Newer
Older
Chris Lattner
committed
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
Chris Lattner
committed
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
Chris Lattner
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
Chris Lattner
committed
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
Chris Lattner
committed
#include "llvm/Support/Debug.h"
Chris Lattner
committed
using namespace llvm;
static cl::opt<bool>
SplitEdges("machine-sink-split",
cl::desc("Split critical edges during machine sinking"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned>
SplitLimit("split-limit",
cl::init(~0u), cl::Hidden);
STATISTIC(NumSunk, "Number of machine instructions sunk");
STATISTIC(NumSplit, "Number of critical edges split");
STATISTIC(NumCoalesces, "Number of copies coalesced");
Chris Lattner
committed
namespace {
Nick Lewycky
committed
class MachineSinking : public MachineFunctionPass {
Chris Lattner
committed
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI; // Machine register information
MachineLoopInfo *LI;
AliasAnalysis *AA;
BitVector AllocatableSet; // Which physregs are allocatable?
Chris Lattner
committed
// Remember which edges have been considered for breaking.
SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
CEBCandidates;
Chris Lattner
committed
public:
static char ID; // Pass identification
MachineSinking() : MachineFunctionPass(ID) {}
Chris Lattner
committed
virtual bool runOnMachineFunction(MachineFunction &MF);
Chris Lattner
committed
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
Chris Lattner
committed
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
Chris Lattner
committed
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
Chris Lattner
committed
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
Chris Lattner
committed
}
virtual void releaseMemory() {
CEBCandidates.clear();
}
Chris Lattner
committed
private:
bool ProcessBlock(MachineBasicBlock &MBB);
bool isWorthBreakingCriticalEdge(MachineInstr *MI,
MachineBasicBlock *From,
MachineBasicBlock *To);
MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
MachineBasicBlock *From,
MachineBasicBlock *To,
Evan Cheng
committed
bool AllPHIUse);
bool SinkInstruction(MachineInstr *MI, bool &SawStore);
Evan Cheng
committed
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
Evan Cheng
committed
bool &AllPHIUse, bool &LocalUse) const;
bool PerformTrivialForwardCoalescing(MachineInstr *MI,
MachineBasicBlock *MBB);
Chris Lattner
committed
};
} // end anonymous namespace
char MachineSinking::ID = 0;
INITIALIZE_PASS(MachineSinking, "machine-sink",
"Machine code sinking", false, false);
Chris Lattner
committed
FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
MachineBasicBlock *MBB) {
if (!MI->isCopy())
return false;
unsigned SrcReg = MI->getOperand(1).getReg();
unsigned DstReg = MI->getOperand(0).getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
!TargetRegisterInfo::isVirtualRegister(DstReg) ||
!MRI->hasOneNonDBGUse(SrcReg))
return false;
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
if (SRC != DRC)
return false;
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->isCopyLike())
return false;
DEBUG(dbgs() << "Coalescing: " << *DefMI);
DEBUG(dbgs() << "*** to: " << *MI);
MRI->replaceRegWith(DstReg, SrcReg);
MI->eraseFromParent();
++NumCoalesces;
return true;
}
Chris Lattner
committed
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
Evan Cheng
committed
/// occur in blocks dominated by the specified block. If any use is in the
/// definition block, then return false since it is never legal to move def
/// after uses.
bool
MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB,
Evan Cheng
committed
bool &AllPHIUse, bool &LocalUse) const {
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Only makes sense for vregs");
Evan Cheng
committed
if (MRI->use_nodbg_empty(Reg))
return true;
// Ignoring debug uses is necessary so debug info doesn't affect the code.
// This may leave a referencing dbg_value in the original block, before
// the definition of the vreg. Dwarf generator handles this although the
// user might not get the right info at runtime.
Evan Cheng
committed
// PHI is in the successor BB. e.g.
// BB#1: derived from LLVM BB %bb4.preheader
// Predecessors according to CFG: BB#0
// ...
// %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
// ...
// JE_4 <BB#37>, %EFLAGS<imp-use>
// Successors according to CFG: BB#37 BB#2
//
// BB#2: derived from LLVM BB %bb.nph
// Predecessors according to CFG: BB#0 BB#1
// %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
//
// Machine sink should break the critical edge first.
AllPHIUse = true;
for (MachineRegisterInfo::use_nodbg_iterator
I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
Chris Lattner
committed
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
Evan Cheng
committed
if (!(UseBlock == MBB && UseInst->isPHI() &&
UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
AllPHIUse = false;
break;
}
}
if (AllPHIUse)
return true;
Evan Cheng
committed
for (MachineRegisterInfo::use_nodbg_iterator
I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
I != E; ++I) {
// Determine the block of the use.
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
if (UseInst->isPHI()) {
Chris Lattner
committed
// PHI nodes use the operand in the predecessor block, not the block with
// the PHI.
UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
} else if (UseBlock == DefMBB) {
LocalUse = true;
return false;
Chris Lattner
committed
}
Chris Lattner
committed
// Check that it dominates.
if (!DT->dominates(MBB, UseBlock))
return false;
}
Chris Lattner
committed
return true;
}
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "******** Machine Sinking ********\n");
const TargetMachine &TM = MF.getTarget();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
Chris Lattner
committed
DT = &getAnalysis<MachineDominatorTree>();
LI = &getAnalysis<MachineLoopInfo>();
AA = &getAnalysis<AliasAnalysis>();
AllocatableSet = TRI->getAllocatableSet(MF);
Chris Lattner
committed
bool EverMadeChange = false;
Chris Lattner
committed
while (1) {
bool MadeChange = false;
// Process all basic blocks.
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
Chris Lattner
committed
I != E; ++I)
MadeChange |= ProcessBlock(*I);
Chris Lattner
committed
// If this iteration over the code changed anything, keep iterating.
if (!MadeChange) break;
EverMadeChange = true;
Chris Lattner
committed
return EverMadeChange;
}
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
// Can't sink anything out of a block that has less than two successors.
if (MBB.succ_size() <= 1 || MBB.empty()) return false;
// Don't bother sinking code out of unreachable blocks. In addition to being
// unprofitable, it can also lead to infinite looping, because in an
// unreachable loop there may be nowhere to stop.
if (!DT->isReachableFromEntry(&MBB)) return false;
// Walk the basic block bottom-up. Remember if we saw a store.
MachineBasicBlock::iterator I = MBB.end();
--I;
bool ProcessedBegin, SawStore = false;
do {
MachineInstr *MI = I; // The instruction to sink.
// Predecrement I (if it's not begin) so that it isn't invalidated by
// sinking.
ProcessedBegin = I == MBB.begin();
if (!ProcessedBegin)
--I;
if (MI->isDebugValue())
continue;
if (PerformTrivialForwardCoalescing(MI, &MBB))
continue;
if (SinkInstruction(MI, SawStore))
++NumSunk, MadeChange = true;
// If we just processed the first instruction in the block, we're done.
} while (!ProcessedBegin);
Chris Lattner
committed
return MadeChange;
}
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
MachineBasicBlock *From,
MachineBasicBlock *To) {
// FIXME: Need much better heuristics.
// If the pass has already considered breaking this edge (during this pass
// through the function), then let's go ahead and break it. This means
// sinking multiple "cheap" instructions into the same block.
if (!CEBCandidates.insert(std::make_pair(From, To)))
return true;
if (!(MI->isCopyLike() || MI->getDesc().isAsCheapAsAMove()))
return true;
// MI is cheap, we probably don't want to break the critical edge for it.
// However, if this would allow some definitions of its source operands
// to be sunk then it's probably worth it.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
if (MRI->hasOneNonDBGUse(Reg))
return true;
}
return false;
}
MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
MachineBasicBlock *FromBB,
MachineBasicBlock *ToBB,
Evan Cheng
committed
bool AllPHIUse) {
if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
return 0;
// Avoid breaking back edge. From == To means backedge for single BB loop.
if (!SplitEdges || NumSplit == SplitLimit || FromBB == ToBB)
return 0;
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// Check for backedges of more "complex" loops.
if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
LI->isLoopHeader(ToBB))
return 0;
// It's not always legal to break critical edges and sink the computation
// to the edge.
//
// BB#1:
// v1024
// Beq BB#3
// <fallthrough>
// BB#2:
// ... no uses of v1024
// <fallthrough>
// BB#3:
// ...
// = v1024
//
// If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
//
// BB#1:
// ...
// Bne BB#2
// BB#4:
// v1024 =
// B BB#3
// BB#2:
// ... no uses of v1024
// <fallthrough>
// BB#3:
// ...
// = v1024
//
// This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
// flow. We need to ensure the new basic block where the computation is
// sunk to dominates all the uses.
// It's only legal to break critical edge and sink the computation to the
// new block if all the predecessors of "To", except for "From", are
// not dominated by "From". Given SSA property, this means these
// predecessors are dominated by "To".
//
// There is no need to do this check if all the uses are PHI nodes. PHI
// sources are only defined on the specific predecessor edges.
Evan Cheng
committed
if (!AllPHIUse) {
for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
E = ToBB->pred_end(); PI != E; ++PI) {
if (*PI == FromBB)
continue;
if (!DT->dominates(ToBB, *PI))
return 0;
}
}
}
Chris Lattner
committed
/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
// Check if it's safe to move the instruction.
if (!MI->isSafeToMove(TII, AA, SawStore))
Chris Lattner
committed
// FIXME: This should include support for sinking instructions within the
// block they are currently in to shorten the live ranges. We often get
// instructions sunk into the top of a large block, but it would be better to
// also sink them down before their first use in the block. This xform has to
// be careful not to *increase* register pressure though, e.g. sinking
// "x = y + z" down if it kills y and z would increase the live ranges of y
Chris Lattner
committed
// Loop over all the operands of the specified instruction. If there is
// anything we can't handle, bail out.
MachineBasicBlock *ParentBlock = MI->getParent();
Chris Lattner
committed
// SuccToSinkTo - This is the successor to sink this instruction to, once we
// decide.
MachineBasicBlock *SuccToSinkTo = 0;
Evan Cheng
committed
bool AllPHIUse = false;
Chris Lattner
committed
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue; // Ignore non-register operands.
Chris Lattner
committed
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
return false;
if (AllocatableSet.test(Reg))
return false;
// Check for a def among the register's aliases too.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
return false;
if (AllocatableSet.test(AliasReg))
return false;
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
return false;
}
Chris Lattner
committed
} else {
// Virtual register uses are always safe to sink.
if (MO.isUse()) continue;
// If it's not safe to move defs of the register class, then abort.
if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
return false;
Chris Lattner
committed
// FIXME: This picks a successor to sink into based on having one
// successor that dominates all the uses. However, there are cases where
// sinking can happen but where the sink point isn't a successor. For
// example:
Chris Lattner
committed
// x = computation
// if () {} else {}
// use x
// the instruction could be sunk over the whole diamond for the
Chris Lattner
committed
// if/then/else (or loop, etc), allowing it to be sunk into other blocks
// after that.
Chris Lattner
committed
// Virtual register defs can only be sunk if all their uses are in blocks
// dominated by one of the successors.
if (SuccToSinkTo) {
// If a previous operand picked a block to sink to, then this operand
// must be sinkable to the same block.
bool LocalUse = false;
Evan Cheng
committed
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock,
AllPHIUse, LocalUse))
Chris Lattner
committed
return false;
Chris Lattner
committed
continue;
}
Chris Lattner
committed
// Otherwise, we should look at all the successors and decide which one
// we should sink to.
for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
E = ParentBlock->succ_end(); SI != E; ++SI) {
bool LocalUse = false;
Evan Cheng
committed
if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock,
AllPHIUse, LocalUse)) {
Chris Lattner
committed
SuccToSinkTo = *SI;
break;
}
Evan Cheng
committed
if (LocalUse)
// Def is used locally, it's never safe to move this def.
return false;
Chris Lattner
committed
}
Chris Lattner
committed
// If we couldn't find a block to sink to, ignore this instruction.
if (SuccToSinkTo == 0)
return false;
}
}
// If there are no outputs, it must have side-effects.
if (SuccToSinkTo == 0)
return false;
// It's not safe to sink instructions to EH landing pad. Control flow into
// landing pad is implicitly defined.
if (SuccToSinkTo->isLandingPad())
return false;
// It is not possible to sink an instruction into its own block. This can
// happen with loops.
if (MI->getParent() == SuccToSinkTo)
return false;
Bill Wendling
committed
Daniel Dunbar
committed
// If the instruction to move defines a dead physical register which is live
// when leaving the basic block, don't move it because it could turn into a
// "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI->getOperand(I);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
if (SuccToSinkTo->isLiveIn(Reg))
Bill Wendling
committed
return false;
Bill Wendling
committed
DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
Chris Lattner
committed
// If the block has multiple predecessors, this would introduce computation on
// a path that it doesn't already exist. We could split the critical edge,
// but for now we just punt.
if (SuccToSinkTo->pred_size() > 1) {
// We cannot sink a load across a critical edge - there may be stores in
// other code paths.
bool TryBreak = false;
bool store = true;
if (!MI->isSafeToMove(TII, AA, store)) {
DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
TryBreak = true;
}
// We don't want to sink across a critical edge if we don't dominate the
// successor. We could be introducing calculations to new code paths.
if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
TryBreak = true;
// Don't sink instructions into a loop.
if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
TryBreak = true;
// Otherwise we are OK with sinking along a critical edge.
if (!TryBreak)
DEBUG(dbgs() << "Sinking along critical edge.\n");
else {
Evan Cheng
committed
SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, AllPHIUse);
if (!NewSucc) {
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
"break critical edge\n");
return false;
} else {
" BB#" << ParentBlock->getNumber()
<< " -- BB#" << NewSucc->getNumber()
<< " -- BB#" << SuccToSinkTo->getNumber() << '\n');
SuccToSinkTo = NewSucc;
++NumSplit;
}
}
Chris Lattner
committed
}
Evan Cheng
committed
if (AllPHIUse) {
if (NumSplit == SplitLimit)
return false;
MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
SuccToSinkTo, AllPHIUse);
if (!NewSucc) {
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
"break critical edge\n");
return false;
}
DEBUG(dbgs() << " *** Splitting critical edge:"
" BB#" << ParentBlock->getNumber()
<< " -- BB#" << NewSucc->getNumber()
<< " -- BB#" << SuccToSinkTo->getNumber() << '\n');
SuccToSinkTo = NewSucc;
++NumSplit;
}
// Determine where to insert into. Skip phi nodes.
Chris Lattner
committed
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
Evan Cheng
committed
while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
Chris Lattner
committed
++InsertPos;
Chris Lattner
committed
// Move the instruction.
SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
++MachineBasicBlock::iterator(MI));
// Conservatively, clear any kill flags, since it's possible that they are no
// longer correct.
MI->clearKillInfo();
Chris Lattner
committed
return true;
}