Newer
Older
uint64_t Len = LenC->getZExtValue();
if (Len == 0) // memcmp(s1,s2,0) -> 0
Owen Anderson
committed
return Constant::getNullValue(CI->getType());
if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
return B.CreateSExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
// Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
std::string LHSStr, RHSStr;
if (GetConstantStringInfo(LHS, LHSStr) &&
GetConstantStringInfo(RHS, RHSStr)) {
// Make sure we're not reading out-of-bounds memory.
if (Len > LHSStr.length() || Len > RHSStr.length())
return 0;
uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
return ConstantInt::get(CI->getType(), Ret);
}
return 0;
}
};
//===---------------------------------------===//
// 'memcpy' Optimizations
struct MemCpyOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
return CI->getOperand(1);
}
};
//===---------------------------------------===//
// 'memmove' Optimizations
struct MemMoveOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
return CI->getOperand(1);
}
};
//===---------------------------------------===//
// 'memset' Optimizations
struct MemSetOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<IntegerType>(FT->getParamType(1)) ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context),
false);
EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B);
return CI->getOperand(1);
}
};
//===----------------------------------------------------------------------===//
// Object Size Checking Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'memcpy_chk' Optimizations
struct MemCpyChkOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
!isa<IntegerType>(FT->getParamType(3)) ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
return 0;
ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
if (!SizeCI)
return 0;
if (SizeCI->isAllOnesValue()) {
EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
return CI->getOperand(1);
}
return 0;
}
};
//===---------------------------------------===//
// 'memset_chk' Optimizations
struct MemSetChkOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<IntegerType>(FT->getParamType(1)) ||
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
if (!SizeCI)
return 0;
if (SizeCI->isAllOnesValue()) {
Value *Val = B.CreateIntCast(CI->getOperand(2), Type::getInt8Ty(*Context),
false);
EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B);
return CI->getOperand(1);
}
return 0;
}
};
//===---------------------------------------===//
// 'memmove_chk' Optimizations
struct MemMoveChkOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
if (!SizeCI)
return 0;
if (SizeCI->isAllOnesValue()) {
EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
1, B);
return CI->getOperand(1);
}
return 0;
}
};
//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'pow*' Optimizations
struct PowOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPoint())
return 0;
Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
return Op1C;
if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
if (Op2C == 0) return 0;
if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
return ConstantFP::get(CI->getType(), 1.0);
if (Op2C->isExactlyValue(0.5)) {
// Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
// This is faster than calling pow, and still handles negative zero
// and negative infinite correctly.
// TODO: In fast-math mode, this could be just sqrt(x).
// TODO: In finite-only mode, this could be just fabs(sqrt(x)).
Value *Inf = ConstantFP::getInfinity(CI->getType());
Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
Callee->getAttributes());
Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
Callee->getAttributes());
Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf, "tmp");
Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp");
return Sel;
if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
return Op1;
if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
return B.CreateFMul(Op1, Op1, "pow2");
if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
return 0;
}
};
//===---------------------------------------===//
// 'exp2' Optimizations
struct Exp2Opt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 1 argument of FP type, which matches the
// result type.
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPoint())
return 0;
Value *Op = CI->getOperand(1);
// Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
// Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
Value *LdExpArg = 0;
if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
LdExpArg = B.CreateSExt(OpC->getOperand(0),
Type::getInt32Ty(*Context), "tmp");
} else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
LdExpArg = B.CreateZExt(OpC->getOperand(0),
Type::getInt32Ty(*Context), "tmp");
if (LdExpArg) {
const char *Name;
if (Op->getType()->isFloatTy())
else if (Op->getType()->isDoubleTy())
Name = "ldexp";
else
Name = "ldexpl";
Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
if (!Op->getType()->isFloatTy())
One = ConstantExpr::getFPExtend(One, Op->getType());
Module *M = Caller->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
Op->getType(),
Type::getInt32Ty(*Context),NULL);
CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
}
return 0;
}
};
//===---------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
struct UnaryDoubleFPOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
!FT->getParamType(0)->isDoubleTy())
return 0;
// If this is something like 'floor((double)floatval)', convert to floorf.
FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
return 0;
// floor((double)floatval) -> (double)floorf(floatval)
Value *V = Cast->getOperand(0);
V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B,
Callee->getAttributes());
return B.CreateFPExt(V, Type::getDoubleTy(*Context));
}
};
//===----------------------------------------------------------------------===//
// Integer Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'ffs*' Optimizations
struct FFSOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
!FT->getReturnType()->isInteger(32) ||
!isa<IntegerType>(FT->getParamType(0)))
return 0;
Value *Op = CI->getOperand(1);
// Constant fold.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
if (CI->getValue() == 0) // ffs(0) -> 0.
Owen Anderson
committed
return Constant::getNullValue(CI->getType());
return ConstantInt::get(Type::getInt32Ty(*Context), // ffs(c) -> cttz(c)+1
CI->getValue().countTrailingZeros()+1);
}
// ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
const Type *ArgType = Op->getType();
Value *F = Intrinsic::getDeclaration(Callee->getParent(),
Intrinsic::cttz, &ArgType, 1);
Value *V = B.CreateCall(F, Op, "cttz");
Owen Anderson
committed
V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp");
V = B.CreateIntCast(V, Type::getInt32Ty(*Context), false, "tmp");
Owen Anderson
committed
Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
return B.CreateSelect(Cond, V,
ConstantInt::get(Type::getInt32Ty(*Context), 0));
}
};
//===---------------------------------------===//
// 'isdigit' Optimizations
struct IsDigitOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
!FT->getParamType(0)->isInteger(32))
return 0;
// isdigit(c) -> (c-'0') <u 10
Value *Op = CI->getOperand(1);
Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'),
Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10),
return B.CreateZExt(Op, CI->getType());
}
};
//===---------------------------------------===//
// 'isascii' Optimizations
struct IsAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
!FT->getParamType(0)->isInteger(32))
return 0;
// isascii(c) -> c <u 128
Value *Op = CI->getOperand(1);
Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 128),
return B.CreateZExt(Op, CI->getType());
}
};
//===---------------------------------------===//
// 'abs', 'labs', 'llabs' Optimizations
struct AbsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require integer(integer) where the types agree.
if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
FT->getParamType(0) != FT->getReturnType())
return 0;
// abs(x) -> x >s -1 ? x : -x
Value *Op = CI->getOperand(1);
Owen Anderson
committed
Constant::getAllOnesValue(Op->getType()),
"ispos");
Value *Neg = B.CreateNeg(Op, "neg");
return B.CreateSelect(Pos, Op, Neg);
}
};
//===---------------------------------------===//
// 'toascii' Optimizations
struct ToAsciiOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
const FunctionType *FT = Callee->getFunctionType();
// We require i32(i32)
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isInteger(32))
return 0;
// isascii(c) -> c & 0x7f
return B.CreateAnd(CI->getOperand(1),
Owen Anderson
committed
ConstantInt::get(CI->getType(),0x7F));
}
};
//===----------------------------------------------------------------------===//
// Formatting and IO Optimizations
//===----------------------------------------------------------------------===//
//===---------------------------------------===//
// 'printf' Optimizations
struct PrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require one fixed pointer argument and an integer/void result.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
!(isa<IntegerType>(FT->getReturnType()) ||
FT->getReturnType()->isVoidTy()))
return 0;
// Check for a fixed format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
return 0;
// Empty format string -> noop.
if (FormatStr.empty()) // Tolerate printf's declared void.
return CI->use_empty() ? (Value*)CI :
Owen Anderson
committed
ConstantInt::get(CI->getType(), 0);
// printf("x") -> putchar('x'), even for '%'. Return the result of putchar
// in case there is an error writing to stdout.
if (FormatStr.size() == 1) {
Value *Res = EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context),
FormatStr[0]), B);
if (CI->use_empty()) return CI;
return B.CreateIntCast(Res, CI->getType(), true);
// printf("foo\n") --> puts("foo")
if (FormatStr[FormatStr.size()-1] == '\n' &&
FormatStr.find('%') == std::string::npos) { // no format characters.
// Create a string literal with no \n on it. We expect the constant merge
// pass to be run after this pass, to merge duplicate strings.
FormatStr.erase(FormatStr.end()-1);
Constant *C = ConstantArray::get(*Context, FormatStr, true);
Owen Anderson
committed
C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
GlobalVariable::InternalLinkage, C, "str");
EmitPutS(C, B);
return CI->use_empty() ? (Value*)CI :
Owen Anderson
committed
ConstantInt::get(CI->getType(), FormatStr.size()+1);
// Optimize specific format strings.
// printf("%c", chr) --> putchar(*(i8*)dst)
if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
isa<IntegerType>(CI->getOperand(2)->getType())) {
Value *Res = EmitPutChar(CI->getOperand(2), B);
if (CI->use_empty()) return CI;
return B.CreateIntCast(Res, CI->getType(), true);
// printf("%s\n", str) --> puts(str)
if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
isa<PointerType>(CI->getOperand(2)->getType()) &&
CI->use_empty()) {
EmitPutS(CI->getOperand(2), B);
return CI;
}
return 0;
}
};
//===---------------------------------------===//
// 'sprintf' Optimizations
struct SPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed pointer arguments and an integer result.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
!isa<IntegerType>(FT->getReturnType()))
return 0;
// Check for a fixed format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
return 0;
// If we just have a format string (nothing else crazy) transform it.
if (CI->getNumOperands() == 3) {
// Make sure there's no % in the constant array. We could try to handle
// %% -> % in the future if we cared.
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return 0; // we found a format specifier, bail out.
// These optimizations require TargetData.
if (!TD) return 0;
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
ConstantInt::get
(TD->getIntPtrType(*Context), FormatStr.size()+1),1,B);
Owen Anderson
committed
return ConstantInt::get(CI->getType(), FormatStr.size());
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
return 0;
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
Value *V = B.CreateTrunc(CI->getOperand(3),
Type::getInt8Ty(*Context), "char");
Value *Ptr = CastToCStr(CI->getOperand(1), B);
B.CreateStore(V, Ptr);
Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1),
"nul");
B.CreateStore(Constant::getNullValue(Type::getInt8Ty(*Context)), Ptr);
Owen Anderson
committed
return ConstantInt::get(CI->getType(), 1);
if (FormatStr[1] == 's') {
// These optimizations require TargetData.
if (!TD) return 0;
// sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0;
Value *Len = EmitStrLen(CI->getOperand(3), B);
Owen Anderson
committed
ConstantInt::get(Len->getType(), 1),
"leninc");
EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
// The sprintf result is the unincremented number of bytes in the string.
return B.CreateIntCast(Len, CI->getType(), false);
}
return 0;
}
};
//===---------------------------------------===//
// 'fwrite' Optimizations
struct FWriteOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require a pointer, an integer, an integer, a pointer, returning integer.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 4 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<IntegerType>(FT->getParamType(1)) ||
!isa<IntegerType>(FT->getParamType(2)) ||
!isa<PointerType>(FT->getParamType(3)) ||
!isa<IntegerType>(FT->getReturnType()))
return 0;
// Get the element size and count.
ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
if (!SizeC || !CountC) return 0;
uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
// If this is writing zero records, remove the call (it's a noop).
if (Bytes == 0)
Owen Anderson
committed
return ConstantInt::get(CI->getType(), 0);
// If this is writing one byte, turn it into fputc.
if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
EmitFPutC(Char, CI->getOperand(4), B);
Owen Anderson
committed
return ConstantInt::get(CI->getType(), 1);
}
return 0;
}
};
//===---------------------------------------===//
// 'fputs' Optimizations
struct FPutsOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require TargetData.
if (!TD) return 0;
// Require two pointers. Also, we can't optimize if return value is used.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
!CI->use_empty())
return 0;
// fputs(s,F) --> fwrite(s,1,strlen(s),F)
uint64_t Len = GetStringLength(CI->getOperand(1));
ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
CI->getOperand(2), B);
return CI; // Known to have no uses (see above).
}
};
//===---------------------------------------===//
// 'fprintf' Optimizations
struct FPrintFOpt : public LibCallOptimization {
virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed paramters as pointers and integer result.
const FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
!isa<PointerType>(FT->getParamType(1)) ||
!isa<IntegerType>(FT->getReturnType()))
return 0;
// All the optimizations depend on the format string.
std::string FormatStr;
if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
return 0;
// fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
if (CI->getNumOperands() == 3) {
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
// These optimizations require TargetData.
if (!TD) return 0;
EmitFWrite(CI->getOperand(2),
ConstantInt::get(TD->getIntPtrType(*Context),
FormatStr.size()),
CI->getOperand(1), B);
Owen Anderson
committed
return ConstantInt::get(CI->getType(), FormatStr.size());
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
return 0;
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// fprintf(F, "%c", chr) --> *(i8*)dst = chr
if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
Owen Anderson
committed
return ConstantInt::get(CI->getType(), 1);
if (FormatStr[1] == 's') {
// fprintf(F, "%s", str) -> fputs(str, F)
if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
return 0;
EmitFPutS(CI->getOperand(3), CI->getOperand(1), B);
return CI;
}
return 0;
}
};
Bill Wendling
committed
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// SimplifyLibCalls Pass Implementation
//===----------------------------------------------------------------------===//
namespace {
/// This pass optimizes well known library functions from libc and libm.
///
class SimplifyLibCalls : public FunctionPass {
StringMap<LibCallOptimization*> Optimizations;
// String and Memory LibCall Optimizations
StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrCmpOpt StrCmp;
StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrNCpyOpt StrNCpy; StrLenOpt StrLen;
StrToOpt StrTo; StrStrOpt StrStr;
MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet;
// Math Library Optimizations
PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
// Integer Optimizations
FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
ToAsciiOpt ToAscii;
// Formatting and IO Optimizations
SPrintFOpt SPrintF; PrintFOpt PrintF;
FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
// Object Size Checking
MemCpyChkOpt MemCpyChk; MemSetChkOpt MemSetChk; MemMoveChkOpt MemMoveChk;
bool Modified; // This is only used by doInitialization.
public:
static char ID; // Pass identification
SimplifyLibCalls() : FunctionPass(&ID) {}
void InitOptimizations();
bool runOnFunction(Function &F);
void setDoesNotAccessMemory(Function &F);
void setOnlyReadsMemory(Function &F);
void setDoesNotThrow(Function &F);
void setDoesNotCapture(Function &F, unsigned n);
void setDoesNotAlias(Function &F, unsigned n);
bool doInitialization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
}
};
char SimplifyLibCalls::ID = 0;
} // end anonymous namespace.
static RegisterPass<SimplifyLibCalls>
X("simplify-libcalls", "Simplify well-known library calls");
// Public interface to the Simplify LibCalls pass.
FunctionPass *llvm::createSimplifyLibCallsPass() {
}
/// Optimizations - Populate the Optimizations map with all the optimizations
/// we know.
void SimplifyLibCalls::InitOptimizations() {
// String and Memory LibCall Optimizations
Optimizations["strcat"] = &StrCat;
Optimizations["strncat"] = &StrNCat;
Optimizations["strchr"] = &StrChr;
Optimizations["strcmp"] = &StrCmp;
Optimizations["strncmp"] = &StrNCmp;
Optimizations["strcpy"] = &StrCpy;
Optimizations["strncpy"] = &StrNCpy;
Optimizations["strlen"] = &StrLen;
Nick Lewycky
committed
Optimizations["strtol"] = &StrTo;
Optimizations["strtod"] = &StrTo;
Optimizations["strtof"] = &StrTo;
Optimizations["strtoul"] = &StrTo;
Optimizations["strtoll"] = &StrTo;
Optimizations["strtold"] = &StrTo;
Optimizations["strtoull"] = &StrTo;
Optimizations["strstr"] = &StrStr;
Optimizations["memcmp"] = &MemCmp;
Optimizations["memcpy"] = &MemCpy;
Optimizations["memmove"] = &MemMove;
Optimizations["memset"] = &MemSet;
// Math Library Optimizations
Optimizations["powf"] = &Pow;
Optimizations["pow"] = &Pow;
Optimizations["powl"] = &Pow;
Optimizations["llvm.pow.f32"] = &Pow;
Optimizations["llvm.pow.f64"] = &Pow;
Optimizations["llvm.pow.f80"] = &Pow;
Optimizations["llvm.pow.f128"] = &Pow;
Optimizations["llvm.pow.ppcf128"] = &Pow;
Optimizations["exp2l"] = &Exp2;
Optimizations["exp2"] = &Exp2;
Optimizations["exp2f"] = &Exp2;
Optimizations["llvm.exp2.ppcf128"] = &Exp2;
Optimizations["llvm.exp2.f128"] = &Exp2;
Optimizations["llvm.exp2.f80"] = &Exp2;
Optimizations["llvm.exp2.f64"] = &Exp2;
Optimizations["llvm.exp2.f32"] = &Exp2;
#ifdef HAVE_FLOORF
Optimizations["floor"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_CEILF
Optimizations["ceil"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_ROUNDF
Optimizations["round"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_RINTF
Optimizations["rint"] = &UnaryDoubleFP;
#endif
#ifdef HAVE_NEARBYINTF
Optimizations["nearbyint"] = &UnaryDoubleFP;
#endif
// Integer Optimizations
Optimizations["ffs"] = &FFS;
Optimizations["ffsl"] = &FFS;
Optimizations["ffsll"] = &FFS;
Optimizations["abs"] = &Abs;
Optimizations["labs"] = &Abs;
Optimizations["llabs"] = &Abs;
Optimizations["isdigit"] = &IsDigit;
Optimizations["isascii"] = &IsAscii;
Optimizations["toascii"] = &ToAscii;
// Formatting and IO Optimizations
Optimizations["sprintf"] = &SPrintF;
Optimizations["printf"] = &PrintF;
Optimizations["fwrite"] = &FWrite;
Optimizations["fputs"] = &FPuts;
Optimizations["fprintf"] = &FPrintF;
// Object Size Checking
Optimizations["__memcpy_chk"] = &MemCpyChk;
Optimizations["__memset_chk"] = &MemSetChk;
Optimizations["__memmove_chk"] = &MemMoveChk;
}
/// runOnFunction - Top level algorithm.
///
bool SimplifyLibCalls::runOnFunction(Function &F) {
if (Optimizations.empty())
InitOptimizations();
const TargetData *TD = getAnalysisIfAvailable<TargetData>();
IRBuilder<> Builder(F.getContext());
bool Changed = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
// Ignore non-calls.
CallInst *CI = dyn_cast<CallInst>(I++);
if (!CI) continue;
// Ignore indirect calls and calls to non-external functions.
Function *Callee = CI->getCalledFunction();
if (Callee == 0 || !Callee->isDeclaration() ||
!(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
continue;
// Ignore unknown calls.
LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
if (!LCO) continue;
// Set the builder to the instruction after the call.
Builder.SetInsertPoint(BB, I);
// Try to optimize this call.
Value *Result = LCO->OptimizeCall(CI, TD, Builder);
if (Result == 0) continue;
DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI;
dbgs() << " into: " << *Result << "\n");
// Something changed!
Changed = true;
++NumSimplified;
// Inspect the instruction after the call (which was potentially just
// added) next.
I = CI; ++I;
if (CI != Result && !CI->use_empty()) {
CI->replaceAllUsesWith(Result);
if (!Result->hasName())
Result->takeName(CI);
}
CI->eraseFromParent();
}
}
return Changed;
}
// Utility methods for doInitialization.
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) {
if (!F.doesNotAccessMemory()) {
F.setDoesNotAccessMemory();
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setOnlyReadsMemory(Function &F) {
if (!F.onlyReadsMemory()) {
F.setOnlyReadsMemory();
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setDoesNotThrow(Function &F) {
if (!F.doesNotThrow()) {
F.setDoesNotThrow();
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) {
if (!F.doesNotCapture(n)) {
F.setDoesNotCapture(n);
++NumAnnotated;
Modified = true;
}
}
void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
if (!F.doesNotAlias(n)) {
F.setDoesNotAlias(n);
++NumAnnotated;
Modified = true;
}
}
/// doInitialization - Add attributes to well-known functions.
bool SimplifyLibCalls::doInitialization(Module &M) {
Modified = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Function &F = *I;
if (!F.isDeclaration())
continue;
if (!F.hasName())
continue;
const FunctionType *FTy = F.getFunctionType();
StringRef Name = F.getName();
switch (Name[0]) {
case 's':
if (Name == "strlen") {
if (FTy->getNumParams() != 1 ||
!isa<PointerType>(FTy->getParamType(0)))
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
} else if (Name == "strcpy" ||
Name == "stpcpy" ||
Name == "strcat" ||
Name == "strtol" ||
Name == "strtod" ||
Name == "strtof" ||
Name == "strtoul" ||
Name == "strtoll" ||
Name == "strtold" ||
Name == "strncat" ||
Name == "strncpy" ||
Name == "strtoull") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 2);
} else if (Name == "strxfrm") {
if (FTy->getNumParams() != 3 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "strcmp" ||
Name == "strspn" ||
Name == "strncmp" ||
Name ==" strcspn" ||
Name == "strcoll" ||
Name == "strcasecmp" ||
Name == "strncasecmp") {
if (FTy->getNumParams() < 2 ||
!isa<PointerType>(FTy->getParamType(0)) ||
!isa<PointerType>(FTy->getParamType(1)))
continue;
setOnlyReadsMemory(F);
setDoesNotThrow(F);
setDoesNotCapture(F, 1);
setDoesNotCapture(F, 2);
} else if (Name == "strstr" ||