Skip to content
SimplifyLibCalls.cpp 55.8 KiB
Newer Older
//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
// library functions). For example, a call to the function "exit(3)" that
// occurs within the main() function can be transformed into a simple "return 3"
// instruction. Any optimization that takes this form (replace call to library
// function with simpler code that provides the same result) belongs in this
// file.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
Chris Lattner's avatar
Chris Lattner committed
#include "llvm/Support/Debug.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
#include "llvm/Config/config.h"
using namespace llvm;

STATISTIC(NumSimplified, "Number of library calls simplified");

//===----------------------------------------------------------------------===//
// Optimizer Base Class
//===----------------------------------------------------------------------===//

/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class VISIBILITY_HIDDEN LibCallOptimization {
protected:
  Function *Caller;
  const TargetData *TD;
public:
  LibCallOptimization() { }
  virtual ~LibCallOptimization() {}

  /// CallOptimizer - This pure virtual method is implemented by base classes to
  /// do various optimizations.  If this returns null then no transformation was
  /// performed.  If it returns CI, then it transformed the call and CI is to be
  /// deleted.  If it returns something else, replace CI with the new value and
  /// delete CI.
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) =0;
  
  Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder &B) {
    Caller = CI->getParent()->getParent();
    this->TD = &TD;
    return CallOptimizer(CI->getCalledFunction(), CI, B);
  }

  /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
  Value *CastToCStr(Value *V, IRBuilder &B);

  /// EmitStrLen - Emit a call to the strlen function to the builder, for the
  /// specified pointer.  Ptr is required to be some pointer type, and the
  /// return value has 'intptr_t' type.
  Value *EmitStrLen(Value *Ptr, IRBuilder &B);
  
  /// EmitMemCpy - Emit a call to the memcpy function to the builder.  This
  /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
  Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len, 
                    unsigned Align, IRBuilder &B);
  
  /// EmitMemChr - Emit a call to the memchr function.  This assumes that Ptr is
  /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
  Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder &B);
    
  /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
  /// 'floor').  This function is known to take a single of type matching 'Op'
  /// and returns one value with the same type.  If 'Op' is a long double, 'l'
  /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
  Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder &B);
  
  /// EmitPutChar - Emit a call to the putchar function.  This assumes that Char
  /// is an integer.
  void EmitPutChar(Value *Char, IRBuilder &B);
  
  /// EmitPutS - Emit a call to the puts function.  This assumes that Str is
  /// some pointer.
  void EmitPutS(Value *Str, IRBuilder &B);
    
  /// EmitFPutC - Emit a call to the fputc function.  This assumes that Char is
  /// an i32, and File is a pointer to FILE.
  void EmitFPutC(Value *Char, Value *File, IRBuilder &B);
  
  /// EmitFPutS - Emit a call to the puts function.  Str is required to be a
  /// pointer and File is a pointer to FILE.
  void EmitFPutS(Value *Str, Value *File, IRBuilder &B);
  
  /// EmitFWrite - Emit a call to the fwrite function.  This assumes that Ptr is
  /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
  void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder &B);
    
};
} // End anonymous namespace.

/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder &B) {
  return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr");
}

/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer.  This always returns an integer value of size intptr_t.
Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *StrLen =M->getOrInsertFunction("strlen", TD->getIntPtrType(),
                                           PointerType::getUnqual(Type::Int8Ty),
                                           NULL);
  return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
}

/// EmitMemCpy - Emit a call to the memcpy function to the builder.  This always
/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
                                       unsigned Align, IRBuilder &B) {
  Module *M = Caller->getParent();
  Intrinsic::ID IID = TD->getIntPtrType() == Type::Int32Ty ?
                           Intrinsic::memcpy_i32 : Intrinsic::memcpy_i64;
  Value *MemCpy = Intrinsic::getDeclaration(M, IID);
  return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
                       ConstantInt::get(Type::Int32Ty, Align));
}

/// EmitMemChr - Emit a call to the memchr function.  This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
                                       Value *Len, IRBuilder &B) {
  Module *M = Caller->getParent();
  Value *MemChr = M->getOrInsertFunction("memchr",
                                         PointerType::getUnqual(Type::Int8Ty),
                                         PointerType::getUnqual(Type::Int8Ty),
                                         Type::Int32Ty, TD->getIntPtrType(),
                                         NULL);
  return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
}

/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
/// 'floor').  This function is known to take a single of type matching 'Op' and
/// returns one value with the same type.  If 'Op' is a long double, 'l' is
/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
                                                 IRBuilder &B) {
  char NameBuffer[20];
  if (Op->getType() != Type::DoubleTy) {
    // If we need to add a suffix, copy into NameBuffer.
    unsigned NameLen = strlen(Name);
    assert(NameLen < sizeof(NameBuffer)-2);
    memcpy(NameBuffer, Name, NameLen);
    if (Op->getType() == Type::FloatTy)
      NameBuffer[NameLen] = 'f';  // floorf
    else
      NameBuffer[NameLen] = 'l';  // floorl
    NameBuffer[NameLen+1] = 0;
    Name = NameBuffer;
  }
  
  Module *M = Caller->getParent();
  Value *Callee = M->getOrInsertFunction(Name, Op->getType(), 
                                         Op->getType(), NULL);
  return B.CreateCall(Callee, Op, Name);
}

/// EmitPutChar - Emit a call to the putchar function.  This assumes that Char
/// is an integer.
void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder &B) {
  Module *M = Caller->getParent();
  Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty,
                                    Type::Int32Ty, NULL);
  B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar");
}

/// EmitPutS - Emit a call to the puts function.  This assumes that Str is
/// some pointer.
void LibCallOptimization::EmitPutS(Value *Str, IRBuilder &B) {
  Module *M = Caller->getParent();
  Value *F = M->getOrInsertFunction("puts", Type::Int32Ty,
                                    PointerType::getUnqual(Type::Int8Ty), NULL);
  B.CreateCall(F, CastToCStr(Str, B), "puts");
}

/// EmitFPutC - Emit a call to the fputc function.  This assumes that Char is
/// an integer and File is a pointer to FILE.
void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
                                       File->getType(), NULL);
  Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
  B.CreateCall2(F, Char, File, "fputc");
}

/// EmitFPutS - Emit a call to the puts function.  Str is required to be a
/// pointer and File is a pointer to FILE.
void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *F = M->getOrInsertFunction("fputs", Type::Int32Ty,
                                       PointerType::getUnqual(Type::Int8Ty),
                                       File->getType(), NULL);
  B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
}

/// EmitFWrite - Emit a call to the fwrite function.  This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
                                     IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
                                       PointerType::getUnqual(Type::Int8Ty),
                                       TD->getIntPtrType(), TD->getIntPtrType(),
                                       File->getType(), NULL);
  B.CreateCall4(F, CastToCStr(Ptr, B), Size, 
                ConstantInt::get(TD->getIntPtrType(), 1), File);
}

//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

/// GetConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V.  If successful, it returns true
/// and returns the string in Str.  If unsuccessful, it returns false.
static bool GetConstantStringInfo(Value *V, std::string &Str) {
  // Look bitcast instructions.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
    return GetConstantStringInfo(BCI->getOperand(0), Str);
  
  // If the value is not a GEP instruction nor a constant expression with a
  // GEP instruction, then return false because ConstantArray can't occur
  // any other way
  User *GEP = 0;
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
    GEP = GEPI;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() != Instruction::GetElementPtr)
      return false;
    GEP = CE;
  } else {
    return false;
  }
  
  // Make sure the GEP has exactly three arguments.
  if (GEP->getNumOperands() != 3)
    return false;
  
  // Check to make sure that the first operand of the GEP is an integer and
  // has value 0 so that we are sure we're indexing into the initializer.
  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
    if (!Idx->isZero())
      return false;
  } else
    return false;
  
  // If the second index isn't a ConstantInt, then this is a variable index
  // into the array.  If this occurs, we can't say anything meaningful about
  // the string.
  uint64_t StartIdx = 0;
  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
    StartIdx = CI->getZExtValue();
  else
    return false;
  
  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
  if (!GV || !GV->isConstant() || !GV->hasInitializer())
    return false;
  Constant *GlobalInit = GV->getInitializer();
  
  // Handle the ConstantAggregateZero case
  if (isa<ConstantAggregateZero>(GlobalInit)) {
    // This is a degenerate case. The initializer is constant zero so the
    // length of the string must be zero.
    Str.clear();
    return true;
  }
  
  // Must be a Constant Array
  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
  if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
    return false;
  
  // Get the number of elements in the array
  uint64_t NumElts = Array->getType()->getNumElements();
  
  // Traverse the constant array from StartIdx (derived above) which is
  // the place the GEP refers to in the array.
  for (unsigned i = StartIdx; i < NumElts; ++i) {
    Constant *Elt = Array->getOperand(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
    if (!CI) // This array isn't suitable, non-int initializer.
      return false;
    if (CI->isZero())
      return true; // we found end of string, success!
    Str += (char)CI->getZExtValue();
  }
  
  return false; // The array isn't null terminated.
}

/// GetStringLengthH - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
  // Look through noop bitcast instructions.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
    return GetStringLengthH(BCI->getOperand(0), PHIs);
  
  // If this is a PHI node, there are two cases: either we have already seen it
  // or we haven't.
  if (PHINode *PN = dyn_cast<PHINode>(V)) {
    if (!PHIs.insert(PN))
      return ~0ULL;  // already in the set.
    
    // If it was new, see if all the input strings are the same length.
    uint64_t LenSoFar = ~0ULL;
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
      if (Len == 0) return 0; // Unknown length -> unknown.
      
      if (Len == ~0ULL) continue;
      
      if (Len != LenSoFar && LenSoFar != ~0ULL)
        return 0;    // Disagree -> unknown.
      LenSoFar = Len;
    }
    
    // Success, all agree.
    return LenSoFar;
  }
  
  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
    if (Len1 == 0) return 0;
    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
    if (Len2 == 0) return 0;
    if (Len1 == ~0ULL) return Len2;
    if (Len2 == ~0ULL) return Len1;
    if (Len1 != Len2) return 0;
    return Len1;
  }
  
  // If the value is not a GEP instruction nor a constant expression with a
  // GEP instruction, then return unknown.
  User *GEP = 0;
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
    GEP = GEPI;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() != Instruction::GetElementPtr)
      return 0;
    GEP = CE;
  } else {
    return 0;
  }
  
  // Make sure the GEP has exactly three arguments.
  if (GEP->getNumOperands() != 3)
    return 0;
  
  // Check to make sure that the first operand of the GEP is an integer and
  // has value 0 so that we are sure we're indexing into the initializer.
  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
    if (!Idx->isZero())
      return 0;
  } else
    return 0;
  
  // If the second index isn't a ConstantInt, then this is a variable index
  // into the array.  If this occurs, we can't say anything meaningful about
  // the string.
  uint64_t StartIdx = 0;
  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
    StartIdx = CI->getZExtValue();
  else
    return 0;
  
  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
  if (!GV || !GV->isConstant() || !GV->hasInitializer())
    return 0;
  Constant *GlobalInit = GV->getInitializer();
  
  // Handle the ConstantAggregateZero case, which is a degenerate case. The
  // initializer is constant zero so the length of the string must be zero.
  if (isa<ConstantAggregateZero>(GlobalInit))
    return 1;  // Len = 0 offset by 1.
  
  // Must be a Constant Array
  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
  if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
    return false;
  
  // Get the number of elements in the array
  uint64_t NumElts = Array->getType()->getNumElements();
  
  // Traverse the constant array from StartIdx (derived above) which is
  // the place the GEP refers to in the array.
  for (unsigned i = StartIdx; i != NumElts; ++i) {
    Constant *Elt = Array->getOperand(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
    if (!CI) // This array isn't suitable, non-int initializer.
      return 0;
    if (CI->isZero())
      return i-StartIdx+1; // We found end of string, success!
  }
  
  return 0; // The array isn't null terminated, conservatively return 'unknown'.
}

/// GetStringLength - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
static uint64_t GetStringLength(Value *V) {
  if (!isa<PointerType>(V->getType())) return 0;
  
  SmallPtrSet<PHINode*, 32> PHIs;
  uint64_t Len = GetStringLengthH(V, PHIs);
  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
  // an empty string as a length.
  return Len == ~0ULL ? 1 : Len;
}

/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero. 
static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
       UI != E; ++UI) {
    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
      if (IC->isEquality())
        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
          if (C->isNullValue())
            continue;
    // Unknown instruction.
    return false;
  }
  return true;
}

//===----------------------------------------------------------------------===//
// Miscellaneous LibCall Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'exit' Optimizations

/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify we have a reasonable prototype for exit.
    if (Callee->arg_size() == 0 || !CI->use_empty())
      return 0;

    // Verify the caller is main, and that the result type of main matches the
    // argument type of exit.
    if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
        Caller->getReturnType() != CI->getOperand(1)->getType())
      return 0;

    TerminatorInst *OldTI = CI->getParent()->getTerminator();
    
    // Create the return after the call.
    ReturnInst *RI = B.CreateRet(CI->getOperand(1));

    // Drop all successor phi node entries.
    for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
      OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
    
    // Erase all instructions from after our return instruction until the end of
    // the block.
    BasicBlock::iterator FirstDead = RI; ++FirstDead;
    CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
    return CI;
  }
};

//===----------------------------------------------------------------------===//
// String and Memory LibCall Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'strcat' Optimizations

struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strcat" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
        FT->getParamType(0) != FT->getReturnType() ||
        FT->getParamType(1) != FT->getReturnType())
      return 0;
    
    // Extract some information from the instruction
    Value *Dst = CI->getOperand(1);
    Value *Src = CI->getOperand(2);
    
    // See if we can get the length of the input string.
    uint64_t Len = GetStringLength(Src);
Chris Lattner's avatar
Chris Lattner committed
    if (Len == 0) return 0;
    --Len;  // Unbias length.
    
    // Handle the simple, do-nothing case: strcat(x, "") -> x
    if (Len == 0)
      return Dst;
    
    // We need to find the end of the destination string.  That's where the
    // memory is to be moved to. We just generate a call to strlen.
    Value *DstLen = EmitStrLen(Dst, B);
    
    // Now that we have the destination's length, we must index into the
    // destination's pointer to get the actual memcpy destination (end of
    // the string .. we're concatenating).
    Dst = B.CreateGEP(Dst, DstLen, "endptr");
    
    // We have enough information to now generate the memcpy call to do the
    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B);
    return Dst;
  }
};

//===---------------------------------------===//
// 'strchr' Optimizations

struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strchr" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
        FT->getParamType(0) != FT->getReturnType())
      return 0;
    
    Value *SrcStr = CI->getOperand(1);
    
    // If the second operand is non-constant, see if we can compute the length
    // of the input string and turn this into memchr.
    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
    if (CharC == 0) {
      uint64_t Len = GetStringLength(SrcStr);
      if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
        return 0;
      
      return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
                        ConstantInt::get(TD->getIntPtrType(), Len), B);
    }

    // Otherwise, the character is a constant, see if the first argument is
    // a string literal.  If so, we can constant fold.
    std::string Str;
    if (!GetConstantStringInfo(SrcStr, Str))
Chris Lattner's avatar
Chris Lattner committed
      return 0;
    
    // strchr can find the nul character.
    Str += '\0';
    char CharValue = CharC->getSExtValue();
    
    // Compute the offset.
    uint64_t i = 0;
    while (1) {
      if (i == Str.size())    // Didn't find the char.  strchr returns null.
        return Constant::getNullValue(CI->getType());
      // Did we find our match?
      if (Str[i] == CharValue)
        break;
      ++i;
    }
    
    // strchr(s+n,c)  -> gep(s+n+i,c)
    Value *Idx = ConstantInt::get(Type::Int64Ty, i);
    return B.CreateGEP(SrcStr, Idx, "strchr");
  }
};

//===---------------------------------------===//
// 'strcmp' Optimizations

struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strcmp" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
      return 0;
    
    Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
      return ConstantInt::get(CI->getType(), 0);
    
    std::string Str1, Str2;
    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
    
    if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
    
    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    
    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
    if (HasStr1 && HasStr2)
      return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str()));
    return 0;
  }
};

//===---------------------------------------===//
// 'strncmp' Optimizations

struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strncmp" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
        !isa<IntegerType>(FT->getParamType(2)))
      return 0;
    
    Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
      return ConstantInt::get(CI->getType(), 0);
    
    // Get the length argument if it is constant.
    uint64_t Length;
    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
      Length = LengthArg->getZExtValue();
    else
      return 0;
    
    if (Length == 0) // strncmp(x,y,0)   -> 0
      return ConstantInt::get(CI->getType(), 0);
    
    std::string Str1, Str2;
    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
    
    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> *x
      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
    
    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    
    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
    if (HasStr1 && HasStr2)
      return ConstantInt::get(CI->getType(),
                              strncmp(Str1.c_str(), Str2.c_str(), Length));
    return 0;
  }
};


//===---------------------------------------===//
// 'strcpy' Optimizations

struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strcpy" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
      return 0;
    
    Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
    if (Dst == Src)      // strcpy(x,x)  -> x
      return Src;
    
    // See if we can get the length of the input string.
    uint64_t Len = GetStringLength(Src);
Chris Lattner's avatar
Chris Lattner committed
    if (Len == 0) return 0;
    
    // We have enough information to now generate the memcpy call to do the
    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B);
    return Dst;
  }
};



//===---------------------------------------===//
// 'strlen' Optimizations

struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 1 ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
        !isa<IntegerType>(FT->getReturnType()))
      return 0;
    
    Value *Src = CI->getOperand(1);

    // Constant folding: strlen("xyz") -> 3
    if (uint64_t Len = GetStringLength(Src))
      return ConstantInt::get(CI->getType(), Len-1);

    // Handle strlen(p) != 0.
    if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;

    // strlen(x) != 0 --> *x != 0
    // strlen(x) == 0 --> *x == 0
    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
  }
};

//===---------------------------------------===//
// 'memcmp' Optimizations

struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
        !isa<PointerType>(FT->getParamType(1)) ||
        FT->getReturnType() != Type::Int32Ty)
      return 0;
    
    Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
    
    if (LHS == RHS)  // memcmp(s,s,x) -> 0
      return Constant::getNullValue(CI->getType());
    
    // Make sure we have a constant length.
    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
Chris Lattner's avatar
Chris Lattner committed
    if (!LenC) return 0;
    uint64_t Len = LenC->getZExtValue();
    
    if (Len == 0) // memcmp(s1,s2,0) -> 0
      return Constant::getNullValue(CI->getType());

    if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
      Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
      Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
      return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
    }
    
    // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS)  != 0
    // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS)  != 0
    if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
      LHS = B.CreateBitCast(LHS, PointerType::getUnqual(Type::Int16Ty), "tmp");
      RHS = B.CreateBitCast(RHS, LHS->getType(), "tmp");
      LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
      LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
      LHSV->setAlignment(1); RHSV->setAlignment(1);  // Unaligned loads.
      return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
    }
    
    return 0;
  }
};

//===---------------------------------------===//
// 'memcpy' Optimizations

struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
        !isa<PointerType>(FT->getParamType(0)) ||
        !isa<PointerType>(FT->getParamType(1)) ||
        FT->getParamType(2) != TD->getIntPtrType())
      return 0;

    // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
    EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
    return CI->getOperand(1);
  }
};

//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'pow*' Optimizations

struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // Just make sure this has 2 arguments of the same FP type, which match the
    // result type.
    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        !FT->getParamType(0)->isFloatingPoint())
      return 0;
    
    Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
      if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
        return Op1C;
      if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
        return EmitUnaryFloatFnCall(Op2, "exp2", B);
    }
    
    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
    if (Op2C == 0) return 0;
    
    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
      return ConstantFP::get(CI->getType(), 1.0);
    
    if (Op2C->isExactlyValue(0.5)) {
      // FIXME: This is not safe for -0.0 and -inf.  This can only be done when
      // 'unsafe' math optimizations are allowed.
      // x    pow(x, 0.5)  sqrt(x)
      // ---------------------------------------------
      // -0.0    +0.0       -0.0
      // -inf    +inf       NaN
#if 0
      // pow(x, 0.5) -> sqrt(x)
      return B.CreateCall(get_sqrt(), Op1, "sqrt");
#endif
    }
    
    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
      return Op1;
    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
      return B.CreateMul(Op1, Op1, "pow2");
    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
    return 0;
  }
};

//===---------------------------------------===//
// 'exp2' Optimizations

struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // Just make sure this has 1 argument of FP type, which matches the
    // result type.
    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
        !FT->getParamType(0)->isFloatingPoint())
      return 0;
    
    Value *Op = CI->getOperand(1);
    // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
    // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
    Value *LdExpArg = 0;
    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
        LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
        LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
    }
    
    if (LdExpArg) {
      const char *Name;
      if (Op->getType() == Type::FloatTy)
        Name = "ldexpf";
      else if (Op->getType() == Type::DoubleTy)
        Name = "ldexp";
      else
        Name = "ldexpl";

      Constant *One = ConstantFP::get(APFloat(1.0f));
      if (Op->getType() != Type::FloatTy)
        One = ConstantExpr::getFPExtend(One, Op->getType());

      Module *M = Caller->getParent();
      Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
                                             Op->getType(), Type::Int32Ty,NULL);
      return B.CreateCall2(Callee, One, LdExpArg);
    }
    return 0;
  }
};
    

//===---------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'

struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
        FT->getParamType(0) != Type::DoubleTy)
      return 0;
    
    // If this is something like 'floor((double)floatval)', convert to floorf.
    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
    if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
      return 0;

    // floor((double)floatval) -> (double)floorf(floatval)
    Value *V = Cast->getOperand(0);
    V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
    return B.CreateFPExt(V, Type::DoubleTy);
  }
};

//===----------------------------------------------------------------------===//
// Integer Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'ffs*' Optimizations

struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // Just make sure this has 2 arguments of the same FP type, which match the
    // result type.
    if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty ||
        !isa<IntegerType>(FT->getParamType(0)))
      return 0;
    
    Value *Op = CI->getOperand(1);
    
    // Constant fold.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
      if (CI->getValue() == 0)  // ffs(0) -> 0.
        return Constant::getNullValue(CI->getType());
      return ConstantInt::get(Type::Int32Ty, // ffs(c) -> cttz(c)+1
                              CI->getValue().countTrailingZeros()+1);
    }
    
    // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
    const Type *ArgType = Op->getType();
    Value *F = Intrinsic::getDeclaration(Callee->getParent(),
                                         Intrinsic::cttz, &ArgType, 1);
    Value *V = B.CreateCall(F, Op, "cttz");
    V = B.CreateAdd(V, ConstantInt::get(Type::Int32Ty, 1), "tmp");
    V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp");
    
    Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
    return B.CreateSelect(Cond, V, ConstantInt::get(Type::Int32Ty, 0));
  }
};

//===---------------------------------------===//
// 'isdigit' Optimizations

struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // We require integer(i32)
    if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
        FT->getParamType(0) != Type::Int32Ty)
      return 0;
    
    // isdigit(c) -> (c-'0') <u 10
    Value *Op = CI->getOperand(1);
    Op = B.CreateSub(Op, ConstantInt::get(Type::Int32Ty, '0'), "isdigittmp");
    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 10), "isdigit");
    return B.CreateZExt(Op, CI->getType());
  }
};

//===---------------------------------------===//
// 'isascii' Optimizations

struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // We require integer(i32)
    if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
        FT->getParamType(0) != Type::Int32Ty)
      return 0;
    
    // isascii(c) -> c <u 128
    Value *Op = CI->getOperand(1);
    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 128), "isascii");
    return B.CreateZExt(Op, CI->getType());
  }
};

//===---------------------------------------===//
// 'toascii' Optimizations

struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // We require i32(i32)
    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != Type::Int32Ty)
      return 0;
    
    // isascii(c) -> c & 0x7f
    return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F));
  }
};