;

      const unsigned *Aliases = TRI->getAliasSet(MO.getReg());
      if (Aliases == 0)
        continue;

      while (*Aliases) {
        DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
          alias = LastUseDef.find(*Aliases);

        if (alias != LastUseDef.end() && alias->second.first != I)
          LastUseDef[*Aliases] = std::make_pair(I, i);

        ++Aliases;
      }
    }

    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = I->getOperand(i);
      // Defs others than 2-addr redefs _do_ trigger flag changes:
      //   - A def followed by a def is dead
      //   - A use followed by a def is a kill
      if (!MO.isReg() || !MO.getReg() || !MO.isDef()) continue;

      DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
        last = LastUseDef.find(MO.getReg());
      if (last != LastUseDef.end()) {
        // Check if this is a two address instruction.  If so, then
        // the def does not kill the use.
        if (last->second.first == I &&
            I->isRegTiedToUseOperand(i))
          continue;

        MachineOperand &lastUD =
                    last->second.first->getOperand(last->second.second);
        if (lastUD.isDef())
          lastUD.setIsDead(true);
        else
          lastUD.setIsKill(true);
      }

      LastUseDef[MO.getReg()] = std::make_pair(I, i);
    }
  }

  // Live-out (of the function) registers contain return values of the function,
  // so we need to make sure they are alive at return time.
  MachineBasicBlock::iterator Ret = MBB.getFirstTerminator();
  bool BBEndsInReturn = (Ret != MBB.end() && Ret->getDesc().isReturn());

  if (BBEndsInReturn)
    for (MachineRegisterInfo::liveout_iterator
         I = MF->getRegInfo().liveout_begin(),
         E = MF->getRegInfo().liveout_end(); I != E; ++I)
      if (!Ret->readsRegister(*I)) {
        Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
        LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
      }

  // Finally, loop over the final use/def of each reg
  // in the block and determine if it is dead.
  for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
       I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
    MachineInstr *MI = I->second.first;
    unsigned idx = I->second.second;
    MachineOperand &MO = MI->getOperand(idx);

    bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());

    // A crude approximation of "live-out" calculation
    bool usedOutsideBlock = isPhysReg ? false :
          UsedInMultipleBlocks.test(MO.getReg() -
                                    TargetRegisterInfo::FirstVirtualRegister);

    // If the machine BB ends in a return instruction, then the value isn't used
    // outside of the BB.
    if (!isPhysReg && (!usedOutsideBlock || BBEndsInReturn)) {
      // DBG_VALUE complicates this:  if the only refs of a register outside
      // this block are DBG_VALUE, we can't keep the reg live just for that,
      // as it will cause the reg to be spilled at the end of this block when
      // it wouldn't have been otherwise.  Nullify the DBG_VALUEs when that
      // happens.
      bool UsedByDebugValueOnly = false;
      for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
             UE = MRI.reg_end(); UI != UE; ++UI) {
        // Two cases:
        // - used in another block
        // - used in the same block before it is defined (loop)
        if (UI->getParent() == &MBB &&
            !(MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI)))
          continue;

        if (UI->isDebugValue()) {
          UsedByDebugValueOnly = true;
          continue;
        }

        // A non-DBG_VALUE use means we can leave DBG_VALUE uses alone.
        UsedInMultipleBlocks.set(MO.getReg() -
                                 TargetRegisterInfo::FirstVirtualRegister);
        usedOutsideBlock = true;
        UsedByDebugValueOnly = false;
        break;
      }

      if (UsedByDebugValueOnly)
        for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
             UE = MRI.reg_end(); UI != UE; ++UI)
          if (UI->isDebugValue() &&
              (UI->getParent() != &MBB ||
               (MO.isDef() && precedes(&*UI, MI))))
            UI.getOperand().setReg(0U);
    }

    // Physical registers and those that are not live-out of the block are
    // killed/dead at their last use/def within this block.
    if (isPhysReg || !usedOutsideBlock || BBEndsInReturn) {
      if (MO.isUse()) {
        // Don't mark uses that are tied to defs as kills.
        if (!MI->isRegTiedToDefOperand(idx))
          MO.setIsKill(true);
      } else {
        MO.setIsDead(true);
      }
    }
  }
}

void RAFast::AllocateBasicBlock(MachineBasicBlock &MBB) {
  // loop over each instruction
  MachineBasicBlock::iterator MII = MBB.begin();

  DEBUG({
      const BasicBlock *LBB = MBB.getBasicBlock();
      if (LBB)
        dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName();
    });

  // Add live-in registers as active.
  for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
         E = MBB.livein_end(); I != E; ++I) {
    unsigned Reg = *I;
    MF->getRegInfo().setPhysRegUsed(Reg);
    PhysRegsUsed[Reg] = 0;            // It is free and reserved now
    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
         *SubRegs; ++SubRegs) {
      if (PhysRegsUsed[*SubRegs] == -2) continue;
      PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
      MF->getRegInfo().setPhysRegUsed(*SubRegs);
    }
  }

  ComputeLocalLiveness(MBB);

  // Otherwise, sequentially allocate each instruction in the MBB.
  while (MII != MBB.end()) {
    MachineInstr *MI = MII++;
    const TargetInstrDesc &TID = MI->getDesc();
    DEBUG({
        dbgs() << "\nStarting RegAlloc of: " << *MI;
        dbgs() << "  Regs have values: ";
        for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
          if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
            dbgs() << "[" << TRI->getName(i)
                   << ",%reg" << PhysRegsUsed[i] << "] ";
        dbgs() << '\n';
      });

    // Track registers used by instruction.
    UsedInInstr.reset();

    // Determine whether this is a copy instruction.  The cases where the
    // source or destination are phys regs are handled specially.
    unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg;
    unsigned SrcCopyPhysReg = 0U;
    bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg,
                                   SrcCopySubReg, DstCopySubReg);
    if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg))
      SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg);

    // Loop over the implicit uses, making sure they don't get reallocated.
    if (TID.ImplicitUses) {
      for (const unsigned *ImplicitUses = TID.ImplicitUses;
           *ImplicitUses; ++ImplicitUses)
        UsedInInstr.set(*ImplicitUses);
    }

    SmallVector<unsigned, 8> Kills;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isKill()) continue;

      if (!MO.isImplicit())
        Kills.push_back(MO.getReg());
      else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
        // These are extra physical register kills when a sub-register
        // is defined (def of a sub-register is a read/mod/write of the
        // larger registers). Ignore.
        Kills.push_back(MO.getReg());
    }

    // If any physical regs are earlyclobber, spill any value they might
    // have in them, then mark them unallocatable.
    // If any virtual regs are earlyclobber, allocate them now (before
    // freeing inputs that are killed).
    if (MI->isInlineAsm()) {
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber() ||
            !MO.getReg())
          continue;

        if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
          unsigned DestVirtReg = MO.getReg();
          unsigned DestPhysReg;

          // If DestVirtReg already has a value, use it.
          if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
            DestPhysReg = getReg(MBB, MI, DestVirtReg);
          MF->getRegInfo().setPhysRegUsed(DestPhysReg);
          markVirtRegModified(DestVirtReg);
          getVirtRegLastUse(DestVirtReg) =
                 std::make_pair((MachineInstr*)0, 0);
          DEBUG(dbgs() << "  Assigning " << TRI->getName(DestPhysReg)
                       << " to %reg" << DestVirtReg << "\n");
          MO.setReg(DestPhysReg);  // Assign the earlyclobber register
        } else {
          unsigned Reg = MO.getReg();
          if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
          // These are extra physical register defs when a sub-register
          // is defined (def of a sub-register is a read/mod/write of the
          // larger registers). Ignore.
          if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;

          MF->getRegInfo().setPhysRegUsed(Reg);
          spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
          PhysRegsUsed[Reg] = 0;            // It is free and reserved now

          for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
               *SubRegs; ++SubRegs) {
            if (PhysRegsUsed[*SubRegs] == -2) continue;
            MF->getRegInfo().setPhysRegUsed(*SubRegs);
            PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
          }
        }
      }
    }

    // If a DBG_VALUE says something is located in a spilled register,
    // change the DBG_VALUE to be undef, which prevents the register
    // from being reloaded here.  Doing that would change the generated
    // code, unless another use immediately follows this instruction.
    if (MI->isDebugValue() &&
        MI->getNumOperands()==3 && MI->getOperand(0).isReg()) {
      unsigned VirtReg = MI->getOperand(0).getReg();
      if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) &&
          !getVirt2PhysRegMapSlot(VirtReg))
        MI->getOperand(0).setReg(0U);
    }

    // Get the used operands into registers.  This has the potential to spill
    // incoming values if we are out of registers.  Note that we completely
    // ignore physical register uses here.  We assume that if an explicit
    // physical register is referenced by the instruction, that it is guaranteed
    // to be live-in, or the input is badly hosed.
    //
    SmallSet<unsigned, 4> ReloadedRegs;
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
      MachineOperand &MO = MI->getOperand(i);
      // here we are looking for only used operands (never def&use)
      if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
        MI = reloadVirtReg(MBB, MI, i, ReloadedRegs,
                           isCopy ? DstCopyReg : 0);
    }

    // If this instruction is the last user of this register, kill the
    // value, freeing the register being used, so it doesn't need to be
    // spilled to memory.
    //
    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
      unsigned VirtReg = Kills[i];
      unsigned PhysReg = VirtReg;
      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
        // If the virtual register was never materialized into a register, it
        // might not be in the map, but it won't hurt to zero it out anyway.
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
        PhysReg = PhysRegSlot;
        PhysRegSlot = 0;
      } else if (PhysRegsUsed[PhysReg] == -2) {
        // Unallocatable register dead, ignore.
        continue;
      } else {
        assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
               "Silently clearing a virtual register?");
      }

      if (!PhysReg) continue;

      DEBUG(dbgs() << "  Last use of " << TRI->getName(PhysReg)
                   << "[%reg" << VirtReg <<"], removing it from live set\n");
      removePhysReg(PhysReg);
      for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
           *SubRegs; ++SubRegs) {
        if (PhysRegsUsed[*SubRegs] != -2) {
          DEBUG(dbgs()  << "  Last use of "
                        << TRI->getName(*SubRegs) << "[%reg" << VirtReg
                        <<"], removing it from live set\n");
          removePhysReg(*SubRegs);
        }
      }
    }

    // Track registers defined by instruction.
    UsedInInstr.reset();

    // Loop over all of the operands of the instruction, spilling registers that
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef() || MO.isImplicit() || !MO.getReg() ||
          MO.isEarlyClobber() ||
          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
        continue;

      unsigned Reg = MO.getReg();
      if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
      // These are extra physical register defs when a sub-register
      // is defined (def of a sub-register is a read/mod/write of the
      // larger registers). Ignore.
      if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;

      MF->getRegInfo().setPhysRegUsed(Reg);
      spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
      PhysRegsUsed[Reg] = 0;            // It is free and reserved now

      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
           *SubRegs; ++SubRegs) {
        if (PhysRegsUsed[*SubRegs] == -2) continue;

        MF->getRegInfo().setPhysRegUsed(*SubRegs);
        PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
      }
    }

    // Loop over the implicit defs, spilling them as well.
    if (TID.ImplicitDefs) {
      for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
           *ImplicitDefs; ++ImplicitDefs) {
        unsigned Reg = *ImplicitDefs;
        if (PhysRegsUsed[Reg] != -2) {
          spillPhysReg(MBB, MI, Reg, true);
          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
        }
        MF->getRegInfo().setPhysRegUsed(Reg);
        for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
             *SubRegs; ++SubRegs) {
          if (PhysRegsUsed[*SubRegs] == -2) continue;

          PhysRegsUsed[*SubRegs] = 0;  // It is free and reserved now
          MF->getRegInfo().setPhysRegUsed(*SubRegs);
        }
      }
    }

    SmallVector<unsigned, 8> DeadDefs;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDead())
        DeadDefs.push_back(MO.getReg());
    }

    // Okay, we have allocated all of the source operands and spilled any values
    // that would be destroyed by defs of this instruction.  Loop over the
    // explicit defs and assign them to a register, spilling incoming values if
    // we need to scavenge a register.
    //
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef() || !MO.getReg() ||
          MO.isEarlyClobber() ||
          !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
        continue;

      unsigned DestVirtReg = MO.getReg();
      unsigned DestPhysReg;

      // If DestVirtReg already has a value, use it.
      if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) {
        // If this is a copy try to reuse the input as the output;
        // that will make the copy go away.
        // If this is a copy, the source reg is a phys reg, and
        // that reg is available, use that phys reg for DestPhysReg.
        // If this is a copy, the source reg is a virtual reg, and
        // the phys reg that was assigned to that virtual reg is now
        // available, use that phys reg for DestPhysReg.  (If it's now
        // available that means this was the last use of the source.)
        if (isCopy &&
            TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) &&
            isPhysRegAvailable(SrcCopyReg)) {
          DestPhysReg = SrcCopyReg;
          assignVirtToPhysReg(DestVirtReg, DestPhysReg);
        } else if (isCopy &&
            TargetRegisterInfo::isVirtualRegister(SrcCopyReg) &&
            SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) &&
            MF->getRegInfo().getRegClass(DestVirtReg)->
                             contains(SrcCopyPhysReg)) {
          DestPhysReg = SrcCopyPhysReg;
          assignVirtToPhysReg(DestVirtReg, DestPhysReg);
        } else
          DestPhysReg = getReg(MBB, MI, DestVirtReg);
      }
      MF->getRegInfo().setPhysRegUsed(DestPhysReg);
      markVirtRegModified(DestVirtReg);
      getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
      DEBUG(dbgs() << "  Assigning " << TRI->getName(DestPhysReg)
                   << " to %reg" << DestVirtReg << "\n");