Newer
Older
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include <iostream>
namespace {
Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
Statistic<> NumReloaded("ra-local", "Number of registers reloaded");
cl::opt<bool> DisableKill("no-kill", cl::Hidden,
cl::desc("Disable register kill in local-ra"));
class RA : public FunctionPass {
TargetMachine &TM;
MachineFunction *MF;
Chris Lattner
committed
const MRegisterInfo &RegInfo;
const MachineInstrInfo &MIInfo;
unsigned NumBytesAllocated;
// Maps SSA Regs => offsets on the stack where these values are stored
std::map<unsigned, unsigned> VirtReg2OffsetMap;
// Virt2PhysRegMap - This map contains entries for each virtual register
// that is currently available in a physical register.
//
std::map<unsigned, unsigned> Virt2PhysRegMap;
// PhysRegsUsed - This map contains entries for each physical register that
// currently has a value (ie, it is in Virt2PhysRegMap). The value mapped
// to is the virtual register corresponding to the physical register (the
// inverse of the Virt2PhysRegMap), or 0. The value is set to 0 if this
// register is pinned because it is used by a future instruction.
//
std::map<unsigned, unsigned> PhysRegsUsed;
// PhysRegsUseOrder - This contains a list of the physical registers that
// currently have a virtual register value in them. This list provides an
// ordering of registers, imposing a reallocation order. This list is only
// used if all registers are allocated and we have to spill one, in which
// case we spill the least recently used register. Entries at the front of
// the list are the least recently used registers, entries at the back are
// the most recently used.
//
std::vector<unsigned> PhysRegsUseOrder;
// LastUserOf map - This multimap contains the set of registers that each
// key instruction is the last user of. If an instruction has an entry in
// this map, that means that the specified operands are killed after the
// instruction is executed, thus they don't need to be spilled into memory
//
std::multimap<MachineInstr*, unsigned> LastUserOf;
void MarkPhysRegRecentlyUsed(unsigned Reg) {
assert(!PhysRegsUseOrder.empty() && "No registers used!");
if (PhysRegsUseOrder.back() != Reg) {
for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) { // remove from middle
unsigned RegMatch = PhysRegsUseOrder[i-1];
PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
PhysRegsUseOrder.push_back(RegMatch); // Add it to the end of the list
if (RegMatch == Reg)
return; // Found an exact match, exit early
}
}
}
public:
RA(TargetMachine &tm)
: TM(tm), RegInfo(*tm.getRegisterInfo()), MIInfo(tm.getInstrInfo()) {
cleanupAfterFunction();
}
bool runOnFunction(Function &Fn) {
return runOnMachineFunction(MachineFunction::get(&Fn));
}
virtual const char *getPassName() const {
return "Local Register Allocator";
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
void EliminatePHINodes(MachineBasicBlock &MBB);
/// CalculateLastUseOfVReg - Calculate an approximation of the killing
/// uses for the virtual registers in the function. Here we try to capture
/// registers that are defined and only used within the same basic block.
/// Because we don't have use-def chains yet, we have to do this the hard
/// way.
///
void CalculateLastUseOfVReg(MachineBasicBlock &MBB,
std::map<unsigned, MachineInstr*> &LastUseOfVReg) const;
Chris Lattner
committed
/// EmitPrologue/EmitEpilogue - Use the register info object to add a
/// prologue/epilogue to the function and save/restore any callee saved
/// registers we are responsible for.
///
void EmitPrologue();
void EmitEpilogue(MachineBasicBlock &MBB);
/// areRegsEqual - This method returns true if the specified registers are
/// related to each other. To do this, it checks to see if they are equal
/// or if the first register is in the alias set of the second register.
///
bool areRegsEqual(unsigned R1, unsigned R2) const {
if (R1 == R2) return true;
if (const unsigned *AliasSet = RegInfo.getAliasSet(R2))
for (unsigned i = 0; AliasSet[i]; ++i)
if (AliasSet[i] == R1) return true;
return false;
}
/// isAllocatableRegister - A register may be used by the program if it's
/// not the stack or frame pointer.
bool isAllocatableRegister(unsigned R) const {
Chris Lattner
committed
unsigned FP = RegInfo.getFramePointer(), SP = RegInfo.getStackPointer();
return !areRegsEqual(FP, R) && !areRegsEqual(SP, R);
}
/// getStackSpaceFor - This returns the offset of the specified virtual
/// register on the stack, allocating space if neccesary.
unsigned getStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass);
void cleanupAfterFunction() {
VirtReg2OffsetMap.clear();
NumBytesAllocated = 4; // FIXME: This is X86 specific
}
void removePhysReg(unsigned PhysReg);
/// spillVirtReg - This method spills the value specified by PhysReg into
/// the virtual register slot specified by VirtReg. It then updates the RA
/// data structures to indicate the fact that PhysReg is now available.
///
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg);
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it.
//
void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg) {
Chris Lattner
committed
std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
if (PI != PhysRegsUsed.end()) { // Only spill it if it's used!
Chris Lattner
committed
spillVirtReg(MBB, I, PI->second, PhysReg);
} else if (const unsigned *AliasSet = RegInfo.getAliasSet(PhysReg)) {
// If the selected register aliases any other registers, we must make sure
// that one of the aliases isn't alive...
for (unsigned i = 0; AliasSet[i]; ++i) {
PI = PhysRegsUsed.find(AliasSet[i]);
if (PI != PhysRegsUsed.end()) // Spill aliased register...
spillVirtReg(MBB, I, PI->second, AliasSet[i]);
}
}
}
void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
Chris Lattner
committed
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool isPhysRegAvailable(unsigned PhysReg) const;
/// getFreeReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method
/// spills the last used virtual register to the stack, and uses that
/// register.
///
unsigned getFreeReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned virtualReg);
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates
/// the regalloc data structures to reflect the fact that the virtual reg is
/// now alive in a physical register, and the previous one isn't.
///
unsigned reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I, unsigned VirtReg);
};
}
Chris Lattner
committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/// getStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned RA::getStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *RegClass) {
// Find the location VirtReg would belong...
std::map<unsigned, unsigned>::iterator I =
VirtReg2OffsetMap.lower_bound(VirtReg);
if (I != VirtReg2OffsetMap.end() && I->first == VirtReg)
return I->second; // Already has space allocated?
unsigned RegSize = RegClass->getDataSize();
// Align NumBytesAllocated. We should be using TargetData alignment stuff
// to determine this, but we don't know the LLVM type associated with the
// virtual register. Instead, just align to a multiple of the size for now.
NumBytesAllocated += RegSize-1;
NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
// Assign the slot...
VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated));
// Reserve the space!
NumBytesAllocated += RegSize;
return NumBytesAllocated-RegSize;
}
Chris Lattner
committed
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RA::removePhysReg(unsigned PhysReg) {
PhysRegsUsed.erase(PhysReg); // PhyReg no longer used
std::vector<unsigned>::iterator It =
std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
assert(It != PhysRegsUseOrder.end() &&
"Spilled a physical register, but it was not in use list!");
PhysRegsUseOrder.erase(It);
}
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg) {
// If this is just a marker register, we don't need to spill it.
if (VirtReg != 0) {
const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
unsigned stackOffset = getStackSpaceFor(VirtReg, RegClass);
// Add move instruction(s)
Chris Lattner
committed
I = RegInfo.storeReg2RegOffset(MBB, I, PhysReg, RegInfo.getFramePointer(),
-stackOffset, RegClass->getDataSize());
++NumSpilled; // Update statistics
Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available
}
}
Chris Lattner
committed
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
///
bool RA::isPhysRegAvailable(unsigned PhysReg) const {
if (PhysRegsUsed.count(PhysReg)) return false;
// If the selected register aliases any other allocated registers, it is
// not free!
if (const unsigned *AliasSet = RegInfo.getAliasSet(PhysReg))
for (unsigned i = 0; AliasSet[i]; ++i)
if (PhysRegsUsed.count(AliasSet[i])) // Aliased register in use?
return false; // Can't use this reg then.
return true;
}
/// getFreeReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg) {
const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
unsigned PhysReg = 0;
Chris Lattner
committed
// First check to see if we have a free register of the requested type...
for (TargetRegisterClass::iterator It = RegClass->begin(),E = RegClass->end();
It != E; ++It) {
unsigned R = *It;
Chris Lattner
committed
if (isPhysRegAvailable(R)) { // Is reg unused?
if (isAllocatableRegister(R)) { // And is not a frame register?
// Found an unused register!
PhysReg = R;
break;
}
Chris Lattner
committed
}
}
Chris Lattner
committed
// If we didn't find an unused register, scavenge one now!
if (PhysReg == 0) {
assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
Chris Lattner
committed
// Loop over all of the preallocated registers from the least recently used
// to the most recently used. When we find one that is capable of holding
// our register, use it.
for (unsigned i = 0; PhysReg == 0; ++i) {
assert(i != PhysRegsUseOrder.size() &&
"Couldn't find a register of the appropriate class!");
Chris Lattner
committed
unsigned R = PhysRegsUseOrder[i];
// If the current register is compatible, use it.
if (isAllocatableRegister(R)) {
Chris Lattner
committed
PhysReg = R;
break;
} else {
// If one of the registers aliased to the current register is
// compatible, use it.
if (const unsigned *AliasSet = RegInfo.getAliasSet(R))
for (unsigned a = 0; AliasSet[a]; ++a)
if (RegInfo.getRegClass(AliasSet[a]) == RegClass) {
Chris Lattner
committed
PhysReg = AliasSet[a]; // Take an aliased register
break;
}
}
}
}
Chris Lattner
committed
assert(isAllocatableRegister(PhysReg) && "Register is not allocatable!");
assert(PhysReg && "Physical register not assigned!?!?");
// At this point PhysRegsUseOrder[i] is the least recently used register of
// compatible register class. Spill it to memory and reap its remains.
spillPhysReg(MBB, I, PhysReg);
Chris Lattner
committed
}
// Now that we know which register we need to assign this to, do it now!
AssignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg;
}
Chris Lattner
committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
"Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
Virt2PhysRegMap[VirtReg] = PhysReg;
PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
}
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates the
/// regalloc data structures to reflect the fact that the virtual reg is now
/// alive in a physical register, and the previous one isn't.
///
unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned VirtReg) {
std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg);
if (It != Virt2PhysRegMap.end()) {
MarkPhysRegRecentlyUsed(It->second);
return It->second; // Already have this value available!
}
unsigned PhysReg = getFreeReg(MBB, I, VirtReg);
const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
unsigned StackOffset = getStackSpaceFor(VirtReg, RegClass);
// Add move instruction(s)
Chris Lattner
committed
I = RegInfo.loadRegOffset2Reg(MBB, I, PhysReg, RegInfo.getFramePointer(),
-StackOffset, RegClass->getDataSize());
++NumReloaded; // Update statistics
return PhysReg;
}
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/// CalculateLastUseOfVReg - Calculate an approximation of the killing uses for
/// the virtual registers in the function. Here we try to capture registers
/// that are defined and only used within the same basic block. Because we
/// don't have use-def chains yet, we have to do this the hard way.
///
void RA::CalculateLastUseOfVReg(MachineBasicBlock &MBB,
std::map<unsigned, MachineInstr*> &LastUseOfVReg) const {
// Calculate the last machine instruction in this basic block that uses the
// specified virtual register defined in this basic block.
std::map<unsigned, MachineInstr*> LastLocalUses;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;++I){
MachineInstr *MI = *I;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (Op.isVirtualRegister()) {
if (Op.opIsDef()) { // Definition of a new virtual reg?
LastLocalUses[Op.getAllocatedRegNum()] = 0; // Record it
} else { // Use of a virtual reg.
std::map<unsigned, MachineInstr*>::iterator It =
LastLocalUses.find(Op.getAllocatedRegNum());
if (It != LastLocalUses.end()) // Local use?
It->second = MI; // Update last use
else
LastUseOfVReg[Op.getAllocatedRegNum()] = 0;
}
}
}
}
// Move local uses over... if there are any uses of a local already in the
// lastuse map, the newly inserted entry is ignored.
LastUseOfVReg.insert(LastLocalUses.begin(), LastLocalUses.end());
}
Chris Lattner
committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
const MachineInstrInfo &MII = TM.getInstrInfo();
while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
MachineInstr *MI = MBB.front();
// Unlink the PHI node from the basic block... but don't delete the PHI yet
MBB.erase(MBB.begin());
assert(MI->getOperand(0).isVirtualRegister() &&
"PHI node doesn't write virt reg?");
unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block. It doesn't matter which entry we use though, because
// all incoming values are guaranteed to be the same for a particular bb.
//
// Note that this is N^2 in the number of phi node entries, but since the
// # of entries is tiny, this is not a problem.
//
bool HaveNotEmitted = true;
for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
HaveNotEmitted = false;
break;
}
if (HaveNotEmitted) {
MachineBasicBlock::iterator opI = opBlock.end();
MachineInstr *opMI = *--opI;
// must backtrack over ALL the branches in the previous block
while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
opMI = *--opI;
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
if (!MII.isBranch(opMI->getOpcode()))
++opI;
unsigned dataSize = MF->getRegClass(virtualReg)->getDataSize();
// Retrieve the constant value from this op, move it to target
// register of the phi
if (opVal.isImmediate()) {
Chris Lattner
committed
opI = RegInfo.moveImm2Reg(opBlock, opI, virtualReg,
(unsigned) opVal.getImmedValue(),
dataSize);
} else {
Chris Lattner
committed
opI = RegInfo.moveReg2Reg(opBlock, opI, virtualReg,
opVal.getAllocatedRegNum(), dataSize);
}
}
}
// really delete the PHI instruction now!
delete MI;
}
}
Chris Lattner
committed
void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator I = MBB.begin();
for (; I != MBB.end(); ++I) {
MachineInstr *MI = *I;
Chris Lattner
committed
const MachineInstrDescriptor &MID = MIInfo.get(MI->getOpcode());
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
MI->getOperand(i).isPhysicalRegister()) {
Chris Lattner
committed
unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
spillPhysReg(MBB, I, Reg);
PhysRegsUsed[Reg] = 0; // It's free now, and it's reserved
PhysRegsUseOrder.push_back(Reg);
}
Chris Lattner
committed
// Loop over the implicit defs, spilling them, as above.
if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
for (unsigned i = 0; ImplicitDefs[i]; ++i) {
unsigned Reg = ImplicitDefs[i];
// We don't want to spill implicit definitions if they were explicitly
// chosen. For this reason, check to see now if the register we are
// to spill has a vreg of 0.
if (PhysRegsUsed.count(Reg) && PhysRegsUsed[Reg] != 0) {
spillPhysReg(MBB, I, Reg);
PhysRegsUsed[Reg] = 0; // It's free now, and it's reserved
PhysRegsUseOrder.push_back(Reg);
}
Chris Lattner
committed
}
Chris Lattner
committed
// Loop over the implicit uses, making sure that they are at the head of the
// use order list, so they don't get reallocated.
if (const unsigned *ImplicitUses = MID.ImplicitUses)
for (unsigned i = 0; ImplicitUses[i]; ++i)
MarkPhysRegRecentlyUsed(ImplicitUses[i]);
// Loop over all of the operands again, getting the used operands into
// registers. This has the potiential to spill incoming values because we
// are out of registers.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsUse() &&
MI->getOperand(i).isVirtualRegister()) {
unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register
}
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
// implicit defs and assign them to a register, spilling the incoming value
// if we need to scavange a register.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
!MI->getOperand(i).isPhysicalRegister()) {
unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
unsigned DestPhysReg;
if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
assert(MI->getOperand(1).isRegister() &&
MI->getOperand(1).getAllocatedRegNum() &&
MI->getOperand(1).opIsUse() &&
"Two address instruction invalid!");
DestPhysReg = MI->getOperand(1).getAllocatedRegNum();
// Spill the incoming value, because we are about to change the
// register contents.
spillPhysReg(MBB, I, DestPhysReg);
AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
} else {
DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
}
MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register
}
if (!DisableKill) {
// If this instruction is the last user of anything in registers, kill the
// value, freeing the register being used, so it doesn't need to be spilled
// to memory at the end of the block.
std::multimap<MachineInstr*, unsigned>::iterator LUOI =
LastUserOf.lower_bound(MI);
for (; LUOI != LastUserOf.end() && LUOI->first == MI; ++MI) {// entry found?
unsigned VirtReg = LUOI->second;
unsigned PhysReg = Virt2PhysRegMap[VirtReg];
if (PhysReg) {
DEBUG(std::cout << "V: " << VirtReg << " P: " << PhysReg << " Last use of: " << *MI);
removePhysReg(PhysReg);
}
Virt2PhysRegMap.erase(VirtReg);
}
}
}
// Rewind the iterator to point to the first flow control instruction...
const MachineInstrInfo &MII = TM.getInstrInfo();
I = MBB.end();
do {
--I;
} while ((MII.isReturn((*I)->getOpcode()) ||
MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
++I;
// Spill all physical registers holding virtual registers now.
while (!PhysRegsUsed.empty())
spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
PhysRegsUsed.begin()->first);
assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
}
Chris Lattner
committed
/// EmitPrologue - Use the register info object to add a prologue to the
/// function and save any callee saved registers we are responsible for.
///
void RA::EmitPrologue() {
// Get a list of the callee saved registers, so that we can save them on entry
// to the function.
//
MachineBasicBlock &MBB = MF->front(); // Prolog goes in entry BB
MachineBasicBlock::iterator I = MBB.begin();
const unsigned *CSRegs = RegInfo.getCalleeSaveRegs();
for (unsigned i = 0; CSRegs[i]; ++i) {
const TargetRegisterClass *RegClass = RegInfo.getRegClass(CSRegs[i]);
Chris Lattner
committed
unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);
// Insert the spill to the stack frame...
Chris Lattner
committed
I = RegInfo.storeReg2RegOffset(MBB, I, CSRegs[i], RegInfo.getFramePointer(),
-Offset, RegClass->getDataSize());
}
// Add prologue to the function...
RegInfo.emitPrologue(*MF, NumBytesAllocated);
}
/// EmitEpilogue - Use the register info object to add a epilogue to the
/// function and restore any callee saved registers we are responsible for.
///
Chris Lattner
committed
void RA::EmitEpilogue(MachineBasicBlock &MBB) {
// Insert instructions before the return.
MachineBasicBlock::iterator I = --MBB.end();
const unsigned *CSRegs = RegInfo.getCalleeSaveRegs();
for (unsigned i = 0; CSRegs[i]; ++i) {
const TargetRegisterClass *RegClass = RegInfo.getRegClass(CSRegs[i]);
Chris Lattner
committed
unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);
Chris Lattner
committed
I = RegInfo.loadRegOffset2Reg(MBB, I, CSRegs[i], RegInfo.getFramePointer(),
-Offset, RegClass->getDataSize());
--I; // Insert in reverse order
}
RegInfo.emitEpilogue(MBB, NumBytesAllocated);
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RA::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
// First pass: eliminate PHI instructions by inserting copies into predecessor
// blocks, and calculate a simple approximation of killing uses for virtual
// registers.
//
std::map<unsigned, MachineInstr*> LastUseOfVReg;
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
if (!DisableKill)
CalculateLastUseOfVReg(*MBB, LastUseOfVReg);
EliminatePHINodes(*MBB);
// At this point LastUseOfVReg has been filled in to contain the last
// MachineInstr user of the specified virtual register, if that user is
// within the same basic block as the definition (otherwise it contains
// null). Invert this mapping now:
if (!DisableKill)
for (std::map<unsigned, MachineInstr*>::iterator I = LastUseOfVReg.begin(),
E = LastUseOfVReg.end(); I != E; ++I)
if (I->second)
LastUserOf.insert(std::make_pair(I->second, I->first));
// We're done with the temporary list now.
LastUseOfVReg.clear();
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
Chris Lattner
committed
// Emit a prologue for the function...
EmitPrologue();
const MachineInstrInfo &MII = TM.getInstrInfo();
// Add epilogue to restore the callee-save registers in each exiting block
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// If last instruction is a return instruction, add an epilogue
if (MII.isReturn(MBB->back()->getOpcode()))
Chris Lattner
committed
EmitEpilogue(*MBB);
}
cleanupAfterFunction();
return true;
}
Pass *createLocalRegisterAllocator(TargetMachine &TM) {
return new RA(TM);
}