Skip to content
RegAllocBase.cpp 8.98 KiB
Newer Older
//===-- RegAllocBase.cpp - Register Allocator Base Class ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RegAllocBase class which provides comon functionality
// for LiveIntervalUnion-based register allocators.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#ifndef NDEBUG
#include "llvm/ADT/SparseBitVector.h"
#endif
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Timer.h"

using namespace llvm;

STATISTIC(NumAssigned     , "Number of registers assigned");
STATISTIC(NumUnassigned   , "Number of registers unassigned");
STATISTIC(NumNewQueued    , "Number of new live ranges queued");

// Temporary verification option until we can put verification inside
// MachineVerifier.
static cl::opt<bool, true>
VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
               cl::desc("Verify during register allocation"));

const char *RegAllocBase::TimerGroupName = "Register Allocation";
bool RegAllocBase::VerifyEnabled = false;

#ifndef NDEBUG
// Verify each LiveIntervalUnion.
void RegAllocBase::verify() {
  LiveVirtRegBitSet VisitedVRegs;
  OwningArrayPtr<LiveVirtRegBitSet>
    unionVRegs(new LiveVirtRegBitSet[TRI->getNumRegs()]);
  for (unsigned PhysReg = 0, NumRegs = TRI->getNumRegs(); PhysReg != NumRegs;
       ++PhysReg) {
    DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
    LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
    PhysReg2LiveUnion[PhysReg].verify(VRegs);
    // Union + intersection test could be done efficiently in one pass, but
    // don't add a method to SparseBitVector unless we really need it.
    assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
    VisitedVRegs |= VRegs;
  }

  // Verify vreg coverage.
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    if (!VRM->hasPhys(Reg)) continue; // spilled?
    LiveInterval &LI = LIS->getInterval(Reg);
    if (LI.empty()) continue; // unionVRegs will only be filled if li is
                              // non-empty
    unsigned PhysReg = VRM->getPhys(Reg);
    if (!unionVRegs[PhysReg].test(Reg)) {
      dbgs() << "LiveVirtReg " << PrintReg(Reg, TRI) << " not in union "
             << TRI->getName(PhysReg) << "\n";
      llvm_unreachable("unallocated live vreg");
    }
  }
  // FIXME: I'm not sure how to verify spilled intervals.
}
#endif //!NDEBUG

//===----------------------------------------------------------------------===//
//                         RegAllocBase Implementation
//===----------------------------------------------------------------------===//

void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
  NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
  TRI = &vrm.getTargetRegInfo();
  MRI = &vrm.getRegInfo();
  VRM = &vrm;
  LIS = &lis;
  MRI->freezeReservedRegs(vrm.getMachineFunction());
  RegClassInfo.runOnMachineFunction(vrm.getMachineFunction());

  const unsigned NumRegs = TRI->getNumRegs();
  if (NumRegs != PhysReg2LiveUnion.size()) {
    PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
    // Cache an interferece query for each physical reg
    Queries.reset(new LiveIntervalUnion::Query[NumRegs]);
  for (unsigned r = 0, e = PhysReg2LiveUnion.size(); r != e; ++r)
    PhysReg2LiveUnion[r].clear();
}

// Visit all the live registers. If they are already assigned to a physical
// register, unify them with the corresponding LiveIntervalUnion, otherwise push
// them on the priority queue for later assignment.
void RegAllocBase::seedLiveRegs() {
  NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
  // Physregs.
  for (unsigned Reg = 1, e = TRI->getNumRegs(); Reg != e; ++Reg) {
    if (!LIS->hasInterval(Reg))
      continue;
    PhysReg2LiveUnion[Reg].unify(LIS->getInterval(Reg));
  }

  // Virtregs.
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->reg_nodbg_empty(Reg))
      continue;
    enqueue(&LIS->getInterval(Reg));
  }
}

void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
  // FIXME: This diversion is temporary.
  if (Matrix) {
    Matrix->assign(VirtReg, PhysReg);
    return;
  }
  DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
               << " to " << PrintReg(PhysReg, TRI) << '\n');
  assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
  VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
  MRI->setPhysRegUsed(PhysReg);
  PhysReg2LiveUnion[PhysReg].unify(VirtReg);
  ++NumAssigned;
}

void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
  // FIXME: This diversion is temporary.
  if (Matrix) {
    Matrix->unassign(VirtReg);
    return;
  }
  DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
               << " from " << PrintReg(PhysReg, TRI) << '\n');
  assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
  PhysReg2LiveUnion[PhysReg].extract(VirtReg);
  VRM->clearVirt(VirtReg.reg);
  ++NumUnassigned;
}

// Top-level driver to manage the queue of unassigned VirtRegs and call the
// selectOrSplit implementation.
void RegAllocBase::allocatePhysRegs() {
  seedLiveRegs();

  // Continue assigning vregs one at a time to available physical registers.
  while (LiveInterval *VirtReg = dequeue()) {
    assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");

    // Unused registers can appear when the spiller coalesces snippets.
    if (MRI->reg_nodbg_empty(VirtReg->reg)) {
      DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
      LIS->removeInterval(VirtReg->reg);
      continue;
    }

    // Invalidate all interference queries, live ranges could have changed.
    invalidateVirtRegs();
    if (Matrix)
      Matrix->invalidateVirtRegs();

    // selectOrSplit requests the allocator to return an available physical
    // register if possible and populate a list of new live intervals that
    // result from splitting.
    DEBUG(dbgs() << "\nselectOrSplit "
                 << MRI->getRegClass(VirtReg->reg)->getName()
                 << ':' << PrintReg(VirtReg->reg) << ' ' << *VirtReg << '\n');
    typedef SmallVector<LiveInterval*, 4> VirtRegVec;
    VirtRegVec SplitVRegs;
    unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);

    if (AvailablePhysReg == ~0u) {
      // selectOrSplit failed to find a register!
      const char *Msg = "ran out of registers during register allocation";
      // Probably caused by an inline asm.
      MachineInstr *MI;
      for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
           (MI = I.skipInstruction());)
        if (MI->isInlineAsm())
          break;
      if (MI)
        MI->emitError(Msg);
      else
        report_fatal_error(Msg);
      // Keep going after reporting the error.
      VRM->assignVirt2Phys(VirtReg->reg,
                 RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
      continue;
    }

    if (AvailablePhysReg)
      assign(*VirtReg, AvailablePhysReg);

    for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
         I != E; ++I) {
      LiveInterval *SplitVirtReg = *I;
      assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
      if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
        DEBUG(dbgs() << "not queueing unused  " << *SplitVirtReg << '\n');
        LIS->removeInterval(SplitVirtReg->reg);
        continue;
      }
      DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
      assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
             "expect split value in virtual register");
      enqueue(SplitVirtReg);
      ++NumNewQueued;
    }
  }
}

// Check if this live virtual register interferes with a physical register. If
// not, then check for interference on each register that aliases with the
// physical register. Return the interfering register.
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
                                                unsigned PhysReg) {
  for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI)
    if (query(VirtReg, *AI).checkInterference())
      return *AI;